
1CS 701 Fall 2005
©

CS 701

Charles N. Fischer

Fall 2005

http://www.cs.wisc.edu/~fischer/cs701.html

2CS 701 Fall 2005
©

Class Meets
Tuesdays & Thursdays, 11:00 — 12:15
3418 Engineering Hall

Instructor
Charles N. Fischer
6367 Computer Sciences
Telephone: 262-6635
E-mail: fischer@cs.wisc.edu
Office Hours:

10:30 - Noon, Mondays &
Wednesdays, or by appointment

3CS 701 Fall 2005
©

Teaching Assistant
Anne Mulhern
3361 Computer Sciences
Telephone: 446-3841
E-mail: mulhern@cs.wisc.edu
Office Hours:

1:00 - 3:00
 Thursdays or by appointment

4CS 701 Fall 2005
©

Key Dates
• September 27: Project 1 due

• October 25: Project 2 due (tentative)

• November 1: Midterm (tentative)

• November 29: Project 3 due (tentative)

• December 15: Project 4 due

• December ??: Final Exam, date to be
determined

5CS 701 Fall 2005
©

Class Text
There is no required text.
Handouts and Web-based reading will
be used.

Suggested reference:

Advanced Compiler Design &
Implementation,
 by Steven S. Muchnick,

 published by Morgan Kaufman.

6CS 701 Fall 2005
©

Instructional Computers
Departmental SPARC Processors
(n01.cs.wisc—n16.cs.wisc) are
assigned to this class.
Your own workstation probably isn’t
SPARC-based, so you will need to log
onto a machine that uses a SPARC
processor to do SPARC-specific
assignments.

7CS 701 Fall 2005
©

CS701 Projects
1. SPARC Code Optimization
2. Global Register Allocation

 (using Graph Coloring)
3. Global Code Optimizations
4. Individual Research Topics

8CS 701 Fall 2005
©

Academic Misconduct Policy
• You must do your assignments—no

copying or sharing of solutions.

• You may discuss general concepts and
Ideas.

• All cases of Misconduct must be
reported.

• Penalties may be severe.

9CS 701 Fall 2005
©

Reading Assignment
• Read Chapters 0-6 and Appendices G&H

of the SPARC Architecture Manual. Also
skim Appendix A.

• Read section 15.2 of Chapter 15.

• Read Assignment #1.

10CS 701 Fall 2005
©

Overview of Course Topics
1. Register Allocation

Local Allocation
Avoid unnecessary loads and stores
within a basic block. Remember and
reuse register contents.
Consider effects of aliasing.

Global Allocation
Allocate registers within a single
subprogram. Choose “most profitable”
values. Map several values to the same
register.

Interprocedural Allocation
Avoid saves and restores across calls.
Share globals in registers.

11CS 701 Fall 2005
©

2. Code Scheduling
We can reorder code to reduce latencies
and to maximize ILP (Instruction Level
Parallelism). We must respect data
dependencies and control dependencies.

ld [a],%r1 ld [a],%r1

add %r1,1,%r2 mov 3,%r3

mov 3,%r3 add %r1,1,%r2

(before) (after)

12CS 701 Fall 2005
©

3. Automatic Instruction Selection
How do we map an IR (Intermediate
Representation) into Machine Instructions?
Can we guarantee the best instruction
sequence?

Idea—Match instruction patterns
(represented as trees) against an IR that is
a low-level tree. Each match is a generated
instruction; the best overall match is the
best instruction sequence.

13CS 701 Fall 2005
©

Example:
a=b+c+1;

In IR tree form:

Generated code:
ld [%fp+b offset],%r1

ld [c adr],%r2

add %r1,%r2,%r3

add %r3,1,%r4

st %r4,[a adr]

Why use four different registers?

=

aadr

+

↑↑

+ 1

cadr

+

%fp boffset

14CS 701 Fall 2005
©

4. Peephole Optimization
Inspect generated code sequences and
replace pairs/triples/tuples with better
alternatives.

ld [a],%r1 ld [a],%r1
mov const,%r2 add %r1,const,%r3
add %r1,%r2,%r3

(before) (after)

mov 0,%r1 OP %g0,%r2,%r3
OP %r1,%r2,%r3

(before) (after)

But why not just generate the better code
sequence to begin with?

15CS 701 Fall 2005
©

5. Cache Improvements
We want to access data & instructions
from the L1 cache whenever possible;
misses into the L2 cache (or memory) are
expensive!

We will layout data and program code with
consideration of cache sizes and access
properties.

6. Local & Global Optimizations
Identify unneeded or redundant code.
Decide where to place code.
Worry about debugging issues (how
reliable are current values and source line
numbers after optimization?)

16CS 701 Fall 2005
©

7. Program representations
• Control Flow Graphs

• Program Dependency Graphs

• Static Single Assignment Form (SSA)
Each program variable is assigned to in
only one place.
After an assignment xi = y j , the
relation xi = y j always holds.

Example:

if (a) if (a)
 x = 1 x 1 =1

else x = 2; else x 2 =2;

print(x) x 3 = φ(x 1,x 2)

 print(x 3)

17CS 701 Fall 2005
©

8. Data Flow Analysis
Determine invariant properties of
subprograms; analysis can be extended to
entire programs.

Model abstract execution.

Prove correctness and efficiency properties
of analysis algorithms.

18CS 701 Fall 2005
©

Review of Compiler
Optimizations
1. Redundant Expression Elimination

(Common Subexpression Elimination)
Use an address or value that has been
previously computed. Consider control and
data dependencies.

2. Partially Redundant Expression (PRE)
Elimination
A variant of Redundant Expression
Elimination. If a value or address is
redundant along some execution paths, add
computations to other paths to create a
fully redundant expression (which is then
removed).
Example:
if (i > j)

a[i] = a[j];

a[i] = a[i] * 2;

19CS 701 Fall 2005
©

3. Constant Propagation
If a variable is known to contain a
particular constant value at a particular
point in the program, replace references to
the variable at that point with that
constant value.

4. Copy Propagation
After the assignment of one variable to
another, a reference to one variable may be
replaced with the value of the other
variable (until one or the other of the
variables is reassigned).
(This may also “set up” dead code
elimination. Why?)

5. Constant Folding
An expression involving constant (literal)
values may be evaluated and simplified to a
constant result value. Particularly useful
when constant propagation is performed.

20CS 701 Fall 2005
©

6. Dead Code Elimination
Expressions or statements whose values or
effects are unused may be eliminated.

7. Loop Invariant Code Motion
An expression that is invariant in a loop
may be moved to the loop’s header,
evaluated once, and reused within the loop.
Safety and profitability issues may be
involved.

8. Scalarization (Scalar Replacement)
A field of a structure or an element of an
array that is repeatedly read or written may
be copied to a local variable, accessed using
the local, and later (if necessary) copied
back.
This optimization allows the local variable
(and in effect the field or array
component) to be allocated to a register.

21CS 701 Fall 2005
©

9. Local Register Allocation
Within a basic block (a straight line
sequence of code) track register contents
and reuse variables and constants from
registers.

10. Global Register Allocation
Within a subprogram, frequently accessed
variables and constants are allocated to
registers. Usually there are many more
register candidates than available registers.

11. Interprocedural Register Allocation
Variables and constants accessed by more
than one subprogram are allocated to
registers. This can greatly reduce call/return
overhead.

22CS 701 Fall 2005
©

12. Register Targeting
Compute values directly into the intended
target register.

13. Interprocedural Code Motion
Move instructions across subprogram
boundaries.

14. Call Inlining
At the site of a call, insert the body of a
subprogram, with actual parameters
initializing formal parameters.

15. Code Hoisting and Sinking
If the same code sequence appears in two
or more alternative execution paths, the
code may be hoisted to a common
ancestor or sunk to a common successor.
(This reduces code size, but does not reduce
instruction count.)

23CS 701 Fall 2005
©

16. Loop Unrolling
Replace a loop body executed N times with
an expanded loop body consisting of M
copies of the loop body. This expanded loop
body is executed N/M times, reducing loop
overhead and increasing optimization
possibilities within the expanded loop body.

17. Software Pipelining
A value needed in iteration i of a loop is
computed during iteration i-1 (or i-2, ...).
This allows long latency operations
(floating point divides and square roots,
low hit-ratio loads) to execute in parallel
with other operations. Software pipelining
is sometimes called symbolic loop unrolling.

24CS 701 Fall 2005
©

18. Strength Reduction
Replace an expensive instruction with an
equivalent but cheaper alternative. For
example a division may be replaced by
multiplication of a reciprocal, or a list
append may be replaced by cons
operations.

19. Data Cache Optimizations
• Locality Optimizations

Cluster accesses of data values both
spacially (within a cache line) and
temporally (for repeated use).
Loop interchange and loop tiling improve
temporal locality.

• Conflict Optimizations
Adjust data locations so that data used
consecutively and repeatedly don’t share
the same cache location.

25CS 701 Fall 2005
©

20. Instruction Cache Optimizations
Instructions that are repeatedly re-
executed should be accessed from the
instruction cache rather than the
secondary cache or memory. Loops and
“hot” instruction sequences should fit
within the cache.
Temporally close instruction sequences
should not map to conflicting cache
locations.

26CS 701 Fall 2005
©

Reading Assignment
• Read “Modern Microprocessors—A 90

Minute Guide!,” by Jason Patterson.

27CS 701 Fall 2005
©

SPARC Overview
• SPARC is an acronym for
 Scalable Processor ARChitecture

• SPARCs are load/store RISC processors
Load/store means only loads and
stores access memory directly.
RISC (Reduced Instruction Set
Computer) means the architecture is
simplified with a limited number of
instruction formats and addressing
modes.

28CS 701 Fall 2005
©

• Instruction format:
add %r1,%r2,%r3

Registers are prefixed with a %

Result is stored into last operand.

ld [adr],%r1

Memory addresses (used only in loads
and stores) are enclosed in brackets

• Distinctive features include Register
Windows and Delayed Branches

29CS 701 Fall 2005
©

Register Windows
The SPARC provides 32 general-purpose
integer registers, denoted as %r0 through
%r31.
These 32 registers are subdivided into 4
groups:
 Globals: %g0 to %g7

 In registers: %i0 to %i7

 Locals: %l0 to %l7

 Out registers: %o0 to %o7

There are also 32 floating-point registers,
%f0 to %f31 .

A SPARC processor has an implementation-
dependent number of register windows,
each consisting of 16 distinct registers.
The "in", "local" and "out" registers that
are accessed in a procedure depend on the
current register window. The "global"

30CS 701 Fall 2005
©

registers are independent of the register
windows (as are the floating-point
registers).
A register window may be pushed or
popped using SPARC save and restore
instructions.
After a register window push, the “out”
registers become “in” registers and a fresh
set of “local” and “out” registers is created:

In Local Out

In Local OutIn Local

Before save :

After save

(old) (old) (new) (new)

31CS 701 Fall 2005
©

Why the overlap between “in” and “out”
registers? It’s a convenient way to pass
parameters—the caller puts parameter
values in his “out” registers. After a call
(and a save) these values are
automatically available as “in” registers in
the newly created register window.

SPARC procedure calls normally advance
the register window. The "in" and "local"
registers become hidden, and the "out"
registers become the "in" registers of the
called procedure, and new "local" and
"out" registers become available.

A register window is advanced using the
save instruction, and rolled back using
the restore instruction. These
instructions are separate from the
procedure call and return instructions,
and can sometimes be optimized away.

32CS 701 Fall 2005
©

For example, a leaf procedure—one that
contains no calls—can be compiled without
use of save and restore if it doesn’t
need too many registers. The leaf procedure
must then make do with the caller’s
registers, modifying only those the caller
treats as volatile.

33CS 701 Fall 2005
©

Register Conventions
Global Registers

%g0 is unique: It always contains 0 and
can never be changed.
%g1to %g7have global scope (they are
unaffected by save and restore
instructions)
%g1 to %g4 are volatile across calls;
they may be used between calls.
%g5to %g7are reserved for special use
by the SPARC ABI (application binary
interface)

Local Registers
%l0 to %l7

May be freely used; they are unaffected
by deeper calls.

34CS 701 Fall 2005
©

In Registers
These are also the caller’s out registers;
they are unaffected by deeper calls.

%i0

 Contains incoming parameter 1.
 Also used to return function value to
caller.

%i1 to %i5

 Contain incoming parameters 2 to 6
(if needed); freely usable otherwise.

%i6 (also denoted as %fp)
 Contains frame pointer (stack pointer
of caller); it must be preserved.

%i7

Contains return address -8 (offset due
to delay slot); it must be preserved.

35CS 701 Fall 2005
©

Out Registers
Become the in registers for procedures
called from the current procedure.

%o0

 Contains outgoing parameter 1.
 It also contains the value returned by
the called procedure.
 It is volatile across calls; otherwise it
is freely usable.

%o1 to %o5

Contain outgoing parameters 2 to 6 as
needed.
 These are volatile across calls;
otherwise they are freely usable.

36CS 701 Fall 2005
©

%o6 (also denoted as %sp)
 Holds the stack pointer (and becomes
frame pointer of called routines)
 It is reserved; it must always be valid
(since TRAPs may modify the stack at
any time).

%o7

 Is volatile across calls.
It is loaded with address of caller on a

procedure call.

37CS 701 Fall 2005
©

Special SPARC Instructions
save %r1,%r2,%r3

save %r1,const,%r3

This instruction pushes a register
window and does an add instruction
(%r3 = %r1+%r2). Moreover, the
operands (%r1 and %r2) are from the
old register window, while the result
(%r3) is in the new window.
Why such an odd definition?
It’s ideal to allocate a new register
window and push a new frame.
In particular,

save %sp,-frameSize,%sp

pushes a new register window. It also
adds -frameSize (the stack grows
downward) to the old stack pointer,
initializing the new stack pointer. (The
old stack pointer becomes the current
frame pointer)

38CS 701 Fall 2005
©

restore %r1,%r2,%r3

restore %r1,const,%r3

This instruction pops a register window
and does an add instruction
(%r3 = %r1+%r2). Moreover, the
operands (%r1 and %r2) are from the
current register window, while the result
(%r3) is in the old window.
Again, why such an odd definition?
It’s ideal to release a register window
and place a result in the return register
(%o0).
In particular,

restore %r1,0,%o0

pops a register window. It also moves
the contents of %r1 to %o0 (in the
caller’s register window).

39CS 701 Fall 2005
©

call label

This instruction branches to label and
puts the address of the call into register
%o7 (which will become %i7 after a
save is done).

ret

This instruction returns from a
subprogram by branching to %i7+8 .
Why 8 bytes after the address of the
call? SPARC processors have delayed
branch instructions, so the instruction
immediately after a branch (or a call)
is executed before the branch occurs!
Thus two instructions after the call is
the normal return point.

40CS 701 Fall 2005
©

mov const,%r1

You can load a small constant (13 bits
or less) into a register using a mov.
(mov is actually implemented as an or
of const with %g0).

But how do you load a 32 bit constant?
One instruction (32 bits long) isn’t
enough. Instead you use:
sethi %hi(const),%r1

or %r1,%lo(const),%r1

That is, you extract the high order 22
bits of const (using %hi , an assembler
operation). sethi fills in these 22 bits
into %r1, clearing the lowest 10 bits.
Then %lo extracts the 10 low order bits
of const, which are or-ed into %r1.

41CS 701 Fall 2005
©

Loading a 64 bit constant (in SPARC V9,
which is a 64 bit processor) is far
nastier:

sethi %uhi(const),%r tmp

or %r tmp,%ulo(const),%r tmp

sllx %r tmp,32,%r tmp

sethi %hi(const),%r
or %r,%lo(const),%r
or %r tmp,%r,%r

42CS 701 Fall 2005
©

Delayed Branches
In the SPARC, transfers of control
(branches, calls and returns) are delayed.
This means the instruction after the
branch (or call or return) is executed
before the transfer of control.

For example, in SPARC code you often
see

ret

 restore

The register window restore occurs first,
then a return to the caller occurs.

Another example is
call subr

 mov 3,%o0

The load of subr ’s parameter is placed
after the call to subr . But the mov is
done before subr is actually called.

43CS 701 Fall 2005
©

Why are Delayed Branches
Part of the SPARC
Architecture?

Because of pipelining, several instructions
are partially completed before a branch
instruction can take effect. Rather than
lose the computations already done, one
(or more!) partially completed instructions
can be allowed to complete before a branch
takes effect.

44CS 701 Fall 2005
©

How does a Compiler Exploit
Delayed Branches?

A peephole optimizer or code scheduler
looks for an instruction logically before the
branch that can be placed in the branch’s
delay slot. The instruction should not affect
a conditional branch’s branch decision.

mov 3,%o0 call subr
call subr mov 3,%o0
nop

(before) (after)

45CS 701 Fall 2005
©

Another possibility is to “hoist” the target
instruction of a branch into the branch’s
delay slot.

 call subr call subr+4
 nop mov 100,%l1

subr: subr:
 mov 100,%l1 mov 100,%l1

(before) (after)

Hoisting branch targets doesn’t work for
conditional branches—we don’t want to
move an instruction that is executed
sometimes (when the branch is taken) to a
position where it is always executed (the
delay slot).

46CS 701 Fall 2005
©

Annulled Branches
An annulled branch (denoted by a “,a ”
suffix) executes the instruction in the delay
slot if the branch is taken, but ignores the
instruction in the delay slot if the branch
isn’t taken.
With an annulled branch, a target of a
conditional branch can be hoisted into the
branch’s delay slot.

 bz else bz,a else+4
 nop mov 100,%l1
 ! then code ! then code

else: else:
 mov 100,%l1 mov 100,%l1

(before) (after)

47CS 701 Fall 2005
©

SPARC Frame Layout (on Run-
Time Stack)

The Stack Grows Downward

Minimum frame Size (in gcc) is 112
bytes! (16+1+6+4 words, double
aligned)

Caller’s Frame

Local Variables

alloca () space

Memory Temps &
Saved FP Registers
Parms past 6

Parms 1 to 6
(memory home)

Address of return value
Register Window
Overflow (16 words)

%fp (old %sp)

%sp

48CS 701 Fall 2005
©

Examples of SPARC Code
int incr(int i){

 return i+1; }

 Unoptimized:
incr:
 save %sp, -112, %sp
 st %i0, [%fp+68]
! %fp+68 is in caller’s frame!
 ld [%fp+68], %o1
 add %o1, 1, %o0
 mov %o0, %i0
 b .LL2
 nop
.LL2:
 ret
 restore

49CS 701 Fall 2005
©

int main(){

 int a;

 return incr(a);}

 Unoptimized:
main:
 save %sp, -120, %sp
 ld [%fp-20], %o0
 call incr, 0
 nop
 mov %o0, %i0
 b .LL3
 nop
.LL3:
 ret
 restore

50CS 701 Fall 2005
©

int incr(int i){

 return i+1; }

 Optimized:
incr:
 retl
 add %o0, 1, %o0

int main(){

 int a;

 return incr(a);}

 Optimized:
main:
 save %sp, -112, %sp
! Where is variable a ????
 call incr, 0
 nop
 ret
 restore %g0, %o0, %o0

51CS 701 Fall 2005
©

With More Extensive Optimization
(including inlining) we get:

incr:
 retl
 add %o0, 1, %o0

main:
 retl
 add %o0, 1, %o0

52CS 701 Fall 2005
©

Reading Assignment
S. Kurlander, T. Proebsting and C.
Fischer, “Efficient Instruction
Scheduling for Delayed-Load
Architectures,” ACM Transactions on
Programming Languages and Systems,
1995. (Linked from class Web page)

53CS 701 Fall 2005
©

“On the Fly” Local Register
Allocation

Allocate registers as needed during
code generation.
Partition registers into 3 classes.

• Allocatable
Explicitly allocated and freed; used to
hold a variable, literal or temporary.
On SPARC: Local registers & unused
In registers.

• Reserved
Reserved for specific purposes by OS or
software conventions.
On SPARC: %fp , %sp, return address
register, argument registers, return value
register.

54CS 701 Fall 2005
©

• Work
Volatile—used in short code sequences
that need to use a register.
On SPARC: %g1 to %g4, unused out
registers.

Register Targeting
Allow “end user” of a value to state a
register preference in AST or IR.

or
Use Peephole Optimization to
eliminate unnecessary register moves.

or
Use preferencing in a graph coloring
register allocator.

55CS 701 Fall 2005
©

Register Tracking
Improve upon standard getReg/
freeReg allocator by tracking
(remembering) register contents.

Remember the value(s) currently held
within a register; store information in
a Register Association List.

Mark each value as Saved (in
memory) or Unsaved (in memory).

Each value in a register has a Cost.
This is the cost (in instructions) to
restore the value to a register.

56CS 701 Fall 2005
©

The cost of allocating a register is the
sum of the costs of the values it
holds.

 Cost(register) = Σ cost(values)
values ∈ register

When we allocate a register, we will
choose the cheapest one.

If 2 registers have the same cost, we
choose that register whose values
have the most distant next use.
(Why most distant?)

57CS 701 Fall 2005
©

Costs for the SPARC
0 Dead Value
1 Saved Local Variable
1 Small Literal Value (13 bits)
2 Saved Global Variable
2 Large Literal Value (32 bits)
2 Unsaved Local Variable
4 Unsaved Global Variable

58CS 701 Fall 2005
©

Register Tracking Allocator
reg getReg() {
 if (∃ r ∈ regSet and cost(r) == 0)
 choose(r)
 else {
 c = 1;
 while(true) {

if (∃ r ∈ regSet and cost(r) == c){

 choose r with cost(r) == c and
 most distant next use of
 associated values;
 break;
 }
 c++;
 }
 Save contents of r as necessary;
 }
 return r;
}

59CS 701 Fall 2005
©

• Once a value becomes dead, it may be
purged from the register association list
without any saves.

• Values no longer used, but unsaved, can
be purged (and saved) at zero cost.

• Assignments of a register to a simple
variable may be delayed—just add the
variable to the Register’s Association List
entry as unsaved.

The assignment may be done later or
made unnecessary (by a later assignment
to the variable)

• At the end of a basic block all unsaved
values are stored into memory.

60CS 701 Fall 2005
©

Example
int a,b,c,d; // Globals
a = 5;
b = a + d;
c = b - 7;
b = 10;

Naive Code
mov 5,%l0
st %l0,[a]
ld [a],%l0
ld [d],%l1
add %l0,%l1,%l1
st %l1,[b]
ld [b],%l1
sub %l1,7,%l1
st %l1,[c]
mov 10,%l1
st %l1,[b]

18 instructions are needed (memory
references take 2 instructions)

61CS 701 Fall 2005
©

With Register Tracking

12 instructions (rather than 18)

Instruction Generated %l0 %l1

mov 5,%l0 5(S)

! Defer assignment to a 5(S), a(U)

ld [d], %l1 5(S), a(U) d(S)

!d unused after next inst

add %l0,%l1,%l1 5(S), a(U) b(U)

!b is dead after next inst

sub %l1,7,%l1 5(S), a(U) c(U)

! %l1 has lower cost

st %l1, [c] 5(S), a(U)

mov 10, %l1 5(S), a(U) b(U), 10(S)

! save unsaved values

st %l0, [a] b(U), 10(S)

st %l1,[b]

62CS 701 Fall 2005
©

Pointers, Arrays and Reference
Parameters

When an array, reference parameter
or pointed-to variable is read, all
unsaved register values that might be
aliased must be stored.

When an array, reference parameter
or pointed-to variable is written, all
unsaved register values that might be
aliased must be stored, then cleared
from the register association list.

Thus if a[3] is in a register and a[i]
is assigned to, a[3] must be stored (if
unsaved) and removed from the
association list.

63CS 701 Fall 2005
©

Optimal Expression Tree
Translation—Sethi-Ullman
Algorithm

Reference: R. Sethi & J. D. Ullman,
“The generation of optimal code for
arithmetic expressions,” Journal of
the ACM, 1970.
Goal: Translate an expression tree
using the fewest possible registers.

Approach: Mark each tree node, N,
with an Estimate of the minimum
number of registers needed to
translate the tree rooted by N.

Let RN(N) denote the Register Needs
of node N.

64CS 701 Fall 2005
©

In a Load/Store architecture (ignoring
immediate operands):

RN(leaf) = 1

RN(Op) =
 If RN(Left) = RN(Right)
 Then RN(Left) + 1

Else Max(RN(Left), RN(Right))
Example:

+3

-2 +3

A1 B1 +2 *2

C1 D1 E1 F1

65CS 701 Fall 2005
©

Key Insight of SU Algorithm
Translate subtree that needs more
registers first.
Why?
After translating one subtree, we’ll
need a register to hold its value.
If we translate the more complex
subtree first, we’ll still have enough
registers to translate the less complex
expression (without spilling register
values into memory).

66CS 701 Fall 2005
©

Specification of SU Algorithm

TreeCG(tree *T, regList RL);

Operation:
• Translate expression tree T using only

registers in RL.
• RL must contain at least 2 registers.
• Result of T will be computed into

head(RL).

67CS 701 Fall 2005
©

Summary of SU Algorithm
if T is a node (variable or literal)
 load T into R1 = head(RL)
else (T is a binary operator)
 Let R1 = head(RL)
 Let R2 = second(RL)
 if RN(T.left) >= Size(RL) and
 RN(T.right) >= Size(RL)
 (A spill is unavoidable)
 TreeCG(T.left, RL)
 Store R1 into a memory temp
 TreeCG(T.right, RL)
 Load memory temp into R2
 Generate (OP R2,R1,R1)
 elsif RN(T.left) >= RN(T.right)
 TreeCG(T.left, RL)
 TreeCG(T.right, tail(RL))
 Generate (OP R1,R2,R1)
 else
 TreeCG(T.right, RL)
 TreeCG(T.left, tail(RL))
 Generate (OP R2,R1,R1)

68CS 701 Fall 2005
©

Example (with Spilling)

Assume only 2 Registers;
 RL = [%l0 ,%l1]
We Translate the left subtree first
(using 2 registers), store its result
into memory, translate the right
subtree, reload the left subtree’s
value, then do the final operation.

+3

-2

A1 B1

+2

C1 D1

69CS 701 Fall 2005
©

ld [A], %l0

ld [B], %l1

sub %l0,%l1,%l0

st %l0, [temp]

ld [C], %l0

ld [D], %l1

add %l0,%l1,%l0

ld [temp], %l1

add %l1,%l0,%l0

+3

-2

A1 B1

+2

C1 D1

70CS 701 Fall 2005
©

Larger Example

Assume 3 Registers;
 RL = [%l0 ,%l1 ,%l2]
Since right subtree is more complex,
it is translated first.

+3

-2 +3

A1 B1 +2 *2

C1 D1 E1 F1

71CS 701 Fall 2005
©

ld [C], %l0

ld [D], %l1

add %l0,%l1,%l0

ld [E], %l1

ld [F], %l2

mul %l1,%l2,%l1

add %l0,%l1,%l0

ld [A], %l1

ld [B], %l2

sub %l1,%l2,%l1

add %l1,%l0,%l0

+3

-2 +3

A1 B1 +2 *2

C1 D1 E1 F1

72CS 701 Fall 2005
©

Refinements & Improvements
• Register needs rules can be modified to

model various architectural features.

For example, Immediate operands, that
need not be loaded into registers, can be
modeled by the following rule:

RN(literal) = 0 if literal may be used as
 an immediate operand

• Commutativity & Associativity of
operands may be exploited:

+3

+2

A1 B1

+2

C1 D1

+2

A1 B1 C1 D1

⇒

73CS 701 Fall 2005
©

Is Minimizing Register Use
Always Wise?

SU minimizes the number of registers
used but at the cost of reduced ILP.

Since only 2 registers are used, there
is little possibility of parallel
evaluation.

+2

+2

A1 B1

C1

D
1

+2

74CS 701 Fall 2005
©

When more registers are used, there is
often more potential for parallel
evaluation:

Here as many as four registers may be
used to increase parallelism.

+

+

A B

+

C D

75CS 701 Fall 2005
©

Optimal Translation for DAGs
is Much Harder

If variables or expression values may
be shared and reused, optimal code
generation becomes NP-Complete.

Example: a+b*(c+d)+a*(c+d)

We must decide how long to hold
each value in a register. Best
orderings may “skip” between
subexpressions

Reference: R. Sethi, “Complete
Register Allocation Problems,” SIAM
Journal of Computing, 1975.

76CS 701 Fall 2005
©

Reading Assignment
• Read Section 15.3 (Register Allocation

and Temporary Management) from
Chapter 15

• Read Chaitin’s paper, “Register
Allocation via Coloring.”

77CS 701 Fall 2005
©

Scheduling Expression Trees
Reference: S. Kurlander, T. Proebsting
and C. Fischer, “Efficient Instruction
Scheduling for Delayed-Load
Architectures,” ACM Transactions on
Programming Languages and Systems,
1995. (Linked from class Web page)

The Sethi-Ullman Algorithm
minimizes register usage, without
regard to code scheduling.

On machines with Delayed Loads, we
also want to avoid stalls.

78CS 701 Fall 2005
©

What is a Delayed Load?
Most pipelined processors require a
delay of one or more instructions
between a load of register R and the
first use of R.

If a register is used “too soon,” the
processor may stall execution until
the register value becomes available.

ld [a],%r1

add %r1,1,%r1
← Stall!

We try to place an instruction that
doesn’t use register R immediately
after a load of R.
This allows useful work instead of a
wasteful stall.

79CS 701 Fall 2005
©

The Sethi-Ullman Algorithm
generates code that will stall:

In fact, if we use the fewest possible
registers, stalls are Unavoidable!

+2

+2

A1 B1

C1

ld [A], %l0

ld [B], %l1

add %l0,%l1,%l0

ld [C], %l1
add %l0,%l1,%l0

Stall!

Stall!

80CS 701 Fall 2005
©

Why?
Loads increase the number of
registers in use.
Binary operations decrease the
number of registers in use
(2 Operands, 1 Result).

The load that brings the number of
registers in use up to the minimum
number needed must be followed by
an operator that uses the just-loaded
value. This implies a stall.

We’ll need to allocate an extra
register to allow an independent
instruction to fill each delay slot
of a load.

81CS 701 Fall 2005
©

Extended Register Needs
Abbreviated as ERN
ERN(Identifier) = 2
ERN(Literal) = 1
ERN(Op) =
 If ERN(Left) = ERN(Right)
 Then ERN(Left) + 1
 Else Max(ERN(Left), ERN(Right))

Example

+3

+3

B2 C2

D2

+3

A2 +3

+2

B2 1231

C2

+3

A2

82CS 701 Fall 2005
©

Idea of the Algorithm
1. Generate instructions in the same

order as Sethi-Ullman, but use
Pseudo-Registers instead of actual
machine registers.

2. Put generated instructions into a
“Canonical Order” (as defined below).

3. Map pseudo-registers to actual
machine registers.

What are Pseudo-Registers?
They are unique temporary locations,
unlimited in number and generated as
needed, that are used to model
registers prior to register allocation.

83CS 701 Fall 2005
©

Canonical Form for Expression
Code

(Assume R registers will be used)
Desired instruction ordering:
1. R load instructions
2. Pairs of Operator/Load instructions
3. Remaining operators

This canonical form is obtained by
“sliding” load instructions upward
(earlier) in the original code ordering.
Note that:

• Moving loads upward is always safe,
since each pseudo-register is assigned
to only once.

• No more than R registers are ever live.

84CS 701 Fall 2005
©

Example

Let R = 3, the minimum needed for a
delay-free schedule.
Put into Canonical Form:

+3

+3

B2 C2

D2

+3

A2

ld [B], PR1
ld [C], PR2
add PR1,PR2,PR3
ld [D], PR4
add PR3,PR4,PR5
ld [A], PR6
add PR6,PR5,PR7

ld [B], PR1
ld [C], PR2
ld [D], PR4
add PR1,PR2,PR3
ld [A], PR6
add PR3,PR4,PR5
add PR6,PR5,PR7

(Before Register
Assignment)

ld [B], %l0
ld [C], %l1
ld [D], %l2
add %l0,%l1,%l0
ld [A], %l1
add %l0,%l2,%l0
add %l1,%l0,%l0

(After Register Assignment)

No Stalls!

85CS 701 Fall 2005
©

Does This Algorithm Always
Produce a Stall-Free, Minimum
Register Schedule?

Yes—if one exists!

For very simple expressions (one or
two operands) no stall-free schedule
exists.
For example: a=b;

ld [b], %l0

st %l0, [a]

86CS 701 Fall 2005
©

Why Does the Algorithm Avoid
Stalls?

Previously, certain “critical” loads had
to appear just before an operation
that used their value.

Now, we have an “extra” register. This
allows critical loads to move up one
or more places, avoiding any stalls.

87CS 701 Fall 2005
©

How Do We Schedule Small
Expressions?

Small expressions (one or two
operands) are common. We’d like to
avoid stalls when scheduling them.

Idea—Blend small expressions
together into larger expression trees,
using “,” and “;” like binary operators.

88CS 701 Fall 2005
©

Example
a=b+c; d=e;

+3

b2 c2

=3

a0
e2

=2

d0

; 3

ld [b], PR1
ld [c], PR2
add PR1,PR2,PR3
st PR3, [a]
ld [e], PR4
st PR4, [d]

Orginal Code

ld [b], PR1
ld [c], PR2
ld [e], PR4
add PR1,PR2,PR3
st PR3, [a]
st PR4, [d]

In Canonical Form

ld [b], %l0
ld [c], %l1
ld [e], %l2
add %l0,%l1,%l0
st %l0, [a]
st %l2, [d]

After Register Assignment

89CS 701 Fall 2005
©

Global Register Allocation
Allocate registers across an entire
subprogram.
A Global Register Allocator must decide:
• What values are to be placed in

registers?

• Which registers are to be used?

• For how long is each Register Candidate
held in a register?

90CS 701 Fall 2005
©

Live Ranges
Rather than simply allocate a value to
a fixed register throughout an entire
subprogram, we prefer to split
variables into Live Ranges.

What is a Live Range?
It is the span of instructions (or basic
blocks) from a definition of a variable
to all its uses.

Different assignments to the same
variable may reach distinct & disjoint
instructions or basic blocks.
If so, the live ranges are Independent,
and may be assigned Different
registers.

91CS 701 Fall 2005
©

Example
a = init();
for (int i = a+1; i < 1000; i++){
 b[i] = 0; }
a = f(i);
print(a);

The two uses of variable a comprise
Independent live ranges.
Each can be allocated separately.

If we insisted on allocating variable a
to a fixed register for the whole
subprogram, it would conflict with
the loop body, greatly reducing its
chances of successful allocation.

92CS 701 Fall 2005
©

Granulatity of Live Ranges
Live ranges can be measured in terms
of individual instructions or basic
blocks.

Individual instructions are more
precise but basic blocks are less
numerous (reducing the size of sets
that need to be computed).

We’ll use basic blocks to keep
examples concise.

You can define basic blocks that hold
only one instruction, so computation
in terms of basic blocks is still fully
general.

93CS 701 Fall 2005
©

Computation of Live Ranges
First construct the Control Flow
Graph (CFG) of the subprogram.

For a Basic Block b:
Let Preds(b) = the set of basic blocks
that are Immediate Predecessors of b
in the CFG.
Let Succ(b) = the set of basic blocks
that are Immediate Successors to b in
the CFG.

94CS 701 Fall 2005
©

Control Flow Graphs
A Control Flow Graph (CFG) models
possible execution paths through a
program.
Nodes are basic blocks and arcs are
potential transfers of control.

For example,
if (a > 0)

b = 1;
 else b = 2;
 a = c + b;

a > 0

b = 1 b = 2

a = c + b

95CS 701 Fall 2005
©

For a Basic Block b and Variable V:
Let DefsIn(b) = the set of basic blocks
that contain definitions of V that
reach (may be used in) the beginning
of Basic Block b.

Let DefsOut(b) = the set of basic
blocks that contain definitions of V
that reach (may be used in) the end
of Basic Block b.

If a definition of V reaches b, then the
register that holds the value of that
definition must be allocated to V in
block b.
Otherwise, the register that holds the
value of that definition may be used
for other purposes in b.

96CS 701 Fall 2005
©

The sets Preds and Succ are derived from
the structure of the CFG.
They are given as part of the definition
of the CFG.

DefsIn and DefsOut must be computed,
using the following rules:
1. If Basic Block b contains a definition

of V then
 DefsOut(b) = {b}

2. If there is no definition to V in b then
 DefsOut(b) = DefsIn(b)

3. For the First Basic Block, b0:
 DefsIn(b0) = φ

4. For all Other Basic Blocks
DefsIn(b) = DefsOut p()

p Preds b()∈
∪

97CS 701 Fall 2005
©

Reading Assignment
• Read Assignment #2.

• Read George and Appel’s paper, “Iterated
Register Coalescing.” (Linked from Class
Web page)

• Read Larus and Hilfinger’s paper,
“Register Allocation in the SPUR Lisp
Compiler.”

98CS 701 Fall 2005
©

Liveness Analysis
Just because a definition reaches a
Basic Block, b, does not mean it must
be allocated to a register at b.

We also require that the definition be
Live at b. If the definition is dead,
then it will no longer be used, and
register allocation is unnecessary.

For a Basic Block b and Variable V:
LiveIn(b) = true if V is Live (will be
used before it is redefined) at the
beginning of b.

LiveOut(b) = true if V is Live (will be
used before it is redefined) at the end
of b.

99CS 701 Fall 2005
©

LiveIn and LiveOut are computed, using
the following rules:
1. If Basic Block b has no successors then

 LiveOut(b) = false
2. For all Other Basic Blocks

 LiveOut(b) =

3. LiveIn(b) =
 If V is used before it is defined in

Basic Block b
 Then true
 Elsif V is defined before it is
 used in Basic Block b
 Then false
 Else LiveOut(b)

∨
s ∈ Succ(b)

 LiveIn(s)

100CS 701 Fall 2005
©

Merging Live Ranges
It is possible that each Basic Block
that contains a definition of v creates
a distinct Live Range of V.
∀ Basic Blocks, b, that contain a

definition of V:

Range(b) =
{b} ∪ {k | b ∈ DefsIn(k) & LiveIn(k)}

This rule states that the Live Range of
a definition to V in Basic Block b is b
plus all other Basic Blocks that the
definition of V reaches and in which
V is live.

101CS 701 Fall 2005
©

If two Live Ranges overlap (have one
of more Basic Blocks in common),
they must share the same register too.
(Why?)

Therefore,

If Range(b1) ∩ Range(b2) ≠ φ
Then replace
 Range(b1) and Range(b2)
 with Range(b1) ∪ Range(b2)

102CS 701 Fall 2005
©

Example

x←

x←

x←

x←

←x

←x

1

2 3

4

5

6

7

8

103CS 701 Fall 2005
©

x←

x←

x←

x←

←x

←x

1

2 3

4

5

6

7

8

Li=F

Li=F

Li=F

Li=F

Li=F

Li=T

Li=T

Li=T

Lo=T

Lo=T
Lo=T

Lo=T

Lo=T

Lo=F

Lo=F

Lo=F

Di={ }

Di={1} Di={1}

Di={1,2}

Di={1,2,5,6}

Di={5}

Di={5,6}

Di={5,6}

Do={1}

Do={2}

Do={1,2}

Do={5}

Do={6}

Do={5,6}

Do={5,6}

Do={1}

104CS 701 Fall 2005
©

The Live Ranges we Compute are

Range(1) = {1} U {3,4} = {1,3,4}

Range(2) = {2} U {4} = {2,4}

Range(5) = {5} U {7} = {5,7}

Range(6) = {6} U {7} = {6,7}

Ranges 1 and 2 overlap, so

Range(1) = Range(2) = {1,2,3,4}

Ranges 5 and 6 overlap, so

Range(5) = Range(6) = {5,6,7}

105CS 701 Fall 2005
©

Interference Graph
An Interference Graph represents
interferences between Live Ranges.

Two Live Ranges interfere if they
share one or more Basic Blocks in
common.

Live Ranges that interfere must be
allocated different registers.

In an Interference Graph:
• Nodes are Live Ranges

• An undirected arc connects two Live
Ranges if and only if they interfere

106CS 701 Fall 2005
©

Example
int p(int lim1, int lim2) {
 for (i=0; i<lim1 && A[i]>0;i++){}
 for (j=0; j<lim2 && B[j]>0;j++){}
 return i+j;
}

We optimize array accesses by placing
&A[0] and &B[0] in temporaries:

int p(int lim1, int lim2) {
 int *T1 = &A[0];
 for (i=0; i<lim1 && *(T1+i)>0;i++){}
 int *T2 = &B[0];
 for (j=0; j<lim2 && *(T2+j)>0;j++){}
 return i+j;
}

lim1 lim2

T1 T2

i j

107CS 701 Fall 2005
©

Register Allocation via Graph
Coloring

We model global register allocation as
a Coloring Problem on the
Interference Graph

We wish to use the fewest possible
colors (registers) subject to the rule
that two connected nodes can’t share
the same color.

108CS 701 Fall 2005
©

Optimal Graph Coloring is
NP-Complete
Reference:

“Computers and Intractability,”
M. Garey and D. Johnson,
W.H. Freeman, 1979.

We’ll use a Heuristic Algorithm originally
suggested by Chaitin et. al. and improved
by Briggs et. al.
References:

“Register Allocation Via Coloring,”
G. Chaitin et. al., Computer
Languages, 1981.

“Improvement to Graph Coloring
Register Allocation,” P. Briggs et. al.,
PLDI, 1989.

109CS 701 Fall 2005
©

Coloring Heuristic
To R-Color a Graph (where R is the
number of registers available)
1. While any node, n, has < R neighbors:

 Remove n from the Graph.
 Push n onto a Stack.

2. If the remaining Graph is non-empty:
 Compute the Cost of each node.
 The Cost of a Node (a Live Range)

is the number of extra instructions
 needed if the Node isn’t assigned a
 register, scaled by 10loop_depth.
 Let NB(n) =
 Number of Neighbors of n.
 Remove that node n that has the
 smallest Cost(n)/NB(n) value.
 Push n onto a Stack.
 Return to Step 1.

110CS 701 Fall 2005
©

3. While Stack is non-empty:
 Pop n from the Stack.

 If n’s neighbors are assigned fewer
 than R colors
 Then assign n any unassigned color
 Else leave n uncolored.

111CS 701 Fall 2005
©

Example
 int p(int lim1, int lim2) {
 int *T1 = &A[0];
 for (i=0; i<lim1 && *(T1+i)>0;i++){}
 int *T2 = &B[0];
 for (j=0; j<lim2 && *(T2+j)>0;j++){}
 return i+j;
}

Do a 3 coloring

lim1 lim2 T1 T2 i j

Cost 11 11 11 11 42 42

Cost/
Neighbors

11/3 11/5 11/3 11/3 42/5 42/3

lim1 lim2

T1 T2

i j

112CS 701 Fall 2005
©

Since no node has fewer than 3
neighbors, we remove a node based
on the minimum Cost/Neighbors
value.

lim2 is chosen.
We now have:

Remove (say) lim1 , then T1, T2, j
and i (order is arbitrary).

lim1

T1 T2

i j

113CS 701 Fall 2005
©

The Stack is:

Assuming the colors we have are R1,
R2 and R3, the register assignment
we choose is
i :R1, j :R2, T2:R3, T1:R2, lim1 :R3,
lim2 :spill

lim2
lim1

T1
T2
j
i

lim1 lim2

T1 T2

i j

114CS 701 Fall 2005
©

Color Preferences
Sometimes we wish to assign a
particular register (color) to a
selected Live Range (e.g., a parameter
or return value) if possible.

We can mark a node in the
Interference Graph with a Color
Preference.

When we unstack nodes and assign
colors, we will avoid choosing color c
if an uncolored neighbor has indicted
a preference for it. If only color c is
left, we take it (and ignore the
preference).

115CS 701 Fall 2005
©

Example
Assume in our previous example that
lim1 has requested register R1 and
lim2 has requested register R2
(because these are the registers the
parameters are passed in).

116CS 701 Fall 2005
©

Now when i , j and T1 are unstacked,
they respect lim1 ’s and lim2 ’s
preferences:
i :R3, j :R1, T2:R2, T1:R2, lim1 :R1,
lim2 :spill

lim1(R1) lim2(R2)

T1 T2

i j

lim2
lim1

T1
T2
j
i

117CS 701 Fall 2005
©

Using Coloring to Optimize
Register Moves

A nice “fringe benefit” of allocating
registers via coloring is that we can
often optimize away register to
register moves by giving the source
and target the same color.
Consider

We’d like x , t1 and q to get the same
color. How do we “force” this?

a b

x t1

y q

Live in: a,b

t1 = a + b

x = t1

y = x + 1

q = t1

Live out: y,q

118CS 701 Fall 2005
©

We can “merge” x , t1 and q together:

Now a 2-coloring that optimizes
away both register to register moves
is trivial.

a b

y x,t1,q

Live in: a,b

t1 = a + b

x = t1

y = x + 1

q = t1

Live out: y,q

119CS 701 Fall 2005
©

Reckless Coalescing
Originally, Chaitin suggested merging
all move-related nodes that don’t
interfere.

This is reckless—the merged node may
not be colorable!

(Is it worth a spill to save a move??)

This Graph is 2-colorable before the
reckless merge, but not after.

e fc

a

b

d

120CS 701 Fall 2005
©

Conservative Coalescing
In response to Chaitin’s reckless
coalescing approach, Briggs suggested
a more conservative approach.

See “Improvement to Graph Coloring
Register Allocation,” P. Briggs et. al.,
ACM Toplas, May 1994.

121CS 701 Fall 2005
©

Briggs suggested that two move-
related nodes should be merged only
if the combined source and target
node has fewer than R neighbors.

This guarantees that the combined
node will be colorable, but may miss
some optimization opportunities.

After a merge of nodes a and d, there
will be four neighbors, but a
2-coloring is still possible.

e fc

a

b

d

122CS 701 Fall 2005
©

Iterated Coalescing
This is an intermediate approach, that
seeks to be safer than reckless
coalescing and more effective than
conservative coalescing. It was
proposed by George and Appel.

123CS 701 Fall 2005
©

1. Build:
Create an Interference Graph, as
usual. Mark source-target pairs with
a special move-related arc (denoted
as a dashed line).

2. Simplify:
Remove and stack non-move-related
nodes with < R neighbors.

3. Coalesce:
Combine move-related pairs that will
have < R neighbors after coalescing.

Repeat steps 2 and 3 until only nodes
with R or more neighbors or move-
related nodes remain or the graph is
empty.

124CS 701 Fall 2005
©

4. Freeze:
If the Interference Graph is
 non-empty:
Then If there exists a move-related

 node with < R neighbors
 Then: “Freeze in” the move and
 make the node
 non-move-related.
 Return to Steps 2 and 3.
 Else: Use Chaitin’s
 Cost/Neighbors criterion
 to remove and stack
 a node.
 Return to Steps 2 and 3.

5. Unstack:
Color nodes as they are unstacked as
per Chaitin and Briggs.

125CS 701 Fall 2005
©

Example

Assume we want a 4-coloring.
Note that neither j&b nor d&c can be
conservatively colored.

Live in: k,j

g = mem[j+12]

h = k-1

f = g*h

e = mem[j+8]

m = mem[j+16]

b = mem[f]

c = e+8

d = c

k = m+4

j = b

goto d

Live out: d,k,j

f

e

mj k b

d c

h g

126CS 701 Fall 2005
©

We simplify by removing nodes with
fewer than 4 neighbors.
We remove and stack: g, h, k , f , e, m

f

e

mj k b

d c

h g

127CS 701 Fall 2005
©

The remaining Interference Graph is

We can now conservatively coalesce
the move-related pairs to obtain

These remaining nodes can now be
removed and stacked.

j b

d c

j&b d&c

128CS 701 Fall 2005
©

We can now unstack and color:
d&c:R1, j&b :R2, m:R3, e:R4, f :R1,
k:R3, h:R1, g:R4

No spills were required and both
moves were optimized away.

d&c
j&b

m
e
f
k
g
h

129CS 701 Fall 2005
©

Reading Assignment
• Read David Wall’s paper, “Global Register

Allocation at Link Time.”

130CS 701 Fall 2005
©

Priority-Based Register
Allocation

Alternatives to Chaitin-style register
allocation are presented in:

• Hennessy and Chow, “The priority-
based coloring approach to register
allocation,” ACM TOPLAS, October
1990.

• Larus and Hilfinger, “Register
allocation in the SPUR Lisp compiler,”
SIGPLAN symposium on Compiler
Construction, 1986.

131CS 701 Fall 2005
©

These papers suggest two innovations:
1. Use of a Priority Value to choose nodes

to color in an Interference Graph.
A Priority measures
 (Spill cost)/(Size of Live Range)
The idea is that small live ranges with
a high spill cost are ideal candidates
for register allocation.
As the size of a live range grows, it
becomes less attractive for register
allocation (since it “ties up” a register
for a larger portion of a program).

2. Live Range Splitting
Rather than spill an entire live range
that can’t be colored, the live range is
split into two or more smaller live
ranges that may be colorable.

132CS 701 Fall 2005
©

Large vs. Small Live Ranges
• A large live range has less spill code.

Values are directly read from and written
to a register.
But, a large live range is harder to
allocate, since it may conflict with many
other register candidates.

• A small live range is easier to allocate
since it competes with fewer register
candidates.
But, more spill code is needed to load
and save register values across live
ranges.

• In the limit a live range can shrink to a
single definition or use of a register.
But, then we really don’t have an
effective register allocation at all!

133CS 701 Fall 2005
©

Terminology
In an Interference Graph:
• A node with fewer neighbors than colors

is termed unconstrained. It is trivial to
color.

• A node that is not unconstrained is
termed constrained. It may need to be
split or spilled.

134CS 701 Fall 2005
©

PriorityRegAlloc(proc, regCount) {
 ig ← buildInterferenceGraph(proc)
 unconstrained ←

{ n ∈ nodes(ig) neighborCount(n) < regCount }
 constrained ←

{ n ∈ nodes(ig) neighborCount(n) ≥ regCount }

 while(constrained ≠ φ) {
for (c ∈ constrained such that not colorable(c)

and canSplit(c)) {
c1, c2 ← split(c)
constrained ← constrained - {c}
if (neighborCount(c1) < regCount)

unconstrained ← unconstrained U { c1}

else constrained ← constrained U {c1}
 if (neighborCount(c2) < regCount)

unconstrained ← unconstrained U { c2}

else constrained ← constrained U {c2}
for (d ∈ neighbors(c) such that

 d ∈ unconstrained and
 neighborCount(d) ≥ regCount){
 unconstrained ← unconstrained - {d}

constrained ← constrained U {d}
 } } // End of both for loops

135CS 701 Fall 2005
©

/* At this point all nodes in constrained are
 colorable or can’t be split */

 Select p ∈ constrained such that
 priority(p) is maximized
 if (colorable(p))

 color(p)
 else spill(p)
 } // End of While
 color all nodes ∈ unconstrained
}

136CS 701 Fall 2005
©

How to Split a Constrained
Node
• There are many possible partitions of a

live range; too many to fully explore.

• Heuristics are used instead. One simple
heuristic is:

1. Remove the first basic block
 (or instruction) of the live range.

Put it into a new live range, NR.
2. Move successor blocks
 (or instructions) from the original
 live range into NR, as long as NR
 remains colorable.
3. Single Basic Blocks
 (or instructions) that can’t be
 colored are spilled.

137CS 701 Fall 2005
©

Example
int sum(int a[], int b[]) {
 int sum = 0;
 for (int i=0; i<1000; i++)
 sum += a[i];
 for (int j=0; j<1000; j++)
 sum += b[j];
 return sum;
}

Assume we want a 3-coloring.

a b

sum

i j

138CS 701 Fall 2005
©

We first simplify the graph by
removing unconstrained nodes (those
with < 3 neighbors).
Node j is removed. We now have:

At this point, each node has 3
neighbors, so either spilling or
splitting is necessary.
A spill really isn’t attractive as each
of the 4 register candidates is used
within a loop, magnifying the costs of
accessing memory.

a b

sum

i

139CS 701 Fall 2005
©

Coloring by Priorities
We’ll color constrained nodes by
priority values, with preference given
to large priority values.

140CS 701 Fall 2005
©

a b sum i

Cost 11 11 42 41

Cost/Size 11/3 11/6 42/7 41/3

i < 1000

1

2 3

4

a = parm1
b = parm2
sum = 0
i = 0

sum += a[i]
i++

j = 0

j < 1000
5 6

7

sum += b[j]
j++

return sum

141CS 701 Fall 2005
©

Variables i , sum and a are assigned
colors R1, R2 and R3.
Variable b can’t be colored, so we will
try to split it. b’s live range is blocks 1
to 6, with 1 as b’s entry point.
Blocks 1 to 3 can’t be colored, so b is
spilled in block 1. However, blocks 4
to 6 form a split live range that can
be colored (using R3).
We will reload b into R3 in block 4,
and it will be register-allocated
throughout the second loop. The
added cost due to the split is minor—
a store in block 1 and a reload in
block 4.

142CS 701 Fall 2005
©

Choice of Spill Heuristics
We have seen a number of heuristics
used to choose the live ranges to be
spilled (or colored).
These heuristics are typically chosen
using one’s intuition of what register
candidates are most (or least)
important. Then a heuristic is tested
and “fine tuned” using a variety of
test programs.
Recently, researchers have suggested
using machine learning techniques to
automatically determine effective
heuristics.
In “Meta Optimization: Improving
Compiler Heuristics with Machine
Learning,” Stephenson, Amarasinghe,
et al, suggest using genetic
programming techniques in which

143CS 701 Fall 2005
©

priority functions (like choice of spill
candidates) are mutated and allowed
to “evolve.”
Although the approach seems rather
random and unfocused, it can be
effective. Priority functions better
than those used in real compilers have
been reported, with research still
ongoing.

144CS 701 Fall 2005
©

Interprocedural Register
Allocation

The goal of register allocation is to
keep frequently used values in
registers.

Ideally, we’d like to go to memory
only to access values that may be
aliased or pointed to.

For example, array elements and heap
objects are routinely loaded from and
stored to memory each time they are
accessed.

145CS 701 Fall 2005
©

With alias analysis, optimizations like
Scalarization are possible.

for (i=0; i<1000; i++)
 for (j=0; j<1000; j++)
 a[i] += i * b[j];

is optimized to

for (i=0; i<1000; i++){
 int Ai = a[i];
 for (j=0; j<1000; j++)
 Ai += i * b[j];
 a[i] = Ai;
}

146CS 701 Fall 2005
©

Attacking Call Overhead
• Even with good global register allocation

calls are still a problem.

• In general, the caller and callee may use
the same registers, requiring saves and
restores across calls.

• Register windows help, but they are
inflexible, forcing all subprograms to use
the same number of registers.

• We’d prefer a register allocator that is
sensitive to the calling structure of a
program.

147CS 701 Fall 2005
©

Reading Assignment
• Read “Minimum Cost Interprocedural

Register Allocation,” by S. Kurlander et
al. (linked from class Web page).

148CS 701 Fall 2005
©

Call Graphs
A Call Graph represents the calling
structure of a program.

• Nodes are subprograms (procedures and
functions).

• Arcs represent calls between
subprograms. An arc from A to B denotes
that a call to B appears within A.

• For an indirect call (a function
parameter or a function pointer) an arc
is added to all potential callees.

149CS 701 Fall 2005
©

Example

main() {
 if (pred(a,b))
 subr1(a)
 else subr2(b);}

bool pred(int a, int b){
 return a==b; }

subr1(int a){ print(a);}

subr2(int x){ print(2*x);}

main

pred subr1 subr2

print

150CS 701 Fall 2005
©

Wall’s Interprocedural
Register Allocator
Operates in two phases:
1. Register candidates are identified at

the subprogram level.
Each candidate (a single variable or a
set of non-interfering live ranges) is
compiled as if it won’t get a register.
At link-time unnecessary loads and
stores are edited away if the
candidate is allocated a register.

2. At link-time, when all subprograms
are known and available, register
candidates are allocated registers.

151CS 701 Fall 2005
©

Identifying Interprocedural
Register Sharing

If two subprograms are not connected
in the call graph, a register candidate
in each can share the same register
without any saving or restoring across
calls.

A register candidate from pred ,
subr1 and subr2 can all share one
register.

main

pred subr1 subr2

print

152CS 701 Fall 2005
©

At the interprocedural level we must
answer 2 questions:
1. A local candidate of one subprogram

can share a register with candidates
of what other subprograms?

2. Which local register candidates will
yield the greatest benefit if given a
register?

Wall designed his allocator for a machine
with 52 registers. This is enough to
divide all the registers among the
subprograms without any saves or
restores at call sites.
With fewer registers, spills, saves and
restores will often be needed (if registers
are used aggressively within a
subprogram).

153CS 701 Fall 2005
©

Restrictions on the Call
Graph

Wall limited calls graphs to DAGs
since cycles in a call graph imply
recursion, which will force saves and
restores (why?)

Cost Computations
Each register candidate is given a
per-call cost, based on the number of
saves and restores that can be
removed, scaled by 10loop_depth.
This benefit is then multiplied by the
expected number of calls, obtained by
summing the total number of call
sites, scaled by loop nesting depth.

154CS 701 Fall 2005
©

Grouping Register Candidates
We now have an estimate of the
benefit of allocating a register to a
candidate. Call this estimate

 cost(candidate)
We estimate potential interprocedural
sharing of register candidates by
assigning each candidate to a Group.
All candidates within a group can
share a register. No two candidates in
any subprogram are in the same
group.

155CS 701 Fall 2005
©

Groups are assigned during a reverse
depth-first traversal of the call graph.
 AsgGroup(node n) {
 if (n is a leaf node)
 grp = 0
 else { for (each c ∈ children(n)) {
 AsgGroup(c) }
 grp =
 1+ Max (Max group used in c)

 c ∈ children(n)

}

 for (each r ∈ registerCandidates(n)){
 assign r to grp
 grp++ }
 }
Global variables are assigned to a
singleton group.

156CS 701 Fall 2005
©

Example

At Print: grp(i)=0, grp(j)=1
At subr1: Max grp used in print is 1

grp(x)=2, grp(y)=3
At subr2: Max grp used in print is 1

grp(t)=2
At main: Max grp used in children is 3

grp(a)=4, grp(b)=5, grp(c)=6

main
Cand: a, b, c

subr1
Cand: x, y

subr2
Cand: t

Print
Cand: i, j

157CS 701 Fall 2005
©

If A calls B (directly or indirectly),
then none of A’s register candidates
are in the same group as any of B’s
register candidates.

This guarantees that A and B will use
different registers.

Thus no saves or restores are needed
across a call from A to B.

158CS 701 Fall 2005
©

Assigning Registers to Groups

 Cost(group) = Σ cost(candidates)
candidates ∈group

We assign registers to groups based
on the cost of each group, using an
“auction.”

for (r=0; r < RegisterCount; r++) {
 Let G be the group with the
 greatest cost that has not yet
 been assigned a register.
 Assign r to G
}

159CS 701 Fall 2005
©

Example (3 Registers)

Group Members Cost
0 i 40
1 j 5
2 x, t 15
3 y 15
4 a 20
5 b 10
6 c 30

main
Cand: a:20, b:10, c:30

subr1
Cand: x:5, y:15

subr2
Cand: t:10

Print
Cand: i:40, j:5

160CS 701 Fall 2005
©

The 3 registers are given to the
groups with the highest weight,
i (40), c(30), a(20).
Is this optimal?
No! If y and t are grouped together, y
and t (cost=25) get the last register.

main
Cand: a:20, b:10, c:30

subr1
Cand: x:5, y:15

subr2
Cand: t:10

Print
Cand: i:40, j:5

161CS 701 Fall 2005
©

Recursion
To handle recursion, any call to a
subprogram “up” in the call graph
must save and restore all registers
possibly in use between the caller and
callee.

A call fromEtoB saves r3 to r5.

A:r1,r2

B:r3

C:r4 D:r4

E:r5

162CS 701 Fall 2005
©

Performance
Wall found interprocedural register
allocation to be very effective (given
52 Registers!).

Speedups of 10-28% were reported.
Even with only 8 registers, speedups
of 5-20% were observed.

163CS 701 Fall 2005
©

Optimal Interprocedural
Register Allocation

Wall’s approach to interprocedural
register allocation isn’t optimal
because register candidates aren’t
grouped to achieve maximum benefit.

Moreover, the placement of save and
restore code if needed isn’t
considered.

These limitations are addressed by
Kurlander in “Minimum Cost
Interprocedural Register Allocation.”

164CS 701 Fall 2005
©

Optimal Save-Free
Interprocedural Register
Allocation
• Allocation is done on a cycle-free call

graph.

• Each subprogram has one or more
register candidates, ci.

• Each register candidate, ci, has a cost (or
benefit), wi, that is the improvement in
performance if ci is given a register. (This
wi value is scaled to include nested loops
and expected call frequencies.)

165CS 701 Fall 2005
©

Interference Between Register
Candidates
The notion of interference is extended to
include interprocedural register
candidates:
• Two Candidates in the same subprogram

always interfere.
(Local non-interfering variables and
values have already been grouped into
interprocedural register candidates.)

• If subprogram P calls subprogram Q
(directly or indirectly) then register
candidates within P always interfere
with register candidates within Q.

166CS 701 Fall 2005
©

Example

The algorithm can group candidate p
with either t or u (since they don’t
interfere). It can also group candidate
q with either t or u.

If two registers are available, it must
“discover” that assigning R1 to q&t,
and R2 to m is optimal.

V
Cand: m:6

W
Cand: p:3, q:4

X
Cand: t:5, u:1

167CS 701 Fall 2005
©

Non-interfering register candidates are
grouped into registers so as to solve:

That is, we wish to group sets of non-
interfering register candidates into k
registers such that the overall benefit is
maximized.
But how do we solve this?
Certainly examining all possible
groupings will be prohibitively expensive!

Maximize Σ wj

cj ∈ U Ri

k

i=1

168CS 701 Fall 2005
©

Kurlander solved this problem by
mapping it to a known problem in
Integer Programming:
the Dual Network Flow Problem.

Solution techniques for this problem are
well known—libraries of standard
solution algorithms exist.

Moreover, this problem can be solved in
polynomial time.

That is, it is “easier” than optimal global
(intraprocedural) register allocation,
which is NP-complete!

169CS 701 Fall 2005
©

Reading Assignment
• Read Section 15.4 (Code Scheduling) of

Chapter 15.

• Read Gibbon’s and Muchnick’s paper,
“Efficient Instruction Scheduling for a
Pipelined Architecture.”

• Read Kerns and Eggers’ paper,
“Balanced Scheduling: Instruction
Scheduling When Memory Latency is
Uncertain.” (Linked from the class Web
page.)

170CS 701 Fall 2005
©

Adding Saves & Restores
Wall designed his save-free
interprocedural allocator for a
machine with 52 registers.

Most computers have far fewer
registers, and hence saving and
restoring across calls, when profitable,
should be allowed.

Kurlander’s Technique can be
extended to include save/restore
costs. If the cost of saving and
restoring is less than the benefit of
allocating an extra register, saving is
done. Moreover, saving is done where
it is cheapest (not closest!).

171CS 701 Fall 2005
©

Example
main() { ... p(); ...}

p(){ ...
 for (i=0; i<1000000; i++){
 q():
 }
}

We first allocate registers in a save-
free mode. After all Registers have
been allocated, q may need additional
registers.
Most allocators would add save/
restore code at q’s call site (or q’s
prologue and epilogue).
An optimal allocator will place save/
restore code at p’s call site, freeing a
register that p doesn’t even want (but
that q does want!)

172CS 701 Fall 2005
©

Extending the Cost Model
• As before, we group register candidates

of different subprograms into registers.

• Now only candidates within the same
subprogram automatically interfere.

• Saves are placed on the edges of the call
graph.

• We aim to solve

where sm is the per/register save/
restore cost and Savedm is the number
of registers saved on edge em.

Maximize Σ wj

cj ∈ U Ri

k
sm

em∈
Σ- *Savedm

Edges
i=1

173CS 701 Fall 2005
©

• As registers are saved, they may be
reused in child subprograms.

• This optimization problem can be
solved as a Network Dual Flow
Problem.

• Again, the solution algorithm is
polynomial.

174CS 701 Fall 2005
©

Example (One Register)

P1 gets R1 save-free for m.
A save on P1→P4 costs 1 and gives a
register to n (net profit =2), so we do it.
A save on P1→P2 for z costs 2, and yields 1,
which isn’t profitable.
A save on P2→P3 for q costs 4, and yields
3, which isn’t profitable.
A save on P1→P2 for q costs 2, and yields
3, which is a net gain.

P1

Cand: m:7

Cand: z:1

P4
Cand: n:3

P3

Cand: q:3

s=2 s=1

s=4

P2

175CS 701 Fall 2005
©

Handling Global Variables
• Wall’s technique handled globals by

assuming they interfere with all
subprograms and all other globals.

• Kurlander’s approach is incremental (and
non-optimal):

First, an optimal allocation for r
registers is computed.
Next, one register is “stolen” and
assigned interprocedurally to the
most beneficial global.
(Subprograms that don’t use the
global can save and restore it locally,
allowing local reuse).
An optimal allocation using R-1
registers is computed. If this solution
plus the shared global is more
profitable than the R register

176CS 701 Fall 2005
©

solution, the global allocation is
“locked in.”
Next, another register is “stolen” for a
global, leaving R-2 for
interprocedural allocation.
This process continues until stealing
another register for a global isn’t
profitable.

177CS 701 Fall 2005
©

Why is Optimal
Interprocedural Register
Allocation Easier than Optimal
IntraProcedural Allocation?
This result seems counter-intuitive. How
can allocating a whole program be easier
(computationally) than allocating only
one subprogram.
Two observations provide the answer:
• Interprocedural allocation assumes some

form of local allocation has occurred (to
identify register candidates).

• Interprocedural interference is transitive
(if A interferes with B and B interferes
with C then A interferes with B). But
intraprocedural interference isn’t
transitive!

178CS 701 Fall 2005
©

Code Scheduling
Modern processors are pipelined.
They give the impression that all
instructions take unit time by
executing instructions in stages
(steps), as if on an assembly line.
Certain instructions though (loads,
floating point divides and square
roots, delayed branches) take more
than one cycle to execute.
These instructions may stall (halt the
processor) or require a nop (null
operation) to execute properly.
A Code Scheduling phase may be
needed in a compiler to avoid stalls or
eliminate nops.

179CS 701 Fall 2005
©

Scheduling Expression DAGs
After generating code for a DAG or
basic block, we may wish to schedule
(reorder) instructions to reduce or
eliminate stalls.

A Postpass Scheduler is run after code
selection and register allocation.

Postpass schedulers are very general
and flexible, since they can be used
with code generated by any compiler
with any degree of optimization

But, since they can’t modify register
allocations, they can’t always avoid
stalls.

180CS 701 Fall 2005
©

Dependency DAGs
Obviously, not all reorderings of
generated instructions are acceptable.

Computation of a register value must
precede all uses of that value.
A store of a value must precede all
loads that might read that value.

A Dependency Dag reflects essential
ordering constraints among instructions:
• Nodes are Instructions to be scheduled.

• An arc from Instruction i to Instruction j
indicates that i must be executed before
j may be executed.

181CS 701 Fall 2005
©

Kinds of Dependencies
We can identify several kinds of
dependencies:
• True Dependence:

An operation that uses a value has a
true dependence (also called a flow
dependence) upon an earlier
operation that computes the value.
For example:

mov 1, %l2

add %l2, 1, %l2

• Anti Dependence:
An operation that writes a value has a
anti dependence upon an earlier
operation that reads the value. For
example:

add %l2, 1, %l0
mov 1, %l2

182CS 701 Fall 2005
©

• Output Dependence:
An operation that writes a value has a
output dependence upon an earlier
operation that writes the value. For
example:

mov 1, %l2

mov 2, %l2

Collectively, true, anti and output
dependencies are called data
dependencies. Data dependencies
constrain the order in which
instructions may be executed.

183CS 701 Fall 2005
©

Example
Consider the code that might be
generated for
a = ((a+b) + (c*d)) + ((c+d) * d);

We’ll assume 4 registers, the
minimum possible, and we’ll reuse
already loaded values.
Assume a 1 cycle stall between a load
and use of the loaded value and a 2
cycle stall between a multiplication
and first use of the product.

184CS 701 Fall 2005
©

1. ld [a], %r1
2. ld [b], %r2
3. add %r1,%r2,%r1
4. ld [c], %r2
5. ld [d], %r3
6. smul %r2,%r3,%r4
7. add %r1,%r4,%r1
8. add %r2,%r3,%r2
9. smul %r2,%r3,%r2
10. add %r1,%r2,%r1
11. st %r1,[a]

Stall

Stall
Stall*2

Stall*2

(6 Stalls Total)

1 2

3 4

5

6

7

8 9

10

11

185CS 701 Fall 2005
©

Scheduling Requires
Topological Traversal

Any valid code schedule is a
Topological Sort of the dependency
dag.

To create a code schedule you
(1) Pick any root of the Dag.
(2) Remove it from the Dag and

schedule it.
(3) Iterate!

Choosing a Minimum Delay schedule
is NP-Complete:
 “Computers and Intractability,”
M. Garey and D. Johnson,
W.H. Freeman, 1979.

186CS 701 Fall 2005
©

Dynamically Scheduled
(Out of Order) Processors

To avoid stalls, some processors can
execute instructions Out of Program
Order.
If an instruction can’t execute
because a previous instruction it
depends upon hasn’t completed yet,
the instruction can be “held” and a
successor instruction executed
instead.
When needed predecessors have
completed, the held instruction is
released for execution.

187CS 701 Fall 2005
©

Example
1. ld [a], %r1
2. ld [b], %r2

3. add %r1,%r2,%r1
4. ld [c], %r2

7. add %r1,%r4,%r1

8. add %r2,%r3,%r2
9. smul %r2,%r3,%r2

10. add %r1,%r2,%r1
11. st %r1,[a]

Stall

Stall

(2 Stalls Total)

5. ld [d], %r3

6. smul %r2,%r3,%r4

1 2

3 4

5

6

7

8 9

10

11

188CS 701 Fall 2005
©

Limitations of Dynamic
Scheduling
1. Extra processor complexity.
2. Register renaming (to avoid False

Dependencies) may be needed.
3. Identifying instructions to be delayed

 takes time.
4. Instructions “late” in the program

can’t be started earlier.

189CS 701 Fall 2005
©

Reading Assignment
• Read Goodman and Hsu’s paper, “Code

Scheduling and Register Allocation in
Large Basic Blocks.”

• Read Bernstein and Rodeh’s paper,
“Global Instruction Scheduling for
Superscalar Machines.”
(Linked from the class Web page.)

190CS 701 Fall 2005
©

Gibbons & Muchnick Postpass
Code Scheduler
1. If there is only one root, schedule it.
2. If there is more than one root,

 choose that root that won’t be
stalled by instructions already
scheduled.

3. If more than one root can be
scheduled without stalling,

 consider the following rules
 (in order);
 (a) Does this root stall any of its

successors?
(If so, schedule it immediately.)

(b) How many new roots are exposed
if this node is scheduled?
(More is better.)

191CS 701 Fall 2005
©

(c) Which root has the longest
weighted path to a leaf (using
instruction delays as the weight).
(The “critical path” in the DAG
gets priority.)

192CS 701 Fall 2005
©

Example
1. ld [a], %r1 //Longest path
2. ld [b], %r2

3. add %r1,%r2,%r1
4. ld [c], %r2

7. add %r1,%r4,%r1

8. add %r2,%r3,%r2
9. smul %r2,%r3,%r2

10. add %r1,%r2,%r1
11. st %r1,[a] (2 Stalls Total)

5. ld [d], %r3

6. smul %r2,%r3,%r4

//Exposes a root
//Not delayed

//Only choice

//Only choice

//Stalls succ.

//Not delayed
//Not delayed

//Only choice

//Only choice

1 2

3 4

5

6

7

8 9

10

11
1

23

56689

81111

193CS 701 Fall 2005
©

False Dependencies
We still have delays in the schedule
that was produced because of “false
dependencies.”
Both b and c are loaded into %r2.
This limits the ability to move the
load of c prior to any use of %r2 that
uses b.
To improve our schedule we can use a
processor that renames registers or
allocate additional registers to
remove false dependencies.

194CS 701 Fall 2005
©

Register Renaming
Many out of order processors
automatically rename distinct uses of
the same architectural register to
distinct internal registers.

Thus
 ld [a],%r1
 ld [b],%r2
 add %r1,%r2,%r1
 ld [c],%r2

is executed as if it were
 ld [a],%r1
 ld [b],%r2
 add %r1,%r2,%r3
 ld [c],%r4

Now the final load can be executed
prior to the add, eliminating a stall.

195CS 701 Fall 2005
©

Compiler Renaming
A compiler can also use the idea of
renaming to avoid unnecessary stalls.
An extra register may be needed (as
was the case for scheduling
expression trees).
Also, a round-robin allocation policy
is needed. Registers are reused in a
cyclic fashion, so that the most
recently freed register is reused last,
not first.

196CS 701 Fall 2005
©

Example
1. ld [a], %r1
2. ld [b], %r2
3. add %r1,%r2,%r1
4. ld [c], %r3
5. ld [d], %r4
6. smul %r3,%r4,%r5
7. add %r1,%r5,%r2
8. add %r3,%r4,%r3
9. smul %r3,%r4,%r3
10. add %r2,%r3,%r2
11. st %r2,[a]

Stall

Stall
Stall*2

Stall*2

(6 Stalls Total)

1 2

3 4

5

6

7

8 9

10

11

197CS 701 Fall 2005
©

After Scheduling:
4. ld [c], %r3 //Longest path
5. ld [d], %r4

2. ld [b], %r2

7. add %r1,%r5,%r2

8. add %r3,%r4,%r3
9. smul %r3,%r4,%r3

10. add %r2,%r3,%r2
11. st %r2,[a] (0 Stalls Total)

1. ld [a], %r1

6. smul %r3,%r4,%r5

//Exposes a root
//Stalls succ.

//Stalls succ.

//Stalls succ .

//Only choice

//Only choice

//Exposes a root

//Longest path

3. add %r1,%r2,%r1 //Only choice

1 2

3 4

5

6

7

8 9

10

11
1

23

56684

866

198CS 701 Fall 2005
©

Balanced Scheduling
When scheduling a load, we normally
anticipate the best case, a hit in the
primary cache.
On older architectures this makes
sense, since we stall execution on a
cache miss.
Many newer architectures are non-
blocking. This means we can continue
execution after a miss until the
loaded value is used.
Assume a Cache miss takes N cycles
(N is typically 10 or more).
Do we schedule a load anticipating a
1 cycle delay (a hit) or an N cycle
delay (a miss)?

199CS 701 Fall 2005
©

Neither Optimistic Scheduling (expect a
hit) nor Pessimistic Scheduling (expect a
miss) is always better.
Consider

An Optimistic Schedule is

A Pessimistic Schedule is

load

Inst1

Inst2

Inst3

Inst4

load
Inst2
Inst1
Inst3
Inst4

Fine for a hit;
inferior for a miss.

load
Inst2
Inst3
Inst1
Inst4

Fine for a hit;
better for a miss.

200CS 701 Fall 2005
©

But things become more complex with
multiple loads

An Optimistic Schedule is

A Pessimistic Schedule is

load1

load2

Inst1

Inst2

Inst3

load1
Inst1
load2
Inst2
Inst3

Better for hits;
same for misses.

load1
Inst1
Inst2
load2
Inst3

Worse for hits;
same for misses.

201CS 701 Fall 2005
©

Balance Placement of Loads
Eggers suggests a balanced scheduler
that spaces out loads, using available
independent instructions as “filler.”
The insight is that scheduling should
not be driven by worst-case latencies
but rather by available Independent
Instructions.
For

it produces

load

Inst1

Inst2

Inst3

Inst4

load
Inst2
Inst3
Inst1
Inst4

Good; maximum
distance between
load and Inst1 in
case of a miss.

202CS 701 Fall 2005
©

For

balanced scheduling produces

load1

load2

Inst1

Inst2

Inst3

load1
Inst1
load2
Inst2
Inst3

Good for hits;
as good as
possible for misses.

203CS 701 Fall 2005
©

Idea of the Algorithm
Look at each Instruction, i, in the
Dependency DAG.
Determine which loads can run in
parallel with i and use all (or part) of
i’s execution time to cover the latency
of these loads.

204CS 701 Fall 2005
©

Compute available latency of each load:
 Give each load instruction an initial

latency of 1.
 For (each instruction i in the
 Dependency DAG) do:
 Consider Instructions Independent

of i:
 Gind = DepDAG -
 (AllPred(i) U AllSucc(i) U {i})
 For (each connected subgraph c
 in Gind) do:

 Find m = maximum number of
 load instructions on any
 path in c.
 For (each load d in c) do:
 add 1/m to d’s latency.

205CS 701 Fall 2005
©

Computing the Schedule Using
Adjusted Latencies

Once latencies are assigned to each
load (other instructions have a
latency of 1), we annotate each
instruction in the Dependency DAG
with its critical path weight: the
maximum latency (along any path)
from the instruction to a Leaf of the
DAG.

Instructions are scheduled using
critical path values; the root with the
highest critical path value is always
scheduled next. In cases of ties (same
critical path value), operations with
the longest latency are scheduled
first.

206CS 701 Fall 2005
©

Example

Ld
1

Ld
2

Ld
3

Ld
4 I1 I2 I3 I4 I5 Latency

Load1 1+0 = 1

Load2 1/2 1/2 1/2 1/2 1+2 = 3

Load3 1/2 1/2 1/2 1/2 1+2 = 3

Load4 1 1 1 1+3 = 4

Load1

Inst1

Load2 Inst2 Inst4

Load3 Inst3

Load4

Inst5

End 0

1

1

5

4 6

77

8

9

207CS 701 Fall 2005
©

Using the annotated Dependency Dag,
instructions can be scheduled:

Load1

Inst1

Load2 Inst2 Inst4

Load3 Inst3

Load4

Inst5

End 0

1

1

5

4 6

77

8

9

Load1
Inst1
Load2
Inst2
Inst3
Load4
Load3
Inst4
Inst5

(0 latency; unavoidable)

(3 instruction latency)

(2 instruction latency)
(1 instruction latency)

208CS 701 Fall 2005
©

Goodman/Hsu Integrated Code
Scheduler

Prepass Schedulers:
 Schedule code prior to register

allocation.
 Can overuse registers—Always

using a “fresh” register maximizes
 freedom to rearrange Instructions.

Postpass Schedulers:
 Schedule code after register

allocation.
Can be limited by “false
dependencies” induced by register
reuse.

 Example is Gibbons/Muchnick
heuristic.

209CS 701 Fall 2005
©

Integrated Schedulers
Capture best of both approaches.

When registers are plentiful, use
additional registers to avoid stalls.
Goodman & Hsu call this CSP:
 Code Scheduling for Pipelines.

When registers are scarce, switch to a
policy that frees registers.
Goodman & Hsu call this CSR:
 Code Scheduling to free Registers.

210CS 701 Fall 2005
©

Assume code is generated in single
assignment form, with a unique
pseudo-register for each computed
value.

We schedule from a DAG where nodes
are operations (to be mapped to
instructions), and arcs represent data
dependencies.

Each node will have an associated
Cost, that measures the execution and
stall time of the instruction that the
node represents.

Nodes are labeled with a critical path
cost, used to select the “most critical”
instructions to schedule.

211CS 701 Fall 2005
©

Definitions
Leader Set:

Set of DAG nodes ready to be
scheduled, possibly with an
interlock.

Ready Set:
Subset of Leader Set; Nodes ready
to be scheduled without an
interlock.

AvailReg:
A count of currently unused
registers.

MinThreshold:
Threshold at which heuristic will
switch from avoiding interlocks to
reducing registers in use.

212CS 701 Fall 2005
©

Goodman/Hsu Heuristic:
while (DAG ≠ φ) {

 if (AvailReg > MinThreshold)
 if (ReadySet ≠ φ)
 Select Ready node with Max cost
 else Select Leader node with Max cost
 else // Reduce Registers in Use
 if (∃ node ∈ ReadySet that frees registers){
 Select node that frees most registers
 If (selected node isn’t unique)
 Select node with Max cost }
 elsif (∃ node ∈ LeaderSet that frees regs){
 Select node that frees most registers
 If (selected node isn’t unique)
 Select node with fewest interlocks}
 else find a partially evaluated path and

select a leader from this path
 else Select any node in ReadySet
 else Select any node in LeaderSet
Schedule Selected node
Update AvailReg count }//end while

213CS 701 Fall 2005
©

Example
We’ll again consider
a = ((a+b) + (c*d)) + ((c+d) * d);

Again, assume a 1 cycle stall between
a load and use of its value and a 2
cycle stall between a multiplication
and first use of the product.

a b c d

+ * +

+ *

=

+

1

2

3 5

4 6 6

6 6 8 8

214CS 701 Fall 2005
©

We’ll try 4 registers (the minimum),
then 5 registers.
Should MinThreshold be 0 or 1?

At MinThreshold = 1, we always
have a register to hold a result, but
we may force a register to be spilled
too soon!

At MinThreshold = 0, we may be
forced to spill a register to free a
result register.
But, we’ll also be able to schedule
more aggressively.
Is a spill or stall worse?
Note that we may be able to “hide”
a spill in a delay slot!

We’ll be aggressive and use
MinThreshold = 0.

215CS 701 Fall 2005
©

4 Registers Used (1 Stall)

Instruction Comment Regs
Used

ld [c], %r1 Choose ready, cost=8 1
ld [d], %r2 Choose ready, cost=8 2
ld [a], %r3 Choose ready, cost=6 3
smul %r1,%r2,%r4 Choose ready, cost=6 4
add %r1,%r2,%r1 Free a register 4
smul %r1,%r2,%r1 Free a register 3
ld [b], %r2 Choose ready, cost=6 4
add %r3,%r2,%r3 ← Choose a leader 3
add %r3,%r4,%r3 No choice 2
add %r3,%r1,%r3 No choice 1
st %r3,[a] No choice 0

a b c d

+ * +

+ *

=

+

1

2

3 5

4 6 6

6 6 8 8

216CS 701 Fall 2005
©

5 Registers Used (No Stalls)

Instruction Comment Regs
Used

ld [c], %r1 Choose ready, cost=8 1
ld [d], %r2 Choose ready, cost=8 2
ld [a], %r3 Choose ready, cost=6 3
smul %r1,%r2,%r4 Choose ready, cost=6 4
add %r1,%r2,%r1 Choose ready, cost=6 4
ld [b], %r5 Choose ready, cost=6 5
smul %r1,%r2,%r1 Free a register 4
add %r3,%r5,%r3 Choose ready, cost=4 3
add %r3,%r4,%r3 No choice 2
add %r3,%r1,%r3 No choice 1
st %r3,[a] No choice 0

a b c d

+ * +

+ *

=

+

1

2

3 5

4 6 6

6 6 8 8

217CS 701 Fall 2005
©

Scheduling for Superscalar &
Multiple Issue Machines

A number of computers have the
ability to issue more than one
instruction per cycle if the
instructions are independent and
satisfy constraints on available
functional units.

Thus the instructions
 add %r1,1,%r2
 sub %r1,2,%r3

can issue and execute in parallel,
but

add %r1,1,%r2
 sub %r2,2,%r3

 must execute sequentially.

218CS 701 Fall 2005
©

Instructions that are linked by true or
output dependencies must execute
sequentially, but instructions that are
linked by an anti dependence may
execute concurrently.
For example,
 add %r1,1,%r2
 sub %r3,2,%r1

can issue and execute in parallel.

The code scheduling techniques we’ve
studied can be used to schedule
machines that can issue 2 or more
independent instructions simultaneously.

We select pairs (or triples or n-tuples),
verifying (with the Dependence Dag)
that they are independent or anti
dependent.

219CS 701 Fall 2005
©

Example: 5 Registers
(2 Wide Issue)

We need only 8 cycles rather than 11.

1 ld [c], %r1 ld [d], %r2

2 ld [a], %r3 ld [b], %r4

3 smul %r1,%r2,%r5 add %r1,%r2,%r1

4 add %r3,%r4,%r3 smul %r1,%r2,%r1

5 nop nop

6 add %r3,%r5,%r3 nop

7 add %r3,%r1,%r3 nop

8 st %r3,[a] nop

a b c d

+ * +

+ *

=

+

1

2

3 5

4 6 6

6 6 8 8

220CS 701 Fall 2005
©

5 Registers (3 Wide Issue)

We still need 8 cycles!

1 ld [c], %r1 ld [d], %r2 ld [a],%r3

2 ld [b], %r4 nop nop

3 smul %r1,%r2,%r5 add %r1,%r2,%r1 nop

4 add %r3,%r4,%r3 smul %r1,%r2,%r1 nop

5 nop nop nop

6 add %r3,%r5,%r3 nop nop

7 add %r3,%r1,%r3 nop nop

8 st %r3,[a] nop nop

a b c d

+ * +

+ *

=

+

1

2

3 5

4 6 6

6 6 8 8

221CS 701 Fall 2005
©

Finding Additional Independent
Instructions for Parallel Issue
We can extend the capabilities of
processors:
• Out of order execution allows a

processor to “search ahead” for
independent instructions to launch.

• But, since basic blocks are often quite
small, the processor may need to
accurately predict branches, issuing
instructions before the execution path is
fully resolved.

• But, since branch predictions may be
wrong, it will be necessary to “undo”
instructions executed speculatively.

222CS 701 Fall 2005
©

Compiler Support for
Extended Scheduling
• Trace Scheduling

Gather sequences of basic blocks
together and schedule them as a unit.

• Global Scheduling
Analyze the control flow graph and
move instructions across basic block
boundaries to improve scheduling.

• Software Pipelining
Select instructions from several loop
iterations and schedule them
together.

223CS 701 Fall 2005
©

Trace Scheduling
Reference:
J. Fisher, “Trace Scheduling: A
Technique for Global Microcode
Compaction,” IEEE Transactions on
Computers, July 1981.

Idea:
Since basic blocks are often too small
to allow effective code scheduling, we
will profile a program’s execution and
identify the most frequently executed
paths in a program.

Sequences of contiguous basic blocks
on frequently executed paths will be
gathered together into traces.

224CS 701 Fall 2005
©

Trace
• A sequence of basic blocks (excluding

loops) executed together can form a
trace.

• A trace will be scheduled as a unit,
allowing a larger span of instructions for
scheduling.

• A loop can be unrolled or scheduled
individually.

• Compensation code may need to be
added when a branch into, or out of, a
trace occurs.

225CS 701 Fall 2005
©

Example

Assume profiling shows that
B1→B3→B4+→B5→B7
is the most common execution path.
The traces extracted from this path are
B1→B3, B4, and B5→B7.

B1

B2 B3

B4

B5 B6 B7

226CS 701 Fall 2005
©

Compensation Code
When we move instructions across
basic block boundaries within a trace,
we may need to add extra
instructions that preserve program
semantics on paths that enter or
leave the trace.

227CS 701 Fall 2005
©

Example
In the previous example, basic block
B1 had B2 and B3 as successors, and
B1→B3 formed a trace.

x = x+1
y = x-y
x<5

z=x*z
x=x+1

y=2*y
x=x-2

1

2

3

x = x+1

z=x*z
x=x+1

y=2*y
x=x-2

1

2

3

Before Scheduling

y = x-y

x<5

y = x-y

After Scheduling

228CS 701 Fall 2005
©

Advantages & Disadvantages
• Trace scheduling allows scheduling to

span multiple basic blocks. This can
significantly increase the effectiveness
of scheduling, especially in the context
of superscalar processors (which need ILP
to be effective).

• Trace Scheduling can also increase code
size (because of compensation code).
It is also sensitive to the accuracy of
trace estimates.

229CS 701 Fall 2005
©

Reading Assignment
• Read pp 367-386 of Allan et. al.’s paper,

“Software Pipelining.”
(Linked from the class Web page.)

230CS 701 Fall 2005
©

Global Code Scheduling
• Bernstein and Rodeh approach.

• A prepass scheduler
(does scheduling before register
allocation).

• Can move instructions across basic block
boundaries.

• Prefers to move instructions that must
eventually be executed.

• Can move Instructions speculatively,
possibly executing instructions
unnecessarily.

231CS 701 Fall 2005
©

Data & Control Dependencies
When moving instructions across
basic block boundaries, we must
respect both data dependencies and
control dependencies.

Data dependencies specify necessary
orderings among instructions that
produce a value and instructions that
use that value.

Control dependencies determine when
(and if) various instructions are
executed. Thus an instruction is
control dependent on expressions
that affect flow of control to that
instruction.

232CS 701 Fall 2005
©

Definitions used in Global
Scheduling
• Basic Block A dominates Basic Block B if

and only if A appears on all paths to B.

• Basic Block B postdominates Basic Block
A if and only if B appears on all paths
from A to an exit point.

• Basic Blocks A and B are equivalent if
and only if A dominates B and B
postdominates A.

• Moving an Instruction from Basic Block
B to Basic Block A is useful if and only if
A and B are equivalent.

• Moving an Instruction from Basic Block
B to Basic Block A is speculative if B does
not postdominate A.

233CS 701 Fall 2005
©

• Moving an Instruction from Basic Block
B to Basic Block A requires duplication if
A does not dominate B.

We prefer a move that does not require
duplication. (Why?)
The degree of speculation in moving an
instruction from one basic block to
another can be quantified:
• Moving an Instruction from Basic Block

B to Basic Block A is n-branch
speculative if n conditional branches
occur on a path from A to B.

234CS 701 Fall 2005
©

Example
 d = a + b;
 if (d != 0)
 flag = 1;
 else flag = 0;
 f = d - g;

Blocks 1 and 4 are equivalent.
Moving an Instruction from B2 to B1
(or B3 to B1) is 1-branch speculative.
Moving an Instruction from B4 to B2
(or B4 to B3) requires duplication.

d = a + b
d != 0

flag = 1 flag = 0

f = d - g

T F

1

2 3

4

235CS 701 Fall 2005
©

Limits on Code Motion
Assume that pseudo registers are used
in generated code (prior to register
allocation).
To respect data dependencies:
• A use of a Pseudo Register can’t be

moved above its definition.

• Memory loads can’t be moved ahead
of Stores to the same location.

• Stores can’t be moved ahead of either
loads or stores to the same location.

• A load of a memory location can be
moved ahead of another load of the
same location (such a load may often
be optimized away by equivalencing
the two pseudo registers).

236CS 701 Fall 2005
©

Example (Revisited)
block1:
 ld [a],Pr1
 ld [b],Pr2

 add Pr1,Pr2,Pr3 ← Stall
 st Pr3,[d]
 cmp Pr3,0
 be block3
block2:
 mov 1,Pr4
 st Pr4,[flag]
 b block4
block3:
 st 0,[flag]
block4:
 ld [d],Pr5
 ld [g],Pr6

 sub Pr5,Pr6,Pr7 ← Stall
 st Pr7,[f]

In B1 and B4, the number of available
registers is irrelevant in avoiding
stalls. There are too few independent
instructions in each block.

237CS 701 Fall 2005
©

Global Scheduling
Restrictions (in Bernstein/
Rodeh Heuristic)
1. Subprograms are divided into Regions.

A region is a loop body or the
subprogram body without enclosed
loops.

2. Regions are scheduled inside-out.
3. Instructions never cross region

boundaries.
4. All instructions move “upward” (to

earlier positions in the instruction
order).

5. The original order of branches is
preserved.

238CS 701 Fall 2005
©

Lesser (temporary) restrictions Include:
6. No code duplication.
7. Only 1-branch speculation.
8. No new basic blocks are created or

added.

239CS 701 Fall 2005
©

Scheduling Basic Blocks in a
CFG

Basic blocks are visited and scheduled
in Topological Order. Thus all of a
block’s predecessors are scheduled
before it is.
Two levels of scheduling are possible
(depending on whether speculative
execution is allowed or not):
1. When Basic Block A is scheduled,
 only Instructions in A and blocks
 equivalent to A that A dominates
 are considered.
 (Only “useful” instructions are
 considered.)

240CS 701 Fall 2005
©

2. Blocks that are immediate
successors of those considered in

 (1) are also considered.
 (This allows 1-branch

speculation.)

241CS 701 Fall 2005
©

Candidate Instructions
We first compute the set of basic
blocks that may contribute
instructions when block A is
scheduled. (Either blocks equivalent
to A or blocks at most 1-branch
speculative.)

242CS 701 Fall 2005
©

An individual Instruction, Inst, in this
set of basic blocks may be scheduled
in A if:
1. It is located in A.
2. It is in a block equivalent to A and

may be moved across block
boundaries.

 (Some instructions, like calls, can’t
 be moved.)
3. It is not in a block equivalent to A,

but may be scheduled speculatively.
 (Some instructions, like stores,

can’t be executed speculatively.)

243CS 701 Fall 2005
©

Selecting Instructions to Issue
• A list of “ready to issue” instructions in

block A and in bocks equivalent to A (or
1-branch distant from A) is maintained.

• All data dependencies must be satisfied
and stalls avoided (if possible).

• N independent instructions are selected,
where N is the processor’s issue-width.

• But what if more than N instructions are
ready to issue?

• Selection is by Priority, using two
Scheduling Heuristics.

244CS 701 Fall 2005
©

Delay Heuristic
This value is computed on a per-basic
block basis.
It estimates the worst-case delay
(stalls) from an Instruction to the end
of the basic block.

D(I) = 0 if I is a leaf.

Let d(I,J) be the delay if instruction J
follows instruction I in the code
schedule.

D(I) = Max (D(Ji)+d(I,Ji))
Ji ∈ Succ(I)

245CS 701 Fall 2005
©

Example of Delay Values
block1:
1. ld [a],Pr1
2. ld [b],Pr2
3. add Pr1,Pr2,Pr3
4. st Pr3,[d]
5. cmp Pr3,0
6. be block3

(Assume only loads can stall.)

1 2

3

4 5

6

0

0 0

0

1 1

246CS 701 Fall 2005
©

Critical Path Heuristic
This value is also computed on a per-
basic block basis.
It estimates how long it will take to
execute Instruction I, and all I’s
successors, assuming unlimited
parallelism.

E(I) = Execution time for instruction I
 (normally 1 for pipelined

machines)
CP(I) = E(I) if I is a leaf.

CP(I) = E(I) + Max (CP(Ji)+d(I,Ji))
∈ Succ(I)Ji

247CS 701 Fall 2005
©

Example of Critical Path
Values

block1:
1. ld [a],Pr1
2. ld [b],Pr2
3. add Pr1,Pr2,Pr3
4. st Pr3,[d]
5. cmp Pr3,0
6. be block3

1 2

3

4 5

6

1

2 2

3

5 5

248CS 701 Fall 2005
©

Selecting Instructions to Issue
From the Ready Set (instructions with all
dependencies satisfied, and which will
not stall) use the following priority rules:

1. Instructions in block A and blocks
 equivalent to A have priority over
 other (speculative) blocks.
2. Instructions with the highest D

values have priority.
3. Instructions with the highest CP

values have priority.
These rules imply that we schedule
useful instructions before speculative
ones, instructions on paths with
potentially many stalls over those with
fewer stalls, and instructions on critical
paths over those on non-critical paths.

249CS 701 Fall 2005
©

Example
block1:
1. ld [a],Pr1
2. ld [b],Pr2
3. add Pr1,Pr2,Pr3
4. st Pr3,[d]
5. cmp Pr3,0
6. be block3
block2:
7. mov 1,Pr4
8. st Pr4,[flag]
9. b block4
block3:
10. st 0,[flag]
block4:
11. ld [d],Pr5
12. ld [g],Pr6
13. sub Pr5,Pr6,Pr7
14. st Pr7,[f]

1 2

3

4 5

6

0,1

0,2 0,2

0,3

1,5 1,5

8 9
0,2 0,1

7
0,3

10
0,1

11 12

13
0,2

1,4 1,4

14
0,1

250CS 701 Fall 2005
©

We’ll schedule without speculation;
highest D values first, then highest CP
values.

block1:
1. ld [a],Pr1
2. ld [b],Pr2

1 2

3

4 5

6

0,1

0,2 0,2

0,3

1,5 1,5

8 9
0,2 0,1

7
0,3

10
0,1

11 12

13
0,2

1,4 1,4

14
0,1

12. ld [g],Pr6

251CS 701 Fall 2005
©

Next, come Instructions 3 and 4.
block1:
1. ld [a],Pr1
2. ld [b],Pr2

3

4 5

6

0,1

0,2 0,2

0,3

8 9
0,2 0,1

7
0,3

10
0,1

11

13
0,2

1,4

14
0,1

12. ld [g],Pr6
3. add Pr1,Pr2,Pr3
4. st Pr3,[d]

252CS 701 Fall 2005
©

Now 11 can issue (D=1), followed by 5,
13, 6 and 14. Block B4 is now empty, so
B2 and B3 are scheduled.

There are no stalls. In fact, if we
equivalence Pr3 and Pr5 , Instruction 11
can be removed.

block1:
1. ld [a],Pr1
2. ld [b],Pr2

5

6

0,1

0,2

8 9
0,2 0,1

7
0,3

10
0,1

11

13
0,2

1,4

14
0,1

12. ld [g],Pr6
3. add Pr1,Pr2,Pr3
4. st Pr3,[d]

5. cmp Pr3,0
11. ld [d],Pr5

14. st Pr7,[f]
block2:
7. mov 1,Pr4
8. st Pr4,[flag]
9. b block4
block3:
10. st 0,[flag]
block4:

13. sub Pr5,Pr6,Pr7
6. be block3

253CS 701 Fall 2005
©

Hardware Support for Global
Code Motion

We want to be aggressive in
scheduling loads, which incur high
latencies when a cache miss occurs.
In many cases, control and data
dependencies may force us to restrict
how far we may move a critical load.
Consider

p = Lookup(Id);
 ...
if (p != null)

print(p.a);

It may well be that the object
returned by Lookup is not in the L1
cache. Thus we’d like to schedule the
load generated by p.a as soon as
possible; ideally right after the
lookup.

254CS 701 Fall 2005
©

But moving the load above the p !=
null check is clearly unsafe.
A number of modern machine
architectures, including Intel’s
Itanium, have proposed a speculative
load to allow freer code motion when
scheduling.
A speculative load,

ld.s [adr],%reg

acts like an ordinary load as long as
the load does not force an interrupt.
If it does, the interrupt is suppressed
and a special NaT (not a thing) bit is
set in the register (a hidden 65th bit).
A NaT bit can be propagated through
instructions before being tested.
In some cases (like our table lookup
example), a register containing a NaT
bit may simply not be used because

255CS 701 Fall 2005
©

control doesn’t reach its intended
uses.
However a NaT bit need not indicate
an outright error. A load may force a
TLB (translation lookaside buffer)
fault or a page fault. These interrupts
are probably too costly to do
speculatively, but if we decide the
loaded value is really needed, we will
want to allow them.
A special check instruction, of the
form,

chk.s %reg,adr

checks whether %reg has its NaT bit
set. If it does, control passes to adr ,
where user-supplied “fixup” code is
placed. This code can redo the load
non-speculatively, allowing necessary
interrupts to occur.

256CS 701 Fall 2005
©

Hardware Support for Data
Speculation

In addition to supporting control
speculation (moving instructions
above conditional branches), it is
useful to have hardware support for
data speculation.
In data speculation, we may move a
load above a store if we believe the
chance of the load and store
conflicting is slim.
Consider a variant of our earlier
lookup example,

p = Lookup(Id);
 ...
q.a = init();
print(p.a);

257CS 701 Fall 2005
©

We’d like to move the load implied by
p.a above the assignment to q.a . This
allows p to miss in the L1 cache, using
the execution of init() to cover the
miss latency.
But, we need to be sure that q and p
don’t reference the same object and that
init() doesn’t indirectly change p.a .
Both possibilities may be remote, but
proving non-interference may be
difficult.
The Intel Itanium provides a special
“advanced load” that supports this sort
of load motion.
The instruction

ld.a [adr],%reg

loads the contents of memory location
adr into %reg. It also stores adr into

258CS 701 Fall 2005
©

special ALAT (Advanced Load Address
Table) hardware.
When a store to address X occurs, an
ALAT entry corresponding to address X is
removed (if one exists).
When we wish to use the contents of
%reg, we execute a

ld.c [adr],%reg

instruction (a checked load).
If an ALAT entry for adr is present, this
instruction does nothing; %reg contains
the correct value. If there is no
corresponding ALAT entry, the ld.c
simply acts like an ordinary load.
(Two versions of ld.c exist; one
preserves an ALAT entry while the other
purges it).

259CS 701 Fall 2005
©

And yes, a speculative load (ld.s) and
an advanced load (ld.a) may be
combined to form a speculative
advanced load (ld.sa).

260CS 701 Fall 2005
©

Speculative Multi-threaded
Processors
The problem of moving a load above a
store that may conflict with it also
appears in multi-threaded processors.
How do we know that two threads don’t
interfere with one another by writing
into locations both use?
Proofs of non-interference can be
difficult or impossible. Rather than
severely restrict what independent
threads can do, researchers have
proposed speculative multi-threaded
processors.
In such processors, one thread is primary,
while all other threads are secondary and
speculative. Using hardware tables to
remember locations read and written, a
secondary thread can commit (make its

261CS 701 Fall 2005
©

updates permanent) only if it hasn’t read
locations the primary thread later wrote
and hasn’t written locations the primary
thread read or wrote. Access conflicts are
automatically detected, and secondary
threads are automatically restarted as
necessary to preserve the illusion of
serial memory accesses.

262CS 701 Fall 2005
©

Reading Assignment
• Read Section 15.5, “Automatic

Instruction Selection,” from Chapter 15.

• Read Pelegri-Llopart and Graham’s paper,
“Optimal Code Generation from
Expression Trees.”

• Read Fraser, Henry and Proebsting’s
paper, “BURG--Fast Optimal Instruction
Selection and Tree Parsing.”

263CS 701 Fall 2005
©

Software Pipelining
Often loop bodies are too small to allow
effective code scheduling. But loop
bodies, being “hot spots,” are exactly
where scheduling is most important.
Consider

void f (int a[],int last) {
 for (p=&a[0];p!=&a[last];p++)
 (*p)++;
}

The body of the loop might be:
L: ld [%g3],%g2
 nop
 add %g2,1,%g2
 st %g2,[%g3]
 add %g3,4,%g3
 cmp %g3,%g4
 bne L
 nop

264CS 701 Fall 2005
©

Scheduling this loop body in isolation is
ineffective—each instruction depends
upon its immediate predecessor.
So we have a loop body that takes 8
cycles to execute 6 “core” instructions.

We could unroll the loop body, but for
how many iterations? What if the loop
ends in the “middle” of an expanded
loop body? Will extra registers be a
problem?

265CS 701 Fall 2005
©

In this case software pipelining offers a
nice solution. We expand the loop body
symbolically, intermixing instructions
from several iterations. Instructions can
overlap, increasing parallelism and
forming a “tighter” loop body:

 ld [%g3],%g2
 nop
 add %g2,1,%g2
L: st %g2,[%g3]
 add %g3,4,%g3
 ld [%g3],%g2
 cmp %g3,%g4
 bne L
 add %g2,1,%g2

Now the loop body is ideal—exactly 6
instructions. Also, no extra registers are
needed!
But, we do “overshoot” the end of the
loop a bit, loading one element past the
exit point. (How serious is this?)

266CS 701 Fall 2005
©

Key Insight of Software
Pipelining
Software pipelining exploits the fact
that a loop of the form {A B C} n, where
A, B and C are individual instructions,
and n is the iteration count, is equivalent
to A {B C A} n-1 B C and is also equivalent
to A B {C A B} n-1 C.
Mixing instructions from several
iterations may increase the effectiveness
of code scheduling, and may perhaps
allow for more parallel execution.

Software Pipelining is Hard
In fact, it is NP-complete:

Hsu and Davidson, “Highly concurrent
scalar processing,” 13th ISCA (1986).

267CS 701 Fall 2005
©

The Iteration Interval
We seek to initiate the next iteration
of a loop as soon as possible,
squeezing each iteration of the loop
body into as few machine cycles as
possible.
The general form of a software
pipelined loop is:

Prologue Code

Kernel Code

Epilogue Code

268CS 701 Fall 2005
©

The prologue code “sets up” the main
loop, and the epilogue code “cleans
up” after loop termination. Neither
the prolog nor the epilogue need be
optimized, since they execute only
once.
Optimizing the kernel is key in
software pipelining. The kernel’s
execution time (in cycles) is called
the initiation interval (II); it measures
how quickly the next iteration of a
loop can start.
We want the smallest possible
initiation interval. Determining the
smallest viable II is itself NP-
complete. Because of parallel issue
and execution in superscalar and
multiple issue processors, very small II
values are possible (even less than 1!)

269CS 701 Fall 2005
©

Factors that Limit the Size of
the Initiation Interval

We want the initiation interval to be
as small as possible. Two factors limit
how small the II can become:
• Resource Constraints

• Dependency Constraints

270CS 701 Fall 2005
©

Resource Constraints
A small II normally means that we are
doing steps of several iterations
simultaneously. The number of
registers and functional units (that
execute instructions) can become
limiting factors of the size of II.
For example, if a loop body contains 4
floating point operations, and our
processor can issue and execute no
more than 2 floating point operations
per cycle, then the loop’s II can’t be
less than 2.

271CS 701 Fall 2005
©

Dependency Constraints
A loop body can often contain a loop-
carried dependence. This means one
iteration of a loop depends on values
computed in an earlier iteration. For
example, in

void f (int a[]) {

 for (i=1;i<1000;i++)

 a[i]=(a[i-1]+a[i])/2;

}

there is a loop carried dependence from
the use of a[i-1] to the computation of
a[i] in the previous iteration. This
means the computation of a[i] can’t
begin until the computation of a[i-1]
is completed.
Let’s look at the code that might be
generated for this loop:

272CS 701 Fall 2005
©

f:
mov %o0, %o2 !a in %o2
mov 1, %o1 !i=1 in %o1

L:
sll %o1, 2, %o0 !i*4 in %o0
add %o0, %o2, %g2 !&a[i] in %g2

☛ ld [%g2-4], %g2 !a[i-1] in %g2
ld [%o2+%o0], %g3 !a[i] in %g3

☛ add %g2, %g3, %g2 !a[i-1]+a[i]
☛ srl %g2, 31, %g3 !s=0 or 1=sign
☛ add %g2, %g3, %g2 !a[i-1]+a[i]+s
☛ sra %g2, 1, %g2 !a[i-1]+a[i]/2

add %o1, 1, %o1 !i++
cmp %o1, 999
ble L

☛ st %g2, [%o2+%o0] !store a[i]
retl
nop

The 6 marked instructions form a cyclic
dependency chain from a use of a[i-1]
to its computation (as a[i]) in the
previous cycle. This cycle means that the
loop’s II can never be less than 6.

273CS 701 Fall 2005
©

Modulo Scheduling
There are many approaches to
software pipelining. One of the
simplest, and best known, is modulo
scheduling. Modulo scheduling builds
upon the postpass basic block
schedulers we’ve already studied.
First, we estimate the II of the loop
we will create. How?
We can compute the minimum II
based on resource considerations
(IIres) and the minimum II based on
cyclic loop-carried dependencies
(IIdep). Then max(IIres,IIdep) is a
reasonable estimate of the best
possible II. We’ll try to build a loop
with a kernel size of II. If this fails,
we’ll try II+1, II+2, etc.

274CS 701 Fall 2005
©

In modulo scheduling we’ll schedule
instructions one by one, using the
dependency dag and whatever
heuristic we prefer to choose among
multiple roots.
Now though, if we place an
instruction at cycle c (many
independent instructions may execute
in the same cycle), then we’ll place
additional copies of the instruction at
cycle c+II, c+2*II, etc.
Placement must respect dependency
constraints and resource limits at all
positions. We consider placements
only until a kernel (of size II) forms.
The kernel must begin before cycle s-
1, where s is the size of the loop body
(in instructions). The loop’s
conditional branch is placed after the
kernel is formed.

275CS 701 Fall 2005
©

If we can’t form a kernel of size II
(because of dependency or resource
conflicts), we increase II by 1 and try
again. At worst, we get a kernel equal
in size to the original loop body,
which guarantees that the modulo
scheduler eventually terminates.
Depending on how many iterations
are intermixed in the kernel, the loop
termination condition may need to be
adjusted (since the initial and final
iterations may appear as part of the
loop prologue and epilogue).

276CS 701 Fall 2005
©

Example
Consider the following simple
function which adds an array index to
each element of an array and copies
the results into a second array:
void f (int a[],int b[]) {
 t1 = &a[0];
 t2 = &b[0];

for (i=0;i<1000;i++,t1++,t2++)
 *t1 = *t2 + i;
}

The code for f (compiled as a leaf
procedure) is:

277CS 701 Fall 2005
©

1. f: mov 0, %g3

2. L: ld [%o1], %g2

3. add %g3, %g2, %g4

4. st %g4, [%o0]

5. add %g3, 1, %g3

6. add %o0, 4, %o0

7. cmp %g3, 999

8. ble L

9. add %o1, 4, %o1

10. retl

11. nop

2

3 9

4 5

6 7

Dashed arcs are
anti dependencies.

278CS 701 Fall 2005
©

We’ll software pipeline the loop body,
excluding the conditional branch
(which is placed after the loop kernel
is formed).
This loop body contains 2 loads/
stores, 5 arithmetic and logical
operations (including the compare)
and one conditional branch.
Let’s assume the processor we are
compiling for has 1 load/store unit, 3
arithmetic/logic units, and 1 branch
unit. That means the processor can
(ideally) issue and execute
simultaneously 1 load or store, 3
arithmetic and logic instructions, and
1 branch. Thus its maximum issue
width is 5. (Current superscalars have
roughly this capability.)

279CS 701 Fall 2005
©

Considering resource requirements,
we will need at least two cycles to
process the contents of the loop body.
There are no loop-carried
dependencies.
Thus we will estimate this loop’s best
possible Initiation Interval to be 2.
Since the only instruction that can
stall is the root of the dependency
dag, we’ll schedule using estimated
critical path length, which is just the
node’s height in the tree. Hence we’ll
schedule the nodes in the order:
2,3,4,5,6,7,9.
We’ll schedule all instructions in a
legal execution order (respecting
dependencies), and we’ll try to choose
as many instructions as possible to
execute in the same cycle.

280CS 701 Fall 2005
©

Starting with the root, instruction 2,
we schedule it at cycles 1, 3 (=1+II),
5 (=1+2*II):
cycle instruction
1. ld [%o1], %g2
2.
3. ld [%o1], %g2

4.

5. ld [%o1], %g2

No conflicts so far, since each of the
loads starts an independent iteration.

281CS 701 Fall 2005
©

We’ll schedule instruction 3 next. It
must be placed at cycles 3, 5 and 7
since it uses the result of the load.
cycle instruction
1. ld [%o1], %g2
2.
3. add %g3, %g2, %g4
3. ld [%o1], %g2

4.
5. add %g3, %g2, %g4
5. ld [%o1], %g2

6.
7. add %g3, %g2, %g4

Note that in cycles 3 and 5 we use
the current value of %g2 and initiate
a load into %g2.

282CS 701 Fall 2005
©

Instruction 4 is next. It uses the result
of the add we just scheduled, so it is
placed at cycles 4 and 6.
cycle instruction
1. ld [%o1], %g2
2.
3. add %g3, %g2, %g4
3. ld [%o1], %g2

 4. st %g4, [%o0]
5. add %g3, %g2, %g4
5. ld [%o1], %g2

 6. st %g4, [%o0]
7. add %g3, %g2, %g4

283CS 701 Fall 2005
©

Instruction 5 is next. It is anti
dependent on instruction 3, so we can
place it in the same cycles that 3 uses
(3, 5 and 7).
cycle instruction
1. ld [%o1], %g2
2.
3. add %g3, %g2, %g4
3. ld [%o1], %g2

 3. add %g3, 1, %g3

 4. st %g4, [%o0]
5. add %g3, %g2, %g4
5. ld [%o1], %g2

 5. add %g3, 1, %g3

 6. st %g4, [%o0]
7. add %g3, %g2, %g4

 7. add %g3, 1, %g3

284CS 701 Fall 2005
©

Instruction 6 is next. It is anti
dependent on instruction 4, so we can
place it in the same cycles that 4 uses
(4 and 6).
cycle instruction
1. ld [%o1], %g2
2.
3. add %g3, %g2, %g4
3. ld [%o1], %g2

 3. add %g3, 1, %g3

 4. st %g4, [%o0]

 4. add %o0, 4, %o0
5. add %g3, %g2, %g4
5. ld [%o1], %g2

 5. add %g3, 1, %g3

 6. st %g4, [%o0]

 6. add %o0, 4, %o0
7. add %g3, %g2, %g4

 7. add %g3, 1, %g3

285CS 701 Fall 2005
©

Next we place instruction 7. It uses
the result of instruction 5 (%g3), so it
is placed in the cycles following
instruction 5 (4 and 6).
cycle instruction
1. ld [%o1], %g2
2.
3. add %g3, %g2, %g4
3. ld [%o1], %g2

 3. add %g3, 1, %g3

 4. st %g4, [%o0]

 4. add %o0, 4, %o0

 4. cmp %g3, 999
5. add %g3, %g2, %g4
5. ld [%o1], %g2

 5. add %g3, 1, %g3

 6. st %g4, [%o0]

 6. add %o0, 4, %o0

 6. cmp %g3, 999
7. add %g3, %g2, %g4

 7. add %g3, 1, %g3

286CS 701 Fall 2005
©

Finally we place instruction 9. It is
anti dependent on instruction 2 so it
is placed in the same cycles as
instruction 2 (1, 3 and 5).
cycle instruction
1. ld [%o1], %g2

 1. add %o1, 4, %o1
3. add %g3, %g2, %g4
3. ld [%o1], %g2

 3. add %o1, 4, %o1
 3. add %g3, 1, %g3
 4. st %g4, [%o0]
 4. add %o0, 4, %o0
 4. cmp %g3, 999

5. add %g3, %g2, %g4
5. ld [%o1], %g2

 5. add %o1, 4, %o1
 5. add %g3, 1, %g3
 6. st %g4, [%o0]
 6. add %o0, 4, %o0

 6. cmp %g3, 999
7. add %g3, %g2, %g4

 7. add %g3, 1, %g3

287CS 701 Fall 2005
©

We look for a 2 cycles kernel that
contains all 7 instructions of the loop
body that we have scheduled. We also
want a kernel that sets the condition
code (via the cmp) during its first
cycle so that it can be tested during
its second (and final) cycle. Cycles 4
and 5 meet these criteria, and will
form our kernel.
We place the conditional branch just
before the last instruction in cycle 5
(to give the conditional branch a
useful instruction for its delay slot).

288CS 701 Fall 2005
©

We now have:
cycle instruction
1. ld [%o1], %g2

 1. add %o1, 4, %o1
3. add %g3, %g2, %g4
3. ld [%o1], %g2

 3. add %o1, 4, %o1
 3. add %g3, 1, %g3
 4. L: st %g4, [%o0]
 4. add %o0, 4, %o0
 4. cmp %g3, 999

5. add %g3, %g2, %g4
5. ld [%o1], %g2

 5. add %o1, 4, %o1
 5. ble L
 5. add %g3, 1, %g3
 6. st %g4, [%o0]
 6. add %o0, 4, %o0

 6. cmp %g3, 999
7. add %g3, %g2, %g4

 7. add %g3, 1, %g3

289CS 701 Fall 2005
©

A couple of final issues must be dealt
with:
• Does the iteration count need to be

changed?
In this case no, since the final valid
value of i , 999, is used to compute
%g4 in cycle 5, before the loop exits.

• What instructions do we keep as the
loop’s epilogue?
None! Instructions past the kernel
aren’t needed since they are part of
future iterations (past i==999)which
aren’t needed or wanted.

• Note that b[1000] and b[1001] are
“touched” even though they are never
used. This is probably OK as long as
arrays aren’t placed at the very end of
a page or segment.

290CS 701 Fall 2005
©

Our final loop is:
cycle instruction
1. ld [%o1], %g2 !N 0

 1. add %o1, 4, %o1 !N 0

3. add %g3, %g2, %g4 !N 0

3. ld [%o1], %g2 !N 1

 3. add %o1, 4, %o1 !N 1

 3. add %g3, 1, %g3 !N 0

 4. L: st %g4, [%o0] !N 0

 4. add %o0, 4, %o0 !N 0

 4. cmp %g3, 999 !N 0

5. add %g3, %g2, %g4 !N 1

5. ld [%o1], %g2 !N 2

 5. add %o1, 4, %o1 !N 2

 5. ble L !N 0

 5. add %g3, 1, %g3 !N 1

This is very efficient code—we use the
full parallelism of the processor,
executing 5 instructions in cycle 5
and 8 instructions in just 2 cycles. All
resource limitations are respected.

291CS 701 Fall 2005
©

False Dependencies & Loop
Unrolling

A limiting factor in how “tightly” we
can software pipeline a loop is reuse
of registers and the false
dependencies reuse induces.
Consider the following simple
function that copies array elements:
void f (int a[],int b[], int lim) {
 for (i=0;i<lim;i++)
 a[i]=b[i];
}

The loop that is generated takes 3
cycles:
cycle instruction
1. L: ld [%g3+%o1], %g2

 1. addcc %o2, -1, %o2
3. st %g2, [%g3+%o0]
3. bne L

 3. add %g3, 4, %g3

292CS 701 Fall 2005
©

We’d like to tighten the iteration
interval to 2 or less. One cycle is
unlikely, since doing a load and a
store in the same cycle is problematic
(due to a possible dependence
through memory).
If we try to use modulo scheduling,
we can’t put a second copy of the
load in cycle 2 because it would
overwrite the contents of the first
load. A load in cycle 3 will clash with
the store.
The solution is to unroll the loop into
two copies, using different registers
to hold the contents of the load and
the current offset into the arrays.
The use of a “count down” register to
test for loop termination is helpful,

293CS 701 Fall 2005
©

since it allows an easy exit from the
middle of the loop.
With the renaming of the registers
used in the two expanded iterations,
scheduling to “tighten” the loop is
effective.
After expansion we have:
cycle instruction
1. L: ld [%g3+%o1], %g2

 1. addcc %o2, -1, %o2
3. st %g2, [%g3+%o0]
3. beq L2

 3. add %g3, 4, %g4
4. ld [%g4+%o1], %g5

 4. addcc %o2, -1, %o2
6. st %g5, [%g4+%o0]
6. bne L

 6. add %g4, 4, %g3
 L2:

We still have 3 cycles per iteration,
because we haven’t scheduled yet.

294CS 701 Fall 2005
©

Now we can move the increment of
%g3 (into %g4) above other uses of
%g3. Moreover, we can move the load
into %g5 above the store from %g2 (if
the load and store are independent):
cycle instruction
1. L: ld [%g3+%o1], %g2

 1. addcc %o2, -1, %o2
 1. add %g3, 4, %g4

2. ld [%g4+%o1], %g5
3. st %g2, [%g3+%o0]
3. beq L2
3. addcc %o2, -1, %o2
4. st %g5, [%g4+%o0]
4. bne L

 4. add %g4, 4, %g3
 L2:

We can normally test whether
%g4+%o1 and %g3+%o0 can be equal
at compile-time, by looking at the
actual array parameters. (Can &a[0]
== &b[1] ?)

295CS 701 Fall 2005
©

Automatic Instruction
Selection

Besides register allocation and code
scheduling, a code generator must
also do Instruction Selection.

For CISC (Complex Instruction Set
Computer) Architectures, like the
Intel x86, DEC Vax, and many special
purpose processors (like Digital Signal
Processors), instruction selection is
often challenging because so many
choices exist.
In the Vax, for example, one, two and
three address instructions exist. Each
address may be a register, memory
location (with or without indexing),
or an immediate operand.

296CS 701 Fall 2005
©

For RISC (Reduced Instruction Set
Computer) Processors, instruction
formats and addressing modes are far
more limited.
Still, it is necessary to handle
immediate operands, commutative
operands and special case null
operands (add of 0 or multiply of 1).

Moreover, automatic instruction
selection supports automatic
retargeting of a compiler to a new or
extended instruction set.

297CS 701 Fall 2005
©

Tree-Structured Intermediate
Representations

For purposes of automatic code
generation, it is convenient to
translate a source program into a
Low-level, Tree-Structured IR.
This representation exposes
translation details (how locals are
accessed, how conditionals are
translated, etc.) without assuming a
particular instruction set.

In a low-level, tree-structured IR,
leaves are registers or bit-patterns
and internal nodes are machine-level
primitives, like load, store, add, etc.

298CS 701 Fall 2005
©

Example
Let’s look at how
a = b - 1 ;

is represented, where a is a global
integer variable and b is a local
(frame allocated) integer variable.

=

aadr -

* IntLiteral1

+

%fp boffset

299CS 701 Fall 2005
©

Representation of Instructions
Individual instructions can be
represented as trees, rooted by the
operation they implement.
For example:

*

Adr
Reg →

This is an
instruction that
loads a register with
the value at an
absolute address.

Reg →
+

Reg Reg
This is an instruction that adds the
contents of two registers and stores the
sum into a third register.

300CS 701 Fall 2005
©

Using the above pair of instruction
definitions, we can repeatedly match
instructions in the following program
IR:

+

+ *

* *
aadr badr

cadr

+

+ *

*

badr

cadr

⇒

Reg

+ *
cadrReg

+

Reg

*
cadr

+

Reg

+

Reg Reg
Reg

⇒

⇒ ⇒

⇒

301CS 701 Fall 2005
©

Each match of an instruction pattern
can have the side-effect of
generating an instruction:
 ld [a],%R1
 ld [b],%R2
 add %R1,%R2,%R3
 ld [c],%R4
 add %R3,%R4,%R5

Registers can be allocated on-the-fly
as Instructions are generated or
instructions can be generated using
pseudo-registers, with a subsequent
register allocation phase.

Using this view of instruction
selection, choosing instructions
involves finding a cover for an IR tree
using Instruction Patterns.
Any cover is a valid translation.

302CS 701 Fall 2005
©

Tree Parsing vs.
String Parsing

This process of selecting instructions
by matching instruction patterns is
very similar to how strings are parsed
using Context-free Grammars.
We repeatedly identify a sub-tree
that corresponds to an instruction,
and simplify the IR-tree by replacing
the instruction sub-tree with a
nonterminal symbol. The process is
repeated until the IR-tree is reduced
to a single nonterminal.
The theory of reducing an IR-tree
using rewrite rules has been studied
as part of BURS (Bottom-Up Rewrite
Systems) Theory by Pelegri-Llopart
and Graham.

303CS 701 Fall 2005
©

Automatic Instruction
Selection Tools

Just as tools like Yacc and Bison
automatically generate a string parser
from a specification of a Context-free
Grammar, there exist tools that will
automatically generate a tree-parser
from a specification of tree
productions.

Two such tools are BURG (Bottom Up
Rewrite Generator) and IBURG
(Interpreted BURG). Both
automatically generate parsers for
tree grammars using BURS theory.

304CS 701 Fall 2005
©

Least-Cost Tree Parsing
BURG (and IBURG) guarantee to find
a cover for an input tree (if one
exists).
But tree grammars are usually very
ambiguous.
Why?—Because there is usually more
than one code sequence that can
correctly implement a given IR-tree.
To deal with ambiguity, BURG and
IBURG allow each instruction pattern
(tree production) to have a cost.
This cost is typically the size or
execution time for the corresponding
target-machine instructions.

305CS 701 Fall 2005
©

Using costs, BURG (and IBURG) not
only guarantee to find a cover, but
also a least-cost cover.

This means that when a generated
tree-parser is used to cover (and
thereby translate) an IR-Tree, the best
possible code sequence is guaranteed.

If more than one least-cost cover
exists, an arbitrary choice is made.

306CS 701 Fall 2005
©

Using BURG to Specify
Instruction Selection

We’ll need a tree grammar to specify
possible partial covers of a tree.
For simplicity, BURG requires that all
tree productions be of the form

A → b
 (where b is a single terminal symbol)
 or
A → Op(B,C, ...)
 (where Op is a terminal that is a

subtree root and B,C, ... are non-
terminals)

A → Op(B,C, ...)
denotes

Op

B C ...

307CS 701 Fall 2005
©

All tree grammars can be put into this
form by adding new nonterminals and
productions as needed.

We must specify terminal symbols
(leaves and operators in the IR-Tree)
and nonterminals that are used in
tree productions.

308CS 701 Fall 2005
©

Example
A subset of a SPARC instruction
selector.

Terminals
Leaf Nodes

int32 (32 bit integer)
s13 (13 bit signed integer)
r (0-31, a register name)

Operator Nodes
* (unary indirection)
- (binary minus)
+ (binary addition)
= (binary assignment)

309CS 701 Fall 2005
©

Nonterminals
UInt (32 bit unsigned integer)
Reg (Loaded register value)
Imm (Immediate operand)
Adr (Address expression)
Void (Null value)

310CS 701 Fall 2005
©

Productions

Rule
Production Cost SPARC Code

R0 UInt → Int32 0

R1 Reg → r 0

R2 Adr → r 0

R3 0

R4 Imm → s13 0

R5 Reg → s13 1 mov s13,Reg

R6 Reg → int32 2 sethi
%hi(int32),%g1

or %g1,
%lo(int32),Reg

R7 1 sub Reg,Reg,Reg

Adr →
+

Reg Imm

Reg →
−

Reg Reg

311CS 701 Fall 2005
©

R8 1 sub Reg,Imm,Reg

R9 1 ld [Adr],Reg

R10 2 sethi
%hi(UInt),%g1

st Reg,
[%g1+%lo(Uint)]

Rule
Production Cost SPARC Code

Reg →
−

Reg Imm

Reg →
∗

Adr

Void →
=

UInt Reg

312CS 701 Fall 2005
©

Reading Assignment
• Read “Optimal Spilling for CISC

Machines with Few Registers,” by Appel
and George. (Linked from the class Web
page.)

313CS 701 Fall 2005
©

Example
Let’s look at instruction selection for

a = b - 1;

where a is a global int, accessed with
a 32 bit address and b is a local int,
accessed as an offset from the frame
pointer.

=

int32 -

* s13

+

r s13

314CS 701 Fall 2005
©

We match tree nodes bottom-up.
Each node is labeled with the
nonterminals it can be reduced to, the
production used to produce the
nonterminal, and the cost to generate
the node (and its children) from the
nonterminal.
We match leaves first:

=

int32 -

* s13

+

r s13
Imm:R4:0
Reg:R5:1

Imm:R4:0
Reg:R5:1

UInt:R0:0
Reg:R6:2

Reg:R1:0
Adr:R2:0

315CS 701 Fall 2005
©

We now work upward, considering
operators whose children have been
labeled. Again, if an operator can be
generated by a nonterminal, we mark
the operator with the nonterminal,
the production used to generate the
operator, and the total cost (including
the cost to generate all children).
If a nonterminal can generate the
operator using more than one
production, the least-cost derivation
is chosen.
When we reach the root, the
nonterminal with the lowest overall
cost is used to generate the tree.

316CS 701 Fall 2005
©

=

int32 -

* s13

+

r s13
Imm:R4:0
Reg:R5:1

Imm:R4:0
Reg:R5:1

UInt:R0:0
Reg:R6:2

Reg:R1:0
Adr:R2:0

Adr:R3:0

Reg:R9:1

Reg:R8:2

Void:R10:4

317CS 701 Fall 2005
©

Note that once we know the
production used to generate the root
of the tree, we know the productions
used to generate each subtree too:

=

int32 -

* s13

+

r s13
Imm:R4:0

Imm:R4:0

UInt:R0:0

Reg:R1:0

Adr:R3:0

Reg:R9:1

Reg:R8:2

Void:R10:4

318CS 701 Fall 2005
©

We generate code by doing a depth-
first traversal, generating code for a
production after all the production’s
children have been processed.
We need to do register allocation too;
for our example, a simple on-the-fly
generator will suffice.

➊ ld [%fp+b],%l0
➋ sub %l0,1,%l0
➌ sethi %hi(a),%g1
 st %l0,[%g1+%lo(a)]

=

int32 -

* s13

+

r s13
Imm:R4:0

Imm:R4:0

UInt:R0:0

Reg:R1:0

Adr:R3:0

Reg:R9:1

Reg:R8:2

Void:R10:4

➊

➋

➌

319CS 701 Fall 2005
©

Had we translated a slightly
difference expression,

a = b - 1000000;

we would automatically get a
different code sequence (because
1000000 is an int32 rather than an
s13):
 ld [%fp+b],%l0
 sethi %hi(1000000),%g1
 or %g1,%lo(1000000),%l1
 sub %l0,%l1,%l0
 sethi %hi(a),%g1
 st %l0,[%g1+%lo(a)]

320CS 701 Fall 2005
©

Adding New Rules
Since instruction selectors can be
automatically generated, it’s easy to
add “extra” rules that handle
optimizations or special cases.
For example, we might add the
following to handle addition of a left
immediate operand or subtraction of
0 from a register:

Rule
Production Cost SPARC Code

R11 1 add Reg,Imm,Reg

R12 0

Reg →
+

Imm Reg

Reg →
−

Reg Zero

321CS 701 Fall 2005
©

Improving the Speed of
Instruction Selection

As we have presented it, instruction
selection looks rather slow—for each
node in the IR tree, we must match
productions, compare costs, and
select least-cost productions.
Since compilers routinely generate
program with tens or hundreds of
thousands of instructions, doing a lot
of computation to select one
instruction (even if it’s the best
instruction) could be too slow.
Fortunately, this need not be the case.
Instruction selection using BURS can
be made very fast.

322CS 701 Fall 2005
©

Adding States to BURG
We can precompute a set of states
that represent possible labelings on IR
tree nodes. A table of node names
and subtree states then is used to
select a node’s state. Thus labeling
becomes nothing more than repeated
table lookup.

For example, we might create a state
s0 that corresponds to the labeling
{Reg:R1:0, Adr:R2:0}.
A state selection function, label,
defines label(r) = s0. That is,
whenever r is matched as a leaf, it is
to be labeled with s0.
If a node is an operator, label uses the
name of the operator and the labeling

323CS 701 Fall 2005
©

assigned to its children to choose the
operator’s label. For example,

label(+,s0,s1)=s2
says that a + with children labeled as
s0 and s1 is to be labeled as s2.
In theory, that’s all there is to
building a fast instruction selector.
We generate possible labelings,
encode them as states, and table all
combinations of labelings.
But,
how do we know the set of possible
labelings is even finite?
In fact, it isn’t!

324CS 701 Fall 2005
©

Normalizing Costs
It is possible to generate states that
are identical except for their costs.
For example, we might have
 s1 = {Reg:R1:0, Adr:R2:0},
 s2 = {Reg:R1:1, Adr:R2:1},
 s3 = {Reg:R1:2, Adr:R2:2}, etc.

Here an important insight is needed—
the absolute costs included in states
aren’t really essential. Rather relative
costs are what is important. In s1, s2,
and s3, Reg and Adr have the same
cost. Hence the same decision in
choosing between Reg and Adr will be
made in all three states.

325CS 701 Fall 2005
©

We can limit the number of states
needed by normalizing costs within
states so that the lowest cost choice
is always 0, and other costs are
differences (deltas) from the lowest
cost choice.
This observation keeps costs bounded
within states (except for pathologic
cases).
Using additional techniques to
further reduce the number of states
needed, and the time needed to
generate them, fast and compact
BURS instruction selectors are
achievable. See
“Simple and Efficient BURS Table
Generation,” T. Proebsting, 1992 PLDI
Conference.

326CS 701 Fall 2005
©

Example
State Meaning
s0 {Reg:R1:0, Adr:R2:0}
s1 {Imm:R4:0, Reg:R5:1}
s2 {adr:R3:0}
s3 {Reg:R9:0}
s4 {UInt:R0:0}
s5 {Reg:R8:0}
s6 {Void:R10:0}
s7 {Reg:R7:0}

Node Left Child Right Child Result
r s0
s13 s1
int32 s4
+ s0 s1 s2
* s2 s3
- s3 s1 s5
- s1 s3 s7
= s4 s5 s6

327CS 701 Fall 2005
©

We start by looking up the state
assigned to each leaf. We then work
upward, choosing the state of a
parent based on the parent’s kind and
the states assigned to the children.
These are all table lookups, and hence
very fast.
At the root, we select the
nonterminal and production based on
the state assigned to the root (any
entry with 0 cost). Knowing the
production used at the root tells us
the nonterminal used at each child.
Each state has only one entry per
nonterminal, so knowing a node’s
state and the nonterminal used to
generate it immediately tells us the
production used. Hence identifying
the production used for each node is
again very fast.

328CS 701 Fall 2005
©

Step 1 (Label leaves with states):

Step 2 (Propagate states upward):

=

int32 -

* s13

+

r s13

s1

s0 s1

s4

=

int32 -

* s13

+

r s13

s1

s0 s1

s4

s2

s3

s5

s6

329CS 701 Fall 2005
©

Step 3 (Choose production used at
root): R10.
Step 4 (Propagate productions used
downward to children):

=

int32 -

* s13

+

r s13

R4

R1 R4

R0

R3

R9

R8

R10

330CS 701 Fall 2005
©

Code Generation for x86
Machines

The x86 presents several special
difficulties when generating code.
• There are only 8 architecturally

visible registers, and only 6 of these
are allocatable. Deciding what values
to keep in registers, and for how long,
is a difficult, but crucial, decision.

• Operands may be addressed directly
from memory in some instructions.
Such instructions avoid using a
register, but are longer and add to I-
cache pressure.

331CS 701 Fall 2005
©

In “Optimal Spilling for CISC
Machines with Few Registers,” Appel
and George address both of these
difficulties.
They use Integer Programming
techniques to directly and optimally
solve the crucial problem of deciding
which live ranges are to be register-
resident at each program point.
Stores and loads are automatically
added to split long live ranges.
Then a variant of Chaitin-style
register allocation is used to assign
registers to live ranges chosen to be
register-resident.
The presentation of this paper, at the
2001 PLDI Conference, is at
www.cs.wisc.edu/~fischer/
cs701/cisc.spilling.pdf

332CS 701 Fall 2005
©

Reading Assignment
• Read pages 1-30 of “Automatic Program

Optimization,” by Ron Cytron.
(Linked from the class Web page.)

333CS 701 Fall 2005
©

Optimistic Coalescing
Given R allocatable registers, Appel
and George guarantee that no more
than R live ranges are marked as
register resident.
This doesn’t always guarantee that an
R coloring is possible.
Consider the following program
fragment:
x=0;

while (...) {

 y = x+1;

 print(x);

 z = y+1;

 print(y);

 x = z+1;

 print(z);

}

334CS 701 Fall 2005
©

At any given point in the loop body
only 2 variables are live, but 3
registers are needed (x interferes with
y, y interferes with z and z interferes
with x).
We know that we have enough
registers to handle all live ranges
marked as register-resident, but we
may need to “shuffle” register
allocations at certain points.
Thus at one point x might be
allocated R1 and at some other point
it might be placed in R2. Such
shuffling implies register to register
copies, so we’d like to minimize their
added cost.

335CS 701 Fall 2005
©

Appel and George suggest allowing
changes in register assignments
between program points. This is done
by creating multiple variable names
for a live range (x1, x2, x3, ...), one for
each program point. Variables are
connected by assignments between
points. Using coalescing, it is
expected that most of the
assignments will be optimized away.

Using our earlier example, we have
the following code with each variable
expanded into 3 segments (one for
each assignment). Copies of dead
variables are removed to simplify the
example:

336CS 701 Fall 2005
©

x3=0;

while (...) {
 x 1 = x 3;

 y 1 = x 1+1;

 print(x 1);

 y 2 = y 1;

 z 2 = y 2+1;

 print(y 2);

 z 3 = z 2;

 x 3 = z 3+1;

 print(z 3);

}

Now a 2 coloring is possible:
x1: R1, y1: R2
z2: R1, y2: R2
z3: R1, x3: R2
(and only x1 = x3 is retained).

337CS 701 Fall 2005
©

Appel and George found that iterated
coalescing wasn’t effective (too many
copies, most of which are useless).
Instead they recommend Optimistic
Coalescing. The idea is to first do
Chaitin-style reckless coalescing of all
copies, even if colorability is impaired.
Then we do graph coloring register
allocation, using the cost of copies as
the “spill cost.” As we select colors, a
coalesced node that can’t be colored
is simply split back to the original
source and target variables. Since we
always limit the number of live ranges
to the number of colors, we know the
live ranges must be colorable (with
register to register copies sometimes
needed).

338CS 701 Fall 2005
©

Using our earlier example, we initially
merge x1 and x3, y1 and y2, z2 and
z3. We already know this can’t be
colored with two registers. All three
pairs have the same costs, so we
arbitrarily stack x1-x3, then y1-y2

and finally z2-z3.
When we unstack, z2-z3 gets R1, and
y1-y2 gets R2. x1-x3 must be split
back into x1 and x3. x1 interferes
with y1-y2 so it gets R1. x3 interferes
with z2-z3 so it gets R2, and coloring
is done.

x1: R1, y1: R2
z2: R1, y2: R2
z3: R1, x3: R2

339CS 701 Fall 2005
©

Data Flow Frameworks
• Data Flow Graph:

Nodes of the graph are basic blocks or
individual instructions.
Arcs represent flow of control.
Forward Analysis:

Information flow is the same
direction as control flow.

Backward Analysis:
Information flow is the opposite
direction as control flow.

Bi-directional Analysis:
Information flow is in both
directions. (Not too common.)

340CS 701 Fall 2005
©

• Meet Lattice
Represents solution space for the data
flow analysis.

• Meet operation
(And, Or, Union, Intersection, etc.)
Combines solutions from predecessors
or successors in the control flow
graph.

⊥

T

.

341CS 701 Fall 2005
©

• Transfer Function
Maps a solution at the top of a node
to a solution at the end of the node
(forward flow)
or
Maps a solution at the end of a node
to a solution at the top of the node
(backward flow).

342CS 701 Fall 2005
©

Example: Available Expressions
This data flow analysis determines
whether an expression that has been
previously computed may be reused.

Available expression analysis is a
forward flow problem—computed
expression values flow forward to
points of possible reuse.

The best solution is True—the
expression may be reused.

The worst solution is False—the
expression may not be reused.

343CS 701 Fall 2005
©

The Meet Lattice is:

As initial values, at the top of the
start node, nothing is available.
Hence, for a given expression,
AvailIn(b0) = F

We choose an expression, and
consider all the variables that
contribute to its evaluation.
Thus for e1=a+b-c, a, b and c are e1’s
operands.

T (Expression is Available)

F (Expression is Not Available)

344CS 701 Fall 2005
©

The transfer function for e1 in block b
is defined as:
If e1 is computed in b after any

assignments to e1’s operands in b
Then AvailOut(b) = T
Elsif any of e1’s operands are changed
 after the last computation of e1 or
 e1’s operands are changed without
 any computation of e1
Then AvailOut(b) = F
Else AvailOut(b) = AvailIn(b)

The meet operation (to combine
solutions) is:

 AvailIn(b) = AND
p ∈ Pred(b)

 AvailOut(p)

345CS 701 Fall 2005
©

Example: e1=v+w

v=9 y=v+w

w=5

x=v+w

z=v+w

v=2stop

F

F

F

F

T

T

T

F

346CS 701 Fall 2005
©

Circularities Require Care
Since data flow values can depend on
themselves (because of loops), care is
required in assigning initial “guesses”
to unknown values. Consider

If the flow value on the loop
backedge is initially set to false, it
can never become true. (Why?)
Instead we should use True, the
identity for the AND operation.

z=v+w

T

T

347CS 701 Fall 2005
©

v=9 y=v+w

w=5

x=v+w

z=v+w

v=2stop

F

F

F

F

T

T

T

F

F F

F

F

T

T
T

T T

F

348CS 701 Fall 2005
©

Very Busy Expressions
This is an interesting variant of
available expression analysis.
An expression is very busy at a point if
it is guaranteed that the expression
will be computed at some time in the
future.
Thus starting at the point in question,
the expression must be reached
before its value changes.

Very busy expression analysis is a
backward flow analysis, since it
propagates information about future
evaluations backward to “earlier”
points in the computation.

349CS 701 Fall 2005
©

The meet lattice is:

As initial values, at the end of all exit
nodes, nothing is very busy. Hence,
for a given expression,
VeryBusyOut(blast) = F

T (Expression is Very Busy)

F (Expression is Not Very Busy)

350CS 701 Fall 2005
©

The transfer function for e1 in block b
is defined as:
If e1 is computed in b before any of

its operands
Then VeryBusyIn(b) = T
Elsif any of e1’s operands are changed
 before e1 is computed
 Then VeryBusyIn(b) = F
Else VeryBusyIn(b) = VeryBusyOut(b)

The meet operation (to combine
solutions) is:

 VeryBusyOut(b) = AND
s ∈ Succ(b)

VeryBusyIn(s)

351CS 701 Fall 2005
©

Example: e1=v+w

stop

v=2

w=5

v=3 x=v+w

u=v+w

F

F

F

F

T

T

352CS 701 Fall 2005
©

stop

v=2

w=5

v=3 x=v+w

u=v+w

F

F

F

F

T

T

F
F

F
F

T

T

T

F

Move v+w
here?

Or here?

353CS 701 Fall 2005
©

Identifying Identical
Expressions

We can hash expressions, based on
hash values assigned to operands and
operators. This makes recognizing
potentially redundant expressions
straightforward.
For example, if H(a) = 10, H(b) = 21
and H(+) = 5, then (using a simple
product hash),
H(a+b) = 10×21×5 Mod TableSize

354CS 701 Fall 2005
©

Effects of Aliasing and Calls
When looking for assignments to
operands, we must consider the
effects of pointers, formal parameters
and calls.
An assignment through a pointer
(e.g, *p = val) kills all expressions
dependent on variables p might point
too. Similarly, an assignment to a
formal parameter kills all expressions
dependent on variables the formal
might be bound to.
A call kills all expressions dependent
on a variable changeable during the
call.
Lacking careful alias analysis,
pointers, formal parameters and calls
can kill all (or most) expressions.

355CS 701 Fall 2005
©

Very Busy Expressions and
Loop Invariants

Very busy expressions are ideal
candidates for invariant loop motion.
If an expression, invariant in a loop, is
also very busy, we know it must be
used in the future, and hence
evaluation outside the loop must be
worthwhile.

356CS 701 Fall 2005
©

for (...) {

if (...)

 a=b+c;

else a=d+c;}

for (...) {

if (a>b+c)

 x=1;

else x=0;}

t=b+c t=b+c

a=b+c a=d+c

a>b+c

T F

F

F

F T

b+c is not very busy
at loop entrance

b+c is very busy
at loop entrance

357CS 701 Fall 2005
©

Reaching Definitions
We have seen reaching definition
analysis formulated as a set-valued
problem. It can also be formulated on
a per-definition basis.
That is, we ask “What blocks does a
particular definition to v reach?”
This is a boolean-valued, forward
flow data flow problem.

358CS 701 Fall 2005
©

Initially, DefIn(b0) = false.

For basic block b:
DefOut(b) =
 If the definition being analyzed is
 the last definition to v in b
 Then True
Elsif any other definition to v occurs

 in b
 Then False
 Else DefIn(b)
The meet operation (to combine
solutions) is:

 DefIn(b) =

To get all reaching definition, we do a
series of single definition analyses.

OR
p ∈ Pred(b)

 DefOut(p)

359CS 701 Fall 2005
©

Live Variable Analysis
This is a boolean-valued, backward
flow data flow problem.
Initially, LiveOut(blast) = false.

For basic block b:
LiveIn(b) =
 If the variable is used before it is
 defined in b
 Then True
 Elsif it is defined before it is used
 in b
 Then False
 Else LiveOut(b)
The meet operation (to combine
solutions) is:

 LiveOut(b) = OR
s ∈ Succ(b)

 LiveIn(s)

360CS 701 Fall 2005
©

Bit Vectoring Data Flow
Problems

The four data flow problems we have
just reviewed all fit within a single
framework.
Their solution values are Booleans
(bits).
The meet operation is And or OR.
The transfer function is of the general
form
 Out(b) = (In(b) - Killb) U Genb

or
 In(b) = (Out(b) - Killb) U Genb

where Killb is true if a value is “killed”
within b and Genb is true if a value is
“generated” within b.

361CS 701 Fall 2005
©

In Boolean terms:
Out(b) = (In(b) AND Not Killb) OR Genb

or
In(b) = (Out(b) AND Not Killb) OR Genb

An advantage of a bit vectoring data
flow problem is that we can do a series
of data flow problems “in parallel” using
a bit vector.

Hence using ordinary word-level ANDs,
ORs, and NOTs, we can solve 32 (or 64)
problems simultaneously.

362CS 701 Fall 2005
©

Example
 Do live variable analysis for u and v,
using a 2 bit vector:

We expect no variable to be live at
the start of b0. (Why?)

v=1

u=0

a=u v=2

print(u,v)

Gen=0,0
Kill=0,1

Gen=0,0

Gen=1,0 Gen=0,0

Gen=1,1

Kill=1,0

Kill=0,0 Kill=0,1

Kill=0,1

Live=0,0

Live=0,1

Live=1,1 Live=1,0

Live=1,1

363CS 701 Fall 2005
©

Reading Assignment
• Read pages 31-62 of “Automatic

Program Optimization,” by Ron Cytron.
(Linked from the class Web page.)

364CS 701 Fall 2005
©

Depth-First Spanning Trees
Sometimes we want to “cover” the
nodes of a control flow graph with an
acyclic structure.
This allows us to visit nodes once,
without worrying about cycles or
infinite loops.
Also, a careful visitation order can
approximate forward control flow
(very useful in solving forward data
flow problems).
A Depth-First Spanning Tree (DFST) is
a tree structure that covers the nodes
of a control flow graph, with the start
node serving as root of the DFST.

365CS 701 Fall 2005
©

Building a DFST
We will visit CFG nodes in depth-first
order, keeping arcs if the visited node
hasn’t be reached before.
To create a DFST, T, from a CFG, G:

1. T ← empty tree
2. Mark all nodes in G as “unvisited.”
3. Call DF(start node)

DF (node) {
1. Mark node as visited.
2. For each successor, s, of node in G:

If s is unvisited
 (a) Add node → s to T
 (b) Call DF(s)

366CS 701 Fall 2005
©

Example
A

B

C

D

E F

G

H

I J

Visit order is A, B, C, D, E, G, H, I, J, F

367CS 701 Fall 2005
©

The DFST is

A

B

C

D

E F

G

H

I J

368CS 701 Fall 2005
©

Categorizing Arcs using a
DFST

Arcs in a CFG can be categorized by
examining the corresponding DFST.
An arc A→B in a CFG is
(a) An Advancing Edge if B is a proper
 descendent of A in the DFST.
(b) A Retreating Edge if B is an
 ancestor of A in the DFST.
 (This includes the A→A case.)
(c) A Cross Edge if B is neither a
 descendent nor an ancestor of A
 in the DFST.

369CS 701 Fall 2005
©

Example
A

B

C

D

E F

G

H

I J

a
a

a

a

a a

a

a

a a

r

r

r

r

c

370CS 701 Fall 2005
©

Depth-First Order
Once we have a DFST, we can label
nodes with a Depth-First Ordering
(DFO).
Let i = the number of nodes in a CFG
(= the number of nodes in its DFST).
DFO(node) {
 For (each successor s of node) do
 DFO(s);
 Mark node with i;
 i--;
}

371CS 701 Fall 2005
©

Example
The number of nodes = 10.

A

B

C

D

E F

G

H

I J

1

2

3

4

6 5

7

8

10 9

372CS 701 Fall 2005
©

Application of Depth-First
Ordering
• Retreating edges (a necessary component

of loops) are easy to identify:
 a→b is a retreating edge if and only if
 dfo(b) ≤ dfo(a)

• A depth-first ordering in an excellent
visit order for solving forward data flow
problems. We want to visit nodes in
essentially topological order, so that all
predecessors of a node are visited (and
evaluated) before the node itself is.

373CS 701 Fall 2005
©

Dominators
A CFG node M dominates N
(M dom N) if and only if all paths
from the start node to N must pass
through M.
A node trivially dominates itself.
Thus (N dom N) is always true.

A CFG node M strictly dominates N
(M sdom N) if and only if
(M dom N) and M ≠ N.
A node can’t strictly dominates itself.
Thus (N sdom N) is never true.

374CS 701 Fall 2005
©

A CFG node may have many
dominators.

Node F is dominated by F, E, D and A.

A

B C

D

E

F

375CS 701 Fall 2005
©

Immediate Dominators
If a CFG node has more than one
dominator (which is common), there
is always a unique “closest”
dominator called its immediate
dominator.
(M idom N) if and only if

(M sdom N) and
(P sdom N) ⇒ (P dom M)

To see that an immediate dominator
always exists (except for the start
node) and is unique, assume that
node N is strictly dominated by M1,
M2, ..., Mp, P ≥ 2.

By definition, M1, ..., Mp must appear
on all paths to N, including acyclic
paths.

376CS 701 Fall 2005
©

Look at the relative ordering among
M1 to Mp on some arbitrary acyclic
path from the start node to N.
Assume that Mi is “last” on that path
(and hence “nearest” to N).

If, on some other acyclic path,
Mj ≠ Mi is last, then we can shorten
this second path by going directly
from Mi to N without touching any
more of the M1 to Mp nodes.

But, this totally removes Mj from the
path, contradicting the assumption
that (Mj sdom N).

377CS 701 Fall 2005
©

Dominator Trees
Using immediate dominators, we can
create a dominator tree in which A→B
in the dominator tree if and only if
(A idom B).

A

B C

D

E

F

Start

End

A

B C D

E

F

Start

End

Control Flow Graph

Dominator Tree

378CS 701 Fall 2005
©

Note that the Dominator Tree of a
CFG and its DFST are distinct trees
(though they have the same nodes).

A

B C

D

E

F

Start

End

A

B C D

E

F

Start

End

Dominator Tree

Depth-First Spanning Tree

379CS 701 Fall 2005
©

A Dominator Tree is a compact and
convenient representation of both the
dom and idom relations.
A node in a Dominator Tree
dominates all its descendents in the
tree, and immediately dominates all
its children.

380CS 701 Fall 2005
©

Computing Dominators
Dominators can be computed as a
Set-valued Forward Data Flow
Problem.
If a node N dominates all of node M’s
predecessors, then N appears on all
paths to M. Hence (N dom M).
Similarly, if M doesn’t dominate all of
M’s predecessors, then there is a path
to M that doesn’t include M. Hence
¬(N dom M).
These observations give us a “data
flow equation” for dominator sets:

dom(N) = {N} U ∩ dom(M)
M ∈ Pred(N)

381CS 701 Fall 2005
©

The analysis domain is the lattice of
all subsets of nodes. Top is the set of
all nodes; bottom is the empty set.
The ordering relation is subset.

The meet operation is intersection.

The Initial Condition is that
 DomIn(b0) = φ

DomOut(b) = DomIn(b) U {b}

DomIn(b) = ∩ DomOut(c)
c ∈ Pred(b)

382CS 701 Fall 2005
©

Loops Require Care
Loops in the Control Flow Graph
induce circularities in the Data Flow
equations for Dominators. In

we have the rule dom(B) =
DomOut(B) =

 DomIn(B) U {B} =
 {B} U (DomOut(B) ∩ DomOut(A))
If we choose DomOut(B) = φ initially,
we get DomOut(B) =
{B} U (φ ∩ DomOut(A)) = {B}
which is wrong.

A

B

C

383CS 701 Fall 2005
©

Instead, we should use the Universal
Set (of all nodes) which is the identity
for ∩.
Then we get DomOut(B) =
{B} U ({all nodes} ∩ DomOut(A)) =
{B} U DomOut(A)
 which is correct.

384CS 701 Fall 2005
©

A Worklist Algorithm for
Dominators

The data flow equations we have
developed for dominators can be
evaluated using a simple Worklist
Algorithm.
Initially, each node’s dominator set is
set to the set of all nodes. We add the
start node to our worklist.
For each node on the worklist, we
reevaluate its dominator set. If the set
changes, the updated dominator set is
used, and all the node’s successors are
added to the worklist (so that the
updated dominator set can be
propagated).

385CS 701 Fall 2005
©

The algorithm terminates when the
worklist becomes empty, indicating
that a stable solution has been found.

Compute Dominators(){
 For (each n ∈ NodeSet)
 Dom(n) = NodeSet
 WorkList = {StartNode}
 While (WorkList ≠ φ) {
 Remove any node Y from WorkList

 If New ≠ Dom(Y) {
 Dom(Y) = New
 For (each Z ∈ Succ(Y))
 WorkList = WorkList U {Z}
}}}

New = {Y} U ∩ Dom(X)
X ∈ Pred(Y)

386CS 701 Fall 2005
©

Example

Initially the WorkList = {Start}.
Be careful when Pred(Node) = φ.

A

B C

D

E

F

Start

End

ALL

ALL

ALL ALL

ALL

ALL

ALL

ALL

387CS 701 Fall 2005
©

A

B C

D

E

F

Start

End

A

B C D

E

F

Start

End

Control Flow Graph

Dominator Tree

{start}

{start,A}

{start,A,B} {start,A,C}

{start,A,D}

{start,A,D,E}

{start,A,D,E,F}

{start,A,D,E,F,End}

388CS 701 Fall 2005
©

Postdominance
A block Z postdominates a block Y
(Z pdom Y) if and only if all paths
from Y to an exit block must pass
through Z. Notions of immediate
postdominance and a postdominator
tree carry over.
Note that if a CFG has a single exit
node, then postdominance is
equivalent to dominance if flow is
reversed (going from the exit node to
the start node).

389CS 701 Fall 2005
©

A

B C

D

E

F

Start

End

D

B C A

F

E

End

Start

Control Flow Graph

Postdominator Tree

390CS 701 Fall 2005
©

Dominance Frontiers
Dominators and postdominators tell
us which basic block must be
executed prior to, of after, a block N.

It is interesting to consider blocks
“just before” or “just after” blocks
we’re dominated by, or blocks we
dominate.

The Dominance Frontier of a basic
block N, DF(N), is the set of all blocks
that are immediate successors to
blocks dominated by N, but which
aren’t themselves strictly dominated
by N.

391CS 701 Fall 2005
©

DF(N) =
 {Z | M→Z & (N dom M) &

¬(N sdom Z)}
The dominance frontier of N is the set
of blocks that are not dominated N
and which are “first reached” on
paths from N.

392CS 701 Fall 2005
©

Example

Block A B C D E F

Dominance
Frontier

φ {F} {E} {E} {F} φ

B

C D

E

F

A

B

C D E

A

Control Flow Graph

Dominator Tree

F

393CS 701 Fall 2005
©

A block can be in its own Dominance
Frontier:

Here, DF(A) = {A}
Why? Reconsider the definition:
DF(N) =
 {Z | M→Z & (N dom M) &

¬(N sdom Z)}
Now B is dominated by A and B→A.
Moreover, A does not strictly
dominate itself. So, it meets the
definition.

B

C

A

394CS 701 Fall 2005
©

Postdominance Frontiers
The Postdominance Frontier of a basic
block N, PDF(N), is the set of all
blocks that are immediate
predecessors to blocks postdominated
by N, but which aren’t themselves
postdominated by N.

PDF(N) =
 {Z | Z→M & (N pdom M) &

¬(N pdom Z)}
The postdominance frontier of N is
the set of blocks closest to N where a
choice was made of whether to reach
N or not.

395CS 701 Fall 2005
©

Example

Block A B C D E F

Postdominance
Frontier

φ {A} {B} {B} {A} φ

B

C D

E

F

A

E

B C D

F

Control Flow Graph

Postominator Tree

A

396CS 701 Fall 2005
©

Control Dependence
Since CFGs model flow of control, it
is useful to identify those basic blocks
whose execution is controlled by a
branch decision made by a
predecessor.
We say Y is control dependent on X if,
reaching X, choosing one out arc will
force Y to be reached, while choosing
another arc out of X allows Y to be
avoided.
Formally, Y is control dependent on X
if and only if,
(a) Y postdominates a successor of X.
 (b) Y does not postdominate all

successors of X.
X is the most recent block where a
choice was made to reach Y or not.

397CS 701 Fall 2005
©

Control Dependence Graph
We can build a Control Dependence
Graph that shows (in graphical form)
all Control Dependence relations.
(A Block can be Control Dependent on
itself.)

398CS 701 Fall 2005
©

What happened to H in the CD Graph?

C

D E

F

G

B

F

C D E

B

Control Flow Graph

Postominator Tree

A

H

H

G A

A

B G

C F

D E

Control Dependence
Graph

399CS 701 Fall 2005
©

Let’s reconsider the CD Graph:

Blocks C and F, as well as D and E,
seem to have the same control
dependence relations with their
parent. But this isn’t so!
C and F are control equivalent, but D
and E are mutually exclusive!

C

D E

F

G

B

Control Flow Graph

A

H

A

B G

C F

D E

Control Dependence
Graph

400CS 701 Fall 2005
©

Improving the Representation
of Control Dependence

We can label arcs in the CFG and the
CD Graph with the condition (T or F
or some switch value) that caused the
arc to be selected for execution.
This labeling then shows the
conditions that lead to the execution
of a given block.
To allow the exit block to appear in
the CD Graph, we can also add
“artificial” start and exit blocks,
linked together.

401CS 701 Fall 2005
©

Now C and F have the same Control
Dependence relations—they are part
of the same extended basic block.
But D and E aren’t identically control
dependent. Similarly, A and H are
control equivalent, as are B and G.

C

D E

F

G

B

Control Flow Graph

A

H

A

B G

C F

D E

Control Dependence
Graph

Start

Exit

T

T

T

T

F F

F

F

Start

H

T T

TT

T

T
T

TF

402CS 701 Fall 2005
©

Data Flow Frameworks
Revisited

Recall that a Data Flow problem is
characterized as:
(a) A Control Flow Graph
(b) A Lattice of Data Flow values
(c) A Meet operator to join solutions
 from Predecessors or Successors
(d) A Transfer Function
 Out = fb(In) or In = fb(Out)

403CS 701 Fall 2005
©

Value Lattice
The lattice of values is usually a meet
semilattice defined by:
A: a set of values
T and ⊥ (“top” and “bottom”):

distinguished values in the lattice
≤: A reflexive partial order relating

values in the lattice
∧: An associative and commutative

meet operator on lattice values

404CS 701 Fall 2005
©

Lattice Axioms
The following axioms apply to the
lattice defined by A, T, ⊥, ≤ and ∧:
 a ≤ b ⇔ a ∧ b = a
 a ∧ a = a
 (a ∧ b) ≤ a
 (a ∧ b) ≤ b
 (a ∧ T) = a
 (a ∧ ⊥) = ⊥

405CS 701 Fall 2005
©

Monotone Transfer Function
Transfer Functions, fb:L → L (where L
is the Data Flow Lattice) are normally
required to be monotone.
That is x ≤ y ⇒ fb(x) ≤ fb(y).

This rule states that a “worse” input
can’t produce a “better” output.
Monotone transfer functions allow us
to guarantee that data flow solutions
are stable.
If we had fb(T) = ⊥ and fb(⊥)=T,
then solutions might oscillate
between T and ⊥ indefinitely.
Since ⊥ ≤ T, fb(⊥) should be ≤ fb(T).
But fb(⊥) = T which is not ≤ fb(T) =
⊥. Thus fb isn’t monotone.

406CS 701 Fall 2005
©

Dominators fit the Data Flow
Framework

Given a set of Basic Blocks, N, we
have:

A is 2N (all subsets of Basic Blocks).
T is N.
⊥ is φ.
a ≤ b ≡ a ⊆ b.
fZ(in) = In ∪ {Z}

∧ is ∩ (set intersection).

407CS 701 Fall 2005
©

The required axioms are satisfied:
 a ⊆ b ⇔ a ∩ b = a
 a ∩ a = a
 (a ∩ b) ⊆ a
 (a ∩ b) ⊆ b
 (a ∩ N) = a
 (a ∩ φ) = φ

Also fZ is monotone since

a ⊆ b ⇒ a ∪ {Z} ⊆ b ∪ {Z} ⇒
fZ(a) ⊆ fZ(b)

408CS 701 Fall 2005
©

Constant Propagation
We can model Constant Propagation
as a Data Flow Problem. For each
scalar integer variable, we will
determine whether it is known to
hold a particular constant value at a
particular basic block.
The value lattice is

T represents a variable holding a
constant, whose value is not yet
known.
i represents a variable holding a
known constant value.

T

⊥

..., −2, −1, 0, 1, 2, ...

409CS 701 Fall 2005
©

⊥ represents a variable whose value is
non-constant.

This analysis is complicated by the
fact that variables interact, so we
can’t just do a series of independent
one variable analyses.

Instead, the solution lattice will
contain functions (or vectors) that
map each variable in the program to
its constant status (T, ⊥, or some
integer).
Let V be the set of all variables in a
program.

410CS 701 Fall 2005
©

Let t : V → N U {T,⊥}
t is the set of all total mappings from
V (the set of variables) to N U {T,⊥}
(the lattice of “constant status”
values).
For example, t1=(T,6,⊥) is a mapping
for three variables (call them A, B and
C) into their constant status. t1 says
A is considered a constant, with value
as yet undetermined. B holds the
value 6, and C is non-constant.
We can create a lattice composed of t
functions:
tT(V) = T (∀ V) (tT=(T,T,T, ...)

t⊥(V) = ⊥ (∀ V) (t⊥=(⊥,⊥,⊥, ...)

411CS 701 Fall 2005
©

ta ≤ tb ⇔ ∀v ta(v) ≤ tb(v)

Thus (1,⊥) ≤ (T,3)
 since 1 ≤ T and ⊥ ≤ 3.
The meet operator ∧ is applied
componentwise:
ta∧tb = tc
 where ∀v tc(v) = ta(v) ∧ tb(b)

Thus (1,⊥) ∧ (T,3) = (1,⊥)
 since 1 ∧ T = 1 and ⊥ ∧ 3 = ⊥.

412CS 701 Fall 2005
©

The lattice axioms hold:
 ta ≤ tb ⇔ ta ∧ tb = ta (since this

axiom holds for each component)
 ta ∧ ta = ta (trivially holds)

 (ta ∧ tb) ≤ ta (per variable def of ∧)

 (ta ∧ tb) ≤ tb (per variable def of ∧)

 (ta ∧ tT) = ta (true for all
components)

 (ta ∧ t⊥) = t⊥ (true for all
components)

413CS 701 Fall 2005
©

The Transfer Function
Constant propagation is a forward
flow problem, so Cout = fb(Cin)

Cin is a function, t(v), that maps
variables to T,⊥, or an integer value
fb(t(v)) is defined as:

(1) Initially, let t’(v)=t(v) (∀v)
(2) For each assignment statement
 v = e(w1,w2,...,wn)

 in b, in order of execution, do:
 If any t’(wi) = ⊥ (1≤i≤n)
 Then set t’(v) = ⊥ (strictness)
 Elsif any t’(wi) = T (1≤i≤n)
 Then set t’(v) = T (delay eval of v)
 Else t’(v) = e(t’(w1),t’(w2),...)
(3) Cout = t’(v)

414CS 701 Fall 2005
©

Note that in valid programs, we don’t
use uninitialized variables, so
variables mapped to T should only
occur prior to initialization.
Initially, all variables are mapped to T,
indicating that initially their constant
status is unknown.

415CS 701 Fall 2005
©

Example

a=1
b=2

b=a+1 b=a+2

b=b-1

T, T

1,21,2

1,2 1,3

1,⊥

1,⊥
1,⊥

416CS 701 Fall 2005
©

Distributive Functions
From the properties of ∧ and f’s
monotone property, we can show that
 f(a∧b) ≤ f(a) ∧ f(b)
To see this note that
 a∧b ≤ a, a∧b ≤ b ⇒
f(a∧b) ≤ f(a), f(a∧b) ≤ f(b) (*)
Now we can establish that
 x≤y, x≤z ⇒ x ≤ y∧z (**)
To see that (**) holds, note that
 x≤y ⇒ x∧y = x
 x≤z ⇒ x∧z = x
 (y∧z)∧x ≤ y∧z
 (y∧z)∧x = (y∧z)∧(x∧x) =
 (y∧x)∧(z∧x) = x∧x = x
 Thus x ≤ y∧z, establishing (**).

417CS 701 Fall 2005
©

Now substituting f(a∧b) for x,
 f(a) for y and f(b) for z in (**) and
using (*) we get
 f(a∧b) ≤ f(a) ∧ f(b).

Many Data Flow problems have flow
equations that satisfy the distributive
property:
f(a∧b) = f(a) ∧ f(b)
For example, in our formulation of
dominators:
Out = fb(In) = In U {b}

where

In = ∩ Out(p)
p ∈ Pred(b)

418CS 701 Fall 2005
©

In this case, ∧ = ∩.

Now fb(S1∩S2) = (S1∩S2) U {b}

Also, fb(S1)∩fb(S2) =

 (S1 U {b}) ∩ (S2 U {b}) =
 (S1∩S2) U {b}

So dominators are distributive.

419CS 701 Fall 2005
©

Not all Data Flow Problems
are Distributive

Constant propagation is not
distributive.
Consider the following (with variables
(x,y,z)):

Now f(t)=t’ where
t’(y) = t(y), t’(z) = t(z),
t’(x) = if t(y)=⊥ or t(z) = ⊥
 then ⊥
 elseif t(y)=T or t(z) =T
 then T
 else t(y)+t(z)

x=y+z

t1 = (T,1,3) t2=(T,2,2)

420CS 701 Fall 2005
©

Now f(t1∧t2) = f(T,⊥,⊥) = (⊥,⊥,⊥)

f(t1) = (4,1,3)

f(t2) = (4,2,2)

f(t1)∧f(t2) = (4,⊥,⊥) ≥ (⊥,⊥,⊥)

421CS 701 Fall 2005
©

Why does it Matter if a Data
Flow Problem isn’t
Distributive?

Consider actual program execution
paths from b0 to (say) bk.

One path might be b0,bi1,bi2,...,bin
where bin=bk.

At bk the Data Flow information we
want is
fin(...fi2(fi1(f0(T)))...) ≡ f(b0,b1,...,bin)

On a different path to bk, say
b0,bj1,bj2,...,bjm, where bjm=bk

the Data Flow result we get is
fjm(...fj2(fj1(f0(T)))...) ≡

f(b0,bj1,...,bjm).

422CS 701 Fall 2005
©

Since we can’t know at compile time
which path will be taken, we must
combine all possible paths:

This is the meet over all paths (MOP)
solution. It is the best possible static
solution. (Why?)
As we shall see, the meet over all
paths solution can be computed
efficiently, using standard Data Flow
techniques, if the problem is
Distributive.
Other, non-distributive problems (like
Constant Propagation) can’t be solved
as precisely.
Explicitly computing and meeting all
paths is prohibitively expensive.

∧
p paths to bk

f(p)
∈ all

423CS 701 Fall 2005
©

Conditional Constant
Propagation

We can extend our Constant
Propagation Analysis to determine
that some paths in a CFG aren’t
executable. This is Conditional
Constant Propagation.
Consider

i = 1;

 if (i > 0)
 j = 1;
 else j = 2;

Conditional Constant Propagation can
determine that the else part of the if
is unreachable, and hence j must be
1.

424CS 701 Fall 2005
©

The idea behind Conditional Constant
Propagation is simple. Initially, we
mark all edges out of conditionals as
“not reachable.”
Starting at b0, we propagate constant
information only along edges
considered reachable.
When a boolean expression b(v1,v2,...)
controls a conditional branch, we
evaluate b(v1,v2,...) using the t(v)
mapping that identifies the “constant
status” of variables.
If t(vi)=T for any vi, we consider all
out edges unreachable (for now).
Otherwise, we evaluate b(v1,v2,...)
using t(v), getting true, false or ⊥.

425CS 701 Fall 2005
©

Note that the short-circuit properties
of boolean operators may yield true
or false even if t(vi)=⊥ for some vi.

If b(v1,v2,...) is true or false, we mark
only one out edge as reachable.
Otherwise, if b(v1,v2,...) evaluates to
⊥, we mark all out edges as reachable.
We propagate constant information
only along reachable edges.

426CS 701 Fall 2005
©

Example
i = 1;
done = 0;

while (i > 0 && ! done) {

 if (i == 1)
 done = 1;
 else i = i + 1;
}

i = 1;
done = 0;

i > 0 &&
! done

i == 1

done = 1;i = i + 1;

TF

F

T

(T,T) = (i,done)

427CS 701 Fall 2005
©

Pass 1:

i = 1;
done = 0;

i > 0 &&
! done

i == 1

done = 1;i = i + 1;

TF

F

T

(T,T) = (i,done)

(1,0)

(1,0)

(1,0)

(1,1)

(1,1)

428CS 701 Fall 2005
©

Pass 2:

i = 1;
done = 0;

i > 0 &&
! done

i == 1

done = 1;i = i + 1;

TF

F

T

(T,T) = (i,done)

(1,0)

(1,⊥)

(1,⊥)

(1,1)

(1,1)

(1,⊥)

429CS 701 Fall 2005
©

Reading Assignment
• Read pages 63-end of “Automatic

Program Optimization,” by Ron Cytron.
(Linked from the class Web page.)

430CS 701 Fall 2005
©

Iterative Solution of Data Flow
Problems

This algorithm will use DFO
numbering to determine the order in
which blocks are visited for
evaluation. We iterate over the nodes
until convergence.

431CS 701 Fall 2005
©

EvalDF{
 For (all n ∈ CFG) {
 soln(n) = T
 ReEval(n) = true }
 Repeat
 LoopAgain = false
 For (all n ∈ CFG in DFO order){
 If (ReEval(n)) {
 ReEval(n) = false
 OldSoln = soln(n)
 In =

 soln(n) = fn(In)
 If (soln(n) ≠ OldSoln) {
 For (all s ∈ Succ(n)) {
 ReEval(s) = true
 LoopAgain = LoopAgain OR

 IsBackEdge(n,s)
 } } } }
 Until (! LoopAgain)
}

∧
p ∈ Pred(n)

 soln(p)

432CS 701 Fall 2005
©

Example: Reaching Definitions

x ←

x ←

←x

0

1

2 3

4

5 6

7

8

433CS 701 Fall 2005
©

We’ll do this as a set-valued problem
(though it really is just three bit-
valued analyses, since each analysis is
independent).
L is the power set of Basic Blocks
∧ is set union
T is φ; ⊥ is the set of all blocks
a ≤ b ≡ b ⊆ a
f3(in) = {3}
f6(in) = {6}
f7(in) = {7}
For all other blocks, fb(in) = in

434CS 701 Fall 2005
©

We’ll track soln and ReEval across
multiple passes

0 1 2 3 4 5 6 7 8 Loop-
Again

Initial φ φ φ φ φ φ φ φ φ true

true true true true true true true true true

Pass 1 φ φ φ {3} {3} {3} {6} {7} {7} true

false true false false true false false false false

Pass 2 φ {3} {3} {3} {3,7} {3,7} {6} {7} {7} true

false true false false false false false false false

Pass 3 φ {3,7} {3,7} {3} {3,7} {3,7} {6} {7} {7} false

false false false false false false false false false

435CS 701 Fall 2005
©

Properties of Iterative Data
Flow Analysis
• If the height of the lattice (the

maximum distance from T to ⊥) is finite,
then termination is guaranteed.
Why?
Recall that transfer functions are
assumed monotone (a ≤ b ⇒ f(a) ≤ f(b)).
Also, ∧ has the property that
a∧b ≤ a and a∧b ≤ b.
At each iteration, some solution value
must change, else we halt. If something
changes it must “move down” the lattice
(we start at T). If the lattice has finite
height, each block’s value can change
only a bounded number of times. Hence
termination is guaranteed.

436CS 701 Fall 2005
©

• If the iterative data flow algorithm
terminates, a valid solution must have
been computed. (This is because data
flow values flow forward, and any
change along a backedge forces another
iteration.)

437CS 701 Fall 2005
©

How Many Iterations are
Needed?

Can we bound the number of
iterations needed to compute a data
flow solution?
In our example, 3 passes were needed,
but why?
In an “ideal” CFG, with no loops or
backedges, only 1 pass is needed.
With backedges, it can take several
passes for a value computed in one
block to reach a block that depends
upon the value.

438CS 701 Fall 2005
©

Let p be the maximum number of
backedges in any acyclic path in the
CFG.
Then (p+1) passes suffice to
propagate a data flow value to any
other block that uses it.
Recall that any block’s value can
change only a bounded number of
times. In fact, the height of the
lattice (maximum distance from top
to bottom) is that bound.
Thus the maximum number of passes
in our iterative data flow evaluator =
(p+1) * Height of Lattice
In our example, p = 2 and lattice
height really was 1 (we did 3
independent bit valued problems).
So passes needed = (2+1)*1 = 3.

439CS 701 Fall 2005
©

Rapid Data Flow Frameworks
We still have the concern that it may
take many passes to traverse a
solution lattice that has a significant
height.
Many data flow problems are rapid.
For rapid data flow problems, extra
passes to feed back values along
cyclic paths aren’t needed.
For a data flow problem to be rapid
we require that:
(∀a ∈ A)(∀f ∈ F) a ∧ f(T) ≤ f(a)

440CS 701 Fall 2005
©

This is an odd requirement that states
that using f(T) as a very crude
approximation to a value computed
by F is OK when joined using the ∧
operator. In effect the term “a” rather
than f(T) is dominant).
(Recall that a ∧ f(a) ≤ f(a) always
holds.)

441CS 701 Fall 2005
©

How does the Rapid Data Flow
Property Help?

Consider a direct feedback loop (the
idea holds for indirect loops too):

a is an input from outside the loop.
Our concern is how often we’ll need
to reevaluate f, as new values are
computed and fed back into f.
Initially, we’ll use T to model the
value on the backedge.

f

a

442CS 701 Fall 2005
©

Iteration 1: Input = a ∧ T = a
 Output = f(a)
Iteration 2: Input = a ∧ f(a)
 Output = f(a ∧ f(a))
Iteration 3: Input = a ∧ f(a ∧ f(a))

Now we’ll exploit the rapid data flow
property: b ∧ f(T) ≤ f(b)
Let b ≡ a ∧ f(a)
Then a ∧ f(a) ∧ f(T) ≤ f(a∧f(a)) (*)
Note that x ≤ y ⇒ a ∧ x ≤ a ∧ y (**)
To prove this, recall that
 (1) p ∧ q = p ⇒ p ≤ q
 (2) x ≤ y ⇒ x ∧ y = x
Thus (a∧x)∧(a∧y) = a∧(x∧y) = (a∧x)
(by 2) ⇒ (a∧x) ≤ (a∧y) (by 1).

443CS 701 Fall 2005
©

From (*) and (**) we get
a∧a∧f(a)∧f(T) ≤ f(a∧f(a))∧a (***)
Now a ≤ T ⇒ f(a) ≤ f(T) ⇒
f(a)∧f(T) = f(a).
Using this on (***) we get
a∧f(a) ≤ f(a∧f(a))∧a
That is, Input2 ≤ Input3
Note too that
 a ∧ f(a) ≤ a ⇒ f(a∧f(a)) ≤ f(a) ⇒
 a ∧ f(a∧f(a)) ≤ a ∧ f(a)
That is, Input3 ≤ Input2
Thus we conclude Input2 = Input3,
which means we can stop after two
passes independent of lattice height!
(One initial visit plus one reevaluation
via the backedge.)

444CS 701 Fall 2005
©

Many Important Data Flow
Problems are Rapid

Consider reaching definitions, done as
sets. We may have many definitions
to the same variable, so the height of
the lattice may be large.
L is the power set of Basic Blocks
∧ is set union
T is φ; ⊥ is the set of all blocks
a ≤ b ≡ a ⊇ b
fb(in) = (In - Killb) U Genb

where Genb is the last definition to a
variable in b,

 Killb is all defs to a variable except
the last one in b,

445CS 701 Fall 2005
©

 Killb is empty if there is no def to a
variable in b.

The Rapid Data Flow Property is
 a ∧ f(T) ≤ f(a)
In terms of Reaching Definitions this
is
a U f(φ) ⊇ f(a) ≡
a U (φ - Kill) U Gen ⊇ (a - Kill) U Gen
Simplifying,
a U Gen ⊇ (a - Kill) U Gen
which always holds.

446CS 701 Fall 2005
©

Recall

Here it took two passes to transmit
the def in b7 to b1, so we expect 3
passes to evaluate independent of the
lattice height.

x ←

x ←

←x

0

1

2 3

4

5 6

7

8

447CS 701 Fall 2005
©

Constant Propagation isn’t
Rapid

We require that
 a ∧ f(T) ≤ f(a)
Consider

Look at the transfer function for the
second (bottom) block.

i=1
j=1
k=1

k=j
j=i
i=2

448CS 701 Fall 2005
©

f(t) = t’ where
 t’(v) = case(v){
 k: t(j);
 j: t(i);
 i: 2; }
Let a = (⊥,1,1).
f(T) = (2,T,T)
a ∧ f(T) = (⊥,1,1) ∧ (2,T,T) = (⊥,1,1)
f(a) = f(⊥,1,1) = (2,⊥,1).
Now (⊥,1,1) is not ≤ (2,⊥,1)
so this problem isn’t rapid.

449CS 701 Fall 2005
©

Let’s follow the iterations:
Pass 1: In = (1,1,1)∧(T,T,T) = (1,1,1)
 Out = (2,1,1)
Pass 2: In = (1,1,1)∧(2,1,1) = (⊥,1,1)
 Out = (2,⊥,1)
Pass 3: In = (1,1,1)∧(2,⊥,1) = (⊥,⊥,1)
 Out = (2,⊥,⊥)
This took 3 passes. In general, if we
had N variables, we could require N
passes, with each pass resolving the
constant status of one variable.

450CS 701 Fall 2005
©

How Good Is Iterative Data
Flow Analysis?

A single execution of a program will
follow some path
 b0,bi1,bi2,...,bin.

The Data Flow solution along this
path is
fin(...fi2(fi1(f0(T)))...) ≡ f(b0,b1,...,bin)

The best possible static data flow
solution at some block b is computed
over all possible paths from b0 to b.

Let Pb = The set of all paths from b0
to b.

∧
p Pb

f(p)
∈

MOP(b)=

451CS 701 Fall 2005
©

Any particular path pi from b0 to b is
included in Pb.

Thus MOP(b) ∧ f(pi) = MOP(b) ≤ f(pi).

This means MOP(b) is always a safe
approximation to the “true” solution
f(pi).

452CS 701 Fall 2005
©

If we have the distributive property
for transfer functions,
f(a∧b) = f(a) ∧ f(b)
then our iterative algorithm always
computes the MOP solution, the best
static solution possible.
To prove this, note that for trivial
path of length 1, containing only the
start block, b0, the algorithm
computes f0(T) which is MOP(b0)
(trivially).
Now assume that the iterative
algorithm for paths of length n or
less to block c does compute MOP(c).
We’ll show that for paths to block b
of length n+1, MOP(b) is computed.
Let P be the set of all paths to b of
length n+1 or less.

453CS 701 Fall 2005
©

The paths in P end with b.
MOP(b) = fb(f(P1))∧fb(f(P2) ∧ ...

 where P1, P2, ... are the prefixes (of
length n or less) of paths in P with b
removed.
Using the distributive property,
fb(f(P1))∧fb(f(P2) ∧ ... =

fb(f(P1)∧f(P2)∧...).

But note that f(P1)∧f(P2)∧... is just
the input to fb in our iterative
algorithm, which then applies fb.

Thus MOP(b) for paths of length n+1
is computed.

454CS 701 Fall 2005
©

For data flow problems that aren’t
distributive (like constant
propagation), the iterative solution is
≤ the MOP solution.
This means that the solution is a safe
approximation, but perhaps not as
“sharp” as we might wish.

455CS 701 Fall 2005
©

Reading Assignment
Read “An Efficient Method of
Computing Static Single Assignment
Form.”
(Linked from the class Web page.)

456CS 701 Fall 2005
©

Exploiting Structure in Data
Flow Analysis

So far we haven’t utilized the fact
that CFGs are constructed from
standard programming language
constructs like IFs, Fors, and Whiles.
Instead of iterating across a given
CFG, we can isolate, and solve
symbolically, subgraphs that
correspond to “standard”
programming language constructs.
We can then progressively simplify
the CFG until we reach a single node,
or until we reach a CFG structure that
matches no standard pattern.
In the latter case, we can solve the
residual graph using our iterative
evaluator.

457CS 701 Fall 2005
©

Three Program-Building
Operations
1. Sequential Execution (“;”)
2. Conditional Execution (If, Switch)
3. Iterative Execution

 (While, For, Repeat)

458CS 701 Fall 2005
©

Sequential Execution
We can reduce a sequential “chain” of
basic blocks:

into a single composite block:

The transfer function of bseq is

 fseq = fn ο fn-1 ο ... f1
where ο is functional composition.

b1 b2 bn
. . .

bseq

459CS 701 Fall 2005
©

Conditional Execution
Given the basic blocks:

we create a single composite block:

The transfer function of bcond is

 fcond = fL1 ο fp ∧ fL2 ο fp

bp

bL1 bL2

bcond

460CS 701 Fall 2005
©

Iterative Execution
Repeat Loop
Given the basic blocks:

we create a single composite block:

Here bB is the loop body, and bC is the
loop control.

bB

bC

b repeat

461CS 701 Fall 2005
©

If the loop iterates once, the transfer
function is fC o fB.

If the loop iterates twice, the transfer
function is (fC ο fB) ο (fC ο fB).

Considering all paths, the transfer
function is (fC ο fB) ∧ (fC ο fB)2 ∧ ...

Define fix f ≡ f ∧ f2 ∧ f3 ∧ ...
The transfer function of repeat is
then
 frepeat = fix(fC ο fB)

462CS 701 Fall 2005
©

While Loop.
Given the basic blocks:

we create a single composite block:

Here again bB is the loop body, and bC
is the loop control.
The loop always executes bC at least
once, and always executes bC as the
last block before exiting.

bC

bB

bwhile

463CS 701 Fall 2005
©

The transfer function of a while is
therefore
 fwhile = fC ∧ fix(fC ο fB) ο fC

464CS 701 Fall 2005
©

Evaluating Fixed Points
For lattices of height H, and
monotone transfer functions, fix f
needs to look at no more than H
terms.
In practice, we can give fix f an
operational definition, suitable for
implementation:
Evaluate
 (fix f)(x) {
 prev = soln = f(x);
 while (prev ≠ new = f(prev)){
 prev = new;
 soln = soln ∧ new;
 }
 return soln;
 }

465CS 701 Fall 2005
©

Example—Reaching Definitions

The transfer functions are either
constant-valued (f1={b1}, f4={b4},
f5={b5}) or identity functions
(f2=f3=f6=f7=Id).

←x

1

2

7 3

5

6

x ←

←x
4

466CS 701 Fall 2005
©

First we isolate and reduce the
conditional:
fC = f4 ο f3 ∧ f5 ο f3 =
{b4} ο Id U {b5} ο Id = {b4,b5}

←x

1

2

7 3

5

6

x ←

←x
4

467CS 701 Fall 2005
©

Substituting, we get

We can combine bC and b6, to get a
block equivalent to bC. That is,

f6 ο fC = Id ο fC = fC

1

2

7 C

6

x ←

468CS 701 Fall 2005
©

We now have

We isolate and reduce the while loop
formed by b2 and bC, creating bW.
The transfer function is
 fW = f2 ∧ (fix(f2 ο fC) o f2=

 Id U (fix(Id ο fC) ο Id =

 Id U (fix(fC)) =

 Id U (fC ∧ fC
2 ∧ fC

3 ∧ ...) =

 Id U {b4,b5}

1

2

7 C

x ←

469CS 701 Fall 2005
©

We now have

We compose these three sequential
blocks to get the whole solution, fP.

fP = Id ο (Id U {f4,f5}) ο {b1} =

 {b1,b4,b5}.
These are the definitions that reach
the end of the program.
We can expand subgraphs to get the
solutions at interior blocks.

1

W

7

x ←

470CS 701 Fall 2005
©

Thus at the beginning of the while,
the solution is {b1}.
At the head if the If, the solution is
 (Id U (Id ο fC ο Id) U

(Id ο fC ο Id ο fC ο Id) U ...)({b1}) =
{b1} U {b4,b5} U {b4,b5} U ... =
 {b1,b4,b5}
At the head of the then part of the If,
the solution is Id({b1,b4,b5}) =
{b1,b4,b5}.

471CS 701 Fall 2005
©

Static Single Assignment Form
Many of the complexities of
optimization and code generation
arise from the fact that a given
variable may be assigned to in many
different places.
Thus reaching definition analysis
gives us the set of assignments that
may reach a given use of a variable.
Live range analysis must track all
assignments that may reach a use of
a variable and merge them into the
same live range.
Available expression analysis must
look at all places a variable may be
assigned to and decide if any kill an
already computed expression.

472CS 701 Fall 2005
©

What If
each variable is assigned to in only
one place?
(Much like a named constant).
Then for a given use, we can find a
single unique definition point.
But this seems impossible for most
programs—or is it?
In Static Single Assignment (SSA)
Form each assignment to a variable, v,
is changed into a unique assignment
to new variable, vi.

If variable v has n assignments to it
throughout the program, then (at
least) n new variables, v1 to vn, are
created to replace v. All uses of v are
replaced by a use of some vi.

473CS 701 Fall 2005
©

Phi Functions
Control flow can’t be predicted in
advance, so we can’t always know
which definition of a variable reached
a particular use.
To handle this uncertainty, we create
phi functions.
As illustrated below, if vi and vj both
reach the top of the same block, we
add the assignment
 vk ← φ(vi,vj)

to the top of the block.
Within the block, all uses of v become
uses of vk (until the next assignment
to v).

474CS 701 Fall 2005
©

What does φ(vi,vj) Mean?

One way to read φ(vi,vj) is that if
control reaches the phi function via
the path on which vi is defined, φ
“selects” vi; otherwise it “selects” vj.

Phi functions may take more than 2
arguments if more than 2 definitions
might reach the same block.
Through phi functions we have simple
links to all the places where v receives
a value, directly or indirectly.

475CS 701 Fall 2005
©

Example
x=1

a=x x=2

b=x

x=1

x==10

c=x
x++

print x

x1=1

a=x1 x2=2

b=x3

x4=1

x5==10

c=x5
x6=x5+1

print x5

x3=φ (x1,x2)

x5= (x4,x6)φ

Original CFG CFG in SSA Form

476CS 701 Fall 2005
©

In SSA form computing live ranges is
almost trivial. For each xi include all
xj variables involved in phi functions
that define xi.

Initially, assume x1 to x6 (in our
example) are independent. We then
union into equivalence classes xi
values involved in the same phi
function or assignment.
Thus x1 to x3 are unioned together
(forming a live range). Similarly, x4 to
x6 are unioned to form a live range.

477CS 701 Fall 2005
©

Constant Propagation in SSA
In SSA form, constant propagation is
simplified since values flow directly
from assignments to uses, and phi
functions represent natural “meet
points” where values are combined
(into a constant or ⊥).
Even conditional constant
propagation fits in. As long as a path
is considered unreachable, it variables
are set to T (and therefore ignored at
phi functions, which meet values
together).

478CS 701 Fall 2005
©

Example

We have determined that i=6 everywhere.

i 1 j 1 k1 i 2 j 2 k2 k3 i 3 i 4 k4 i 5 j 3

Pass1 6 1 1 6∧T 1∧T 1∧T 0 T 6∧T 0 6 2

Pass2 6 1 1 6∧6 ⊥ ⊥ 0 T 6 0 6 ⊥

i=6
j=1
k=1
repeat
 if (i==6)
 k=0
 else
 i=i+1
 i=i+k
 j=j+1
until (i==j)

i 1=6
j 1=1
k1=1
repeat
 i 2=φ(i 1,i 5)
 j 2=φ(j 1,j 3)
 k 2=φ(k 1,k 4)
 if (i 2==6)
 k 3=0
 else
 i 3=i 2+1
 i 4=φ(i 2,i 3)
 k 4=φ(k 3,k 2)
 i 5=i 4+k4
 j 3=j 2+1
until (i 5==j 3)

479CS 701 Fall 2005
©

Putting Programs into SSA
Form

Assume we have the CFG for a
program, which we want to put into
SSA form. We must:
• Rename all definitions and uses of

variables

• Decide where to add phi functions
Renaming variable definitions is
trivial—each assignment is to a new,
unique variable.
After phi functions are added (at the
heads of selected basic blocks), only
one variable definition (the most
recent in the block) can reach any
use. Thus renaming uses of variables
is easy.

480CS 701 Fall 2005
©

Placing Phi Functions
Let b be a block with a definition to
some variable, v. If b contains more
than one definition to v, the last (or
most recent) applies.
What is the first basic block following
b where some other definition to v as
well as b’s definition can reach?
In blocks dominated by b, b’s
definition must have been executed,
though other later definitions may
have overwritten b’s definition.

481CS 701 Fall 2005
©

Domination Frontiers (Again)
Recall that the Domination Frontier
of a block b, is defined as
DF(N) =
 {Z | M→Z & (N dom M) &

¬(N sdom Z)}

The Dominance Frontier of a basic
block N, DF(N), is the set of all blocks
that are immediate successors to
blocks dominated by N, but which
aren’t themselves strictly dominated
by N.
Assume that an initial assignment to
all variables occurs in b0 (possibly of
some special “uninitialized value.”)

482CS 701 Fall 2005
©

We will need to place a phi function
at the start of all blocks in b’s
Domination Frontier.
The phi functions will join the
definition to v that occurred in b (or
in a block dominated by b) with
definitions occurring on paths that
don’t include b.
After phi functions are added to
blocks in DF(b), the domination
frontier of blocks with newly added
phi’s will need to be computed (since
phi functions imply assignment to a
new vi variable).

483CS 701 Fall 2005
©

Examples of How Domination
Frontiers Guide Phi Placement

DF(N) =
 {Z | M→Z & (N dom M) &

¬(N sdom Z)}
Simple Case:

Here, (N dom M) but ¬(N sdom Z),
so a phi function is needed in Z.

v=1

v=2

N

M

Z

v1=1

v2=2

N

M

Z
v3= φ (v1,v2)

⇒

484CS 701 Fall 2005
©

Loop:

Here, let M = Z = N. M→Z,
(N dom M) but ¬(N sdom Z),
so a phi function is needed in Z.
DF(N) =
 {Z | M→Z & (N dom M) &

¬(N sdom Z)}

v=init

v=v+1 v2 =φ(v1,v3)
⇒

Z

v1=init

v3=v2+1

Z

485CS 701 Fall 2005
©

Sometimes Phi’s must be Placed
Iteratively

Now, DF(b1) = {b3}, so we add a phi
function in b3. This adds an
assignment into b3. We then look at
DF(b3) = {b5}, so another phi
function must be added to b5.

v=1

v=3

1

3

5

v1=1

v4=3

1

v5= φ (v3,v4)

⇒
v=2

2

4

v2=2
2

v3= φ (v1,v2)
3 4

486CS 701 Fall 2005
©

Phi Placement Algorithm
To decide what blocks require a phi
function to join a definition to a variable
v in block b:
1. Compute D1 = DF(b).

 Place Phi functions at the head of all
members of D1.

2. Compute D2 = DF(D1).
 Place Phi functions at the head of all

members of D2-D1.

3. Compute D3 = DF(D2).
 Place Phi functions at the head of all

members of D3-D2-D1.

4. Repeat until no additional Phi
functions can be added.

487CS 701 Fall 2005
©

PlacePhi{
 For (each variable v ∈ program) {

 For (each block b ∈ CFG){
 PhiInserted(b) = false
 Added(b) = false }
 List = φ
 For (each b ∈ CFG that assigns to V){
 Added(b) = true
 List = List U {b} }
 While (List ≠ φ) {
 Remove any b from List
 For (each d ∈ DF(b)){
 If (! PhiInserted(d)) {
 Add a Phi Function to d
 PhiInserted(d) = true
 If (! Added(d)) {
 Added(d) = true
 List = List U {d}
 }
 }
 }
 }
 }
}

488CS 701 Fall 2005
©

Example

We will add Phi’s into blocks 4 and 5.
The arity of each phi is the number of
in-arcs to its block. To find the args
to a phi, follow each arc “backwards”
to the sole reaching def on that path.

x1=1

x2=2

x3=3

x4=4

1

2 3

4

5

6

7

Initially, List={1,3,5,6}

Process 1: DF(1) = φ

Process 3: DF(3) = 4,
 so add 4 to List and
 add phi fct to 4.

Process 5: DF(5)={4,5}
 so add phi fct to 5.

Process 5: DF(6) = {5}

Process 4: DF(4) = {4}

489CS 701 Fall 2005
©

x1=1

x2=2

x3=3

x5=φ (x1,x2,x3)

x6= (x4,x5)φ

x4=4

490CS 701 Fall 2005
©

SSA and Value Numbering
We already know how to do available
expression analysis to determine if a
previous computation of an
expression can be reused.
A limitation of this analysis is that it
can’t recognize that two expressions
that aren’t syntactically identical may
actually still be equivalent.
For example, given

t1 = a + b

c = a

t2 = c + b

Available expression analysis won’t
recognize that t1 and t2 must be
equivalent, since it doesn’t track the
fact that a = c at t2 .

491CS 701 Fall 2005
©

Value Numbering
An early expression analysis
technique called value numbering
worked only at the level of basic
blocks. The analysis was in terms of
“values” rather than variable or
temporary names.
Each non-trivial (non-copy)
computation is given a number, called
its value number.
Two expressions, using the same
operators and operands with the same
value numbers, must be equivalent.

492CS 701 Fall 2005
©

For example,
t1 = a + b

c = a

t2 = c + b

is analyzed as
v1 = a

v2 = b

t1 = v1 + v2

c = v1

 t2 = v1 + v2

Clearly t2 is equivalent to t1 (and
hence need not be computed).

493CS 701 Fall 2005
©

In contrast, given
t1 = a + b

a = 2

t2 = a + b

the analysis creates
v1 = a

v2 = b

t1 = v1 + v2

v3 = 2

 t2 = v3 + v2

Clearly t2 is not equivalent to t1
(and hence will need to be
recomputed).

494CS 701 Fall 2005
©

Extending Value Numbering to
Entire CFGs

The problem with a global version of
value numbering is how to reconcile
values produced on different flow
paths. But this is exactly what SSA is
designed to do!
In particular, we know that an
ordinary assignment
x = y

does not imply that all references to x
can be replaced by y after the
assignment. That is, an assignment is
not an assertion of value equivalence.

495CS 701 Fall 2005
©

But,
 in SSA form

xi = y j

does mean the two values are always
equivalent after the assignment. If yj

reaches a use of xi , that use of xi can
be replaced with yj .
Thus in SSA form, an assignment is
an assertion of value equivalence.

496CS 701 Fall 2005
©

We will assume that simple variable
to variable copies are removed by
substituting equivalent SSA names.
This alone is enough to recognize
some simple value equivalences.
As we saw,

t 1 = a 1 + b 1

c1 = a 1

t 2 = c 1 + b 1

becomes
t 1 = a 1 + b 1

t 2 = a 1 + b 1

497CS 701 Fall 2005
©

Partitioning SSA Variables
Initially, all SSA variables will be
partitioned by the form of the
expression assigned to them.
Expressions involving different
constants or operators won’t (in
general) be equivalent, even if their
operands happen to be equivalent.
Thus

v1 = 2 and w1 = a 2 + 1

are always considered inequivalent.
But,
v3 = a 1 + b 2 and w1 = d 1 + e 2

may possibly be equivalent since both
involve the same operator.

498CS 701 Fall 2005
©

Phi functions are potentially
equivalent only if they are in the
same basic block.
All variables are initially considered
equivalent (since they all initially are
considered uninitialized until explicit
initialization).
After SSA variables are grouped by
assignment form, groups are split.
If ai op by and ck op dl
are in the same group (because they
both have the same operator, op)
and ai /≡ ck or bj /≡ dl
then we split the two expressions
apart into different groups.
We continue splitting based on
operand inequivalence, until no more
splits are possible. Values still
grouped are equivalent.

499CS 701 Fall 2005
©

Example

Now b4 isn’t equivalent to anything,
so split a5 and b5. In G7 split
operands b3, a5 and b5. We now have

if (...) {
 a 1=0
 if (...)

b1=0
 else {

a2=x0
b2=x0 }

 a 3=φ(a 1,a 2)
 b 3=φ(b 1,b 2)
 c 2=*a 3
 d 2=*b 3 }
else {
 b 4=10 }
a5=φ(a 0,a 3)
b5=φ(b 3,b 4)
c3=*a 5
d3=*b 5
e3=*a 5

Initial Groupings:

G1=[a0,b0,c0,d0,e0,x0]
G2=[a1=0, b1=0]
G3=[a2=x0, b2=x0]
G4=[b4=10]
G5=[a3=φ(a 1,a 2) ,

b3=φ(b 1,b 2)]
G6=[a5=φ(a 0,a 3) ,

b5=φ(b 3,b 4)]
G7=[c2=*a 3,

d2=*b 3,
d3=*b 5,
c3=*a 5,
e3=*a 5]

500CS 701 Fall 2005
©

Variable e3 can use c3’s value and d2

can use c2’s value.

if (...) {
 a 1=0
 if (...)

b1=0
 else {

a2=x0
b2=x0 }

 a 3=φ(a 1,a 2)
 b 3=φ(b 1,b 2)
 c 2=*a 3
 d 2=*b 3 }
else {
 b 4=10 }
a5=φ(a 0,a 3)
b5=φ(b 3,b 4)
c3=*a 5
d3=*b 5
e3=*a 5

Final Groupings:

G1=[a0,b0,c0,d0,e0,x0]
G2=[a1=0, b1=0]
G3=[a2=x0, b2=x0]
G4=[b4=10]
G5=[a3=φ(a 1,a 2) ,

b3=φ(b 1,b 2)]
G6a=[a5=φ(a 0,a 3)]
G6b=[b5=φ(b 3,b 4)]
G7a=[c2=*a 3,

d2=*b 3]
G7b=[d3=*b 5]
G7c=[c3=*a 5,

e3=*a 5]

501CS 701 Fall 2005
©

Limitations of Global Value
Numbering

As presented, our global value
numbering technique doesn’t
recognize (or handle) computations
of the same expression that produce
different values along different paths.
Thus in

variable a3 isn’t equivalent to either
a1 or a2.

a1=1
t 1=a1+b0

a2=2
t 2=a2+b0

a3=φ(a 1,a 2)
t 3=a3+b0

502CS 701 Fall 2005
©

But,
we can still remove a redundant
computation of a+b by moving the
computation of t 3 to each of its
predecessors:

Now a redundant computation of a+b
is evident in each predecessor block.
Note too that this has a nice register
targeting effect—e1, e2 and e3 can be
readily mapped to the same live
range.

a1=1
t 1=a1+b0

a2=2
t 2=a2+b0

e3=φ(e 1,e 2)
t 3=e3

e1=a1+b0 e2=a2+b0

503CS 701 Fall 2005
©

The notion of moving expression
computations above phi functions
also meshes nicely with notion of
partial redundancy elimination. Given

moving a+b above the phi produces

Now a+b is computed only once on
each path, an improvement.

a1=1
t 1=a1+b0

a2=2

a3=φ(a 1,a 2)
t 3=a3+b0

a1=1
t1=a 1+b0

a2=2
t 2=a2+b0

t 3=φ(t 1,t 2)

504CS 701 Fall 2005
©

Reading Assignment
• Read "Global Optimization by

Suppression of Partial Redundancies,”
Morel and Renvoise.
(Linked from the class Web page.)

• Read “Profile Guided Code Positioning,”
Pettis and Hansen.
(Linked from the class Web page.)

505CS 701 Fall 2005
©

Partial Redundancy Analysis
Partial Redundancy Analysis is a
boolean-valued data flow analysis
that generalizes available expression
analysis.
Ordinary available expression analysis
tells us if an expression must already
have been evaluated (and not killed)
along all execution paths.
Partial redundancy analysis, originally
developed by Morel & Renvoise,
determines if an expression has been
computed along some paths.
Moreover, it tells us where to add
new computations of the expression
to change a partial redundancy into a
full redundancy.

506CS 701 Fall 2005
©

This technique never adds
computations to paths where the
computation isn’t needed. It strives to
avoid having any redundant
computation on any path.
In fact, this approach includes
movement of a loop invariant
expression into a preheader. This loop
invariant code movement is just a
special case of partial redundancy
elimination.

507CS 701 Fall 2005
©

Basic Definition & Notation
For a Basic Block i and a particular
expression, e:
Transpi is true if and only if e’s
operands aren’t assigned to in i.
Transpi ≡ ¬ Killi

Compi is true if and only if e is
computed in block i and is not killed
in the block after computation.
Compi ≡ Geni

508CS 701 Fall 2005
©

AntLoci (Anticipated Locally in i) is
true if and only if e is computed in i
and there are no assignments to e’s
operands prior to e’s computation.
If AntLoci is true, computation of e in
block i will be redundant if e is
available on entrance to i.

509CS 701 Fall 2005
©

We’ll need some standard data flow
analyses we’ve seen before:
AvIni = Available In for block i

 = 0 (false) for b0

 =

AvOuti = Compi OR
 (AvIni AND Transpi)

≡ Geni OR
 (AvIni AND ¬ Killi)

AND
p ∈ Pred(i)

 AvOutp

510CS 701 Fall 2005
©

We anticipate an expression if it is
very busy:
AntOuti = VeryBusyOuti
 = 0 (false) if i is an exit block

 =

AntIni = VeryBusyIni

 = AntLoci OR
 (Transpi AND AntOuti)

AND
s ∈ Succ(i)

 AntIns

511CS 701 Fall 2005
©

Partial Availability
Partial availability is similar to
available expression analysis except
that an expression must be computed
(and not killed) along some (not
necessarily all) paths:
PavIni

 = 0 (false) for b0

 =

PavOuti = Compi OR
 (PavIni AND Transpi)

OR
p ∈ Pred(i)

 PavOutp

512CS 701 Fall 2005
©

Where are Computations
Added?

The key to partial redundancy
elimination is deciding where to add
computations of an expression to
change partial redundancies into full
redundancies (which may then be
optimized away).

513CS 701 Fall 2005
©

We’ll start with an “enabling term.”
Consti = AntIni AND

[PavIni OR (Transpi AND ¬ AntLoci)]

This term say that we require the
expression to be:
(1) Anticipated at the start of block i
 (somebody wants the expression)
and
(2a) The expression must be partially

available (to perhaps transform
into full availability)

or
(2b) The block neither kills nor

computes the expression.

514CS 701 Fall 2005
©

Next, we compute PPIni and PPOuti.
PP means “possible placement” of a
computation at the start (PPIni) or
end (PPOuti) of a block.

These values determine whether a
computation of the expression would
be “useful” at the start or end of a
basic block.
PPOuti
= 0 (false) for all exit blocks

=

We try to move computations “up”
(nearer the start block).
It makes sense to compute an
expression at the end of a block if it
makes sense to compute at the start
of all the block’s successors.

AND
s ∈ Succ(i)

 PPIns

515CS 701 Fall 2005
©

PPIni = 0 (false) for b0.

 = Consti
AND (AntLoci OR (Transpi AND PPOuti))

To determine if PPIni is true, we first
check the enabling term. It makes sense
to consider a computation of the
expression at the start of block i if the
expression is anticipated (wanted) and
partially available or if the expression is
anticipated (wanted) and it is neither
computed nor killed in the block.
We then check that the expression is
anticipated locally or that it is
unchanged within the block and possibly
positioned at the end of the block.

AND
p ∈ Pred(i)

 (PPOutp OR AvOutp)

516CS 701 Fall 2005
©

Finally, we check that all the block’s
predecessors either have the expression
available at their ends or are willing to
position a computation at their end.

Note also, the bi-directional nature of
this equation.

517CS 701 Fall 2005
©

Inserting New Computations
After PPIni and PPOuti are computed, we
decide where computations will be
inserted:
Inserti = PPOuti AND (¬ AvOuti) AND
 (¬ PPIni OR ¬ Transpi)

This rule states that we really will
compute the expression at the end of
block i if this is a possible placement
point and the expression is not already
computed and available and moving the
computation still earlier doesn’t work
because the start of the block isn’t a
possible placement point or because the
block kills the expression.

518CS 701 Fall 2005
©

Removing Existing
Computations

We’ve added computations of the
expression to change partial
redundancies into full redundancies.
Once this is done, expressions that
are fully redundant can be removed.
But where?
 Removei = AntLoci and PPIni

This rule states that we remove
computation of the expression in
blocks where it is computed locally
and might be moved to the block’s
beginning.

519CS 701 Fall 2005
©

Partial Redundancy Subsumes
Available Expression Analysis

Using partial redundancy analysis, we
can find (and remove) ordinary fully
redundant available expressions.
Consider a block, b, in which:
(1) The expression is computed

(anticipated) locally
and
(2) The expression is available on

entrance
Point (1) tells us that AntLocb is true

520CS 701 Fall 2005
©

Moreover, recall that
PPInb = Constb AND
 (AntLocb OR ...)

Constb = AntInb AND [PavInb OR ...]

We know AntLocb is true ⇒ AntInb =
true.
Moreover, AvInb = true ⇒ PavInb = true.

Thus Constb = true.

If AvInb is true, AvOutp is true for all p ∈
Pred(b).
Thus PPInb AND AntLocb = true =
Removeb

AND
p ∈ Pred(i)

 (AvOut p)OR ...

521CS 701 Fall 2005
©

Are any computations added earlier (to
any of b’s ancestors)?
No:
Inserti = PPOuti AND (¬ AvOuti) AND
 (¬ PPIni OR ¬ Transpi)

But for any ancestor, i, between the
computation of the expression and b,
AvOuti is true, so Inserti must be false.

522CS 701 Fall 2005
©

Examples of Partial
Redundancy Elimination

At block 3, x+3 is partially, but not
fully, redundant.
PPIn3 = Const3 AND
 (AntLoc3 OR ...)

Const3 = AntIn3 AND [PavIn3 OR ...]
Now AntIn3 = true and PavIn3 = true.

Const3 = true AND true = true

x=1 x=2
x+3

x+3

1 2

3

AND
p ∈ Pred(3)

 (PPOutp OR AvOutp)

523CS 701 Fall 2005
©

PPout1 = PPIn3

Default initialization of PPIn and
PPOut terms is true, since we AND
terms together.
AntLoc3 = true.

PPIn3 = true AND true

 =

PPOut1 AND AvOut2= true AND true
= PPIn3 = PPOut1.

 Insert1 = PPOut1 AND (¬ AvOut1)
AND (¬ PPIn1 OR ¬ Transp1) =

 PPOut1 AND (¬ AvOut1)
AND (¬ Transp1) = true,

so x+3 is inserted at the end of block
3.

AND
p ∈ Pred(3)

 (PPOutp OR AvOutp)

524CS 701 Fall 2005
©

Remove3 = AntLoc3 and PPIn3
= true AND true = true, so x+3 is
removed from block 3.
Is x+3 inserted at the end of block 2?
(It shouldn’t be).

 Insert2 = PPOut2 AND (¬ AvOut2)
AND (¬ PPIn2 OR ¬ Transp2) =

 PPOut2 AND false AND
 (¬ PPIn2 OR ¬ Transp2) = false.
We now have

x=1 x=2
x+3

1 2

3

x+3

525CS 701 Fall 2005
©

Computations May Move Up
Several Blocks

Again, at block 4, x+3 is partially, but
not fully, redundant.
PPIn4 = Const4 AND
 (AntLoc4 OR ...)

x=1 x=2
x+3

1 2

3

x+3
4

AND
p ∈ Pred(4)

 (PPOutp OR AvOutp)

526CS 701 Fall 2005
©

Const4 = AntIn4 AND [PavIn4 OR ...]
Now AntIn4 = true and PavIn4 = true.

Const4 = true AND true = true

PPout3 = PPIn4.

AntLoc4 = true.

PPIn4 = true AND true

 =

PPOut3 = true.

PPIn3 = Const3 AND
 ((Transp3 AND PPOut3) OR ...)

Const3 = AntIn3 AND [PavIn3 OR ...]
AntIn3 = true and PavIn3 = true.

AND
p ∈ Pred(4)

 (PPOutp OR AvOutp)

AND
p ∈ Pred(3)

 (PPOutp OR AvOutp)

527CS 701 Fall 2005
©

Const3 = true AND true = true

PPOut1 = PPIn3

Transp3 = true.

PPIn3 = true AND (true AND true)

 =

PPOut1 AND AvOut2= true AND true
= PPIn3 = PPOut1.

AND
p ∈ Pred(3)

 (PPOutp OR AvOutp)

528CS 701 Fall 2005
©

Where Do We Insert
Computations?

 Insert3 = PPOut3 AND (¬ AvOut3)
AND (¬ PPIn3 OR ¬ Transp3) =

 true AND (true) AND
 (false OR false) = false
so x+3 is not inserted at the end of
block 3.
Insert2 = PPOut2 AND (¬ AvOut2)

AND (¬ PPIn2 OR ¬ Transp2) =

 PPOut2 AND (false)
AND (¬ PPIn2 OR ¬ Transp2)=false,

so x+3 is not inserted at the end of
block 2.

529CS 701 Fall 2005
©

 Insert1 = PPOut1 AND (¬ AvOut1)
AND (¬ PPIn1 OR ¬ Transp1) =

 true AND (true) AND
 (¬ PPIn1 OR true) = true

so x+3 is inserted at the end of block
3.
Remove4 = AntLoc4 and PPIn4

 = true AND true = true, so x+3 is
removed from block 4.

We finally have

x=1 x=2
x+3

1 2

3

4

x+3

530CS 701 Fall 2005
©

Code Movement is Never
Speculative

Partial redundancy analysis has the
attractive property that it never adds
a computation to an execution path
that doesn’t use the computation.
That is, we never speculatively add
computations.
How do we know this is so?
Assume we are about to insert a
computation of an expression at the
end of block b, but there is a path
from b that doesn’t later compute
and use the expression.
Say the path goes from b to c (a
successor of b), and then eventually
to an end node.

531CS 701 Fall 2005
©

Looking at the rules for insertion of
an expression:
Insertb = PPOutb AND ...

PPOutb = PPInc AND ...

PPInc = Constc AND ...

Constc = AntInc AND ...

But if the expression isn’t computed
and used on the path through c, then
AntInc = False, forcing Insertb = false,
a contradiction.

532CS 701 Fall 2005
©

Can Computations Always be
Moved Up?

Sometimes an attempt to move a
computation earlier in the CFG can be
blocked. Consider

We’d like to move a+b into block 2,
but this may be impossible if a+b isn’t
anticipated on all paths out of block
2.
The solution to this difficulty is no
notice that we really want a+b
computed on the edge from 2 to 3.

a + b

a + b

1 2

3

533CS 701 Fall 2005
©

If we add an artificial block between
blocks 2 and 3, movement of a+b out
of block 3 is no longer blocked:

a + b
1 2

3

a + b

534CS 701 Fall 2005
©

Loop Invariant Code Motion
Partial redundancy elimination
subsumes loop invariant code motion.
Why?
The iteration of the loop makes the
invariant expression partially
redundant on a path from the
expression to itself.
If we’re guaranteed the loop will
iterate at least once (do-while or
repeat-until loops), then evaluation
of the expression can be anticipated
in the loop’s preheader.

535CS 701 Fall 2005
©

Consider
a = val

 do
 ...
 a+b
 ...
 while (...)

a = val

...
a+b
...

Preheader

Body

Control

536CS 701 Fall 2005
©

PPInB = ConstB AND
 (AntLocB OR ...) AND
 (PPOutp AND AvOutC)
ConstB = AntInB AND [PavInB OR ...]

AntInB = true, PavInB = true ⇒
ConstB = true

PPoutP = PPInB, AntLocB= true,
AvOutC = true ⇒ PPInB = true.

InsertP = PPOutP AND (¬ AvOutP)
AND (¬ PPInP OR ¬ TranspP) =

 true AND (true) AND
 (¬ PPInP OR true) = true,
so we may insert a+b at the end of
the preheader.
RemoveB = AntLocB and PPInB =
true AND true, so we may remove
a+b from the loop body.

537CS 701 Fall 2005
©

What About While & For
Loops?

The problem here is that the loop may
iterate zero times, so the loop
invariant isn’t really very busy
(anticipated) in the preheader.
We can, however, change a while
(or for) into a do while:
while (expr){ if (expr)

 body ≡ do {body} ≈
} while (expr)

goto L:
 do {body}
 L:
 while (expr)

After we know the loop will iterate
once, we can evaluate the loop
invariant.

538CS 701 Fall 2005
©

Code Placement in Partial
Redundancy Elimination

While partial redundancy elimination
correctly places code to avoid
unnecessary reevaluation of
expressions along execution paths, its
choice of code placement can
sometimes be disappointing.
It always moves an expression back as
far as possible, as long as
computations aren’t added to
unwanted execution paths. This may
unnecessarily lengthen live ranges,
making register allocation more
difficult.

539CS 701 Fall 2005
©

For example, in

where will we insert a+b?
InsertP = PPOutP AND (¬ AvOutP)

AND (¬ PPInP OR ¬ TranspP)

The last term will be true at the top
block, but not elsewhere.

a = val

...
a+b
...

540CS 701 Fall 2005
©

In “Lazy Code Motion” (PLDI 1992),
Knoop, Ruething and Steffan show
how to eliminate partial redundancies
while minimizing register pressure.
Their technique seeks to evaluate an
expression as “late as possible” while
still maintaining computational
optimality (no redundant or
unnecessary evaluations on any
execution paths).
Their technique places loop invariants
in the loop preheader rather than in
an earlier predecessor block as Morel
& Renvoise do.

541CS 701 Fall 2005
©

Partial Dead Code Elimination
Partial Redundancy Elimination aims
to never reevaluate an expression on
any path, and never to add an
expression on any path where it isn’t
needed.
These ideas suggest an interesting
related optimization—eliminating
expressions that are partially dead.
Consider

y=a+b

y=0

print(y)

542CS 701 Fall 2005
©

On the left execution path, a+b is
dead, and hence useless. We’d prefer
to compute a+b only on paths where
it is used, obtaining

This optimization is investigated in
“Partial Dead Code Elimination” (PLDI
1994), Knoop, Ruething and Steffan.
This optimization “sinks”
computations onto paths where they
are needed.

y=0

print(y)

y=a+b

543CS 701 Fall 2005
©

CS 701 Final Exam (Reminder)
Thursday, December 15, 11:00 a.m.—
1:00 p.m., in class.

544CS 701 Fall 2005
©

Procedure & Code Placement
We have seen many optimizations
that aim to reduce the number of
instructions executed by a program.
Another important class of
optimizations derives from the fact
that programs often must be paged in
virtual memory and almost always are
far bigger then the I-cache.
Hence how procedures and basic
blocks are placed in memory is
important. Page faults and I-cache
misses can be very costly.

545CS 701 Fall 2005
©

In “Profile Guided Code Positioning,”
Pettis and Hansen explore three kinds of
code placement optimizations:
1. Procedure Positioning.

Try to keep procedures that often call
each other close together.

2. Basic Block Positioning.
Try to place the most frequently
executed series of basic blocks “in
sequence.”

3. Procedure Splitting.
Place infrequently executed “fluff” in
a different memory area than heavily
executed code.

546CS 701 Fall 2005
©

Procedure Placement
Procedures (and classes in Java) are
normally separately compiled. They
are then placed in memory by a linker
or loader in an arbitrary order.
This arbitrary ordering can be
problematic:
If A calls B frequently, and A and B
happen to be placed far apart in
memory, the calls will cross page
boundaries and perhaps cause I-cache
conflicts (if code in A and B happen
to map to common cache locations).
However,
if A and B are placed close together in
memory, they may both fit on the
same page and fit into the I-cache
without conflicts.

547CS 701 Fall 2005
©

Pettis & Hansen suggest a “closest is
best” procedure placement policy.
That is, they recommend that we
place procedures that often call each
other as close together as possible.
How?
First, we must obtain dynamic call
frequencies using a profiling tool like
gprof or qpt.
Given call frequencies, we create a
call graph, with edges annotated with
call frequencies:

A

C D

EF

4 10

3

8 2

1

548CS 701 Fall 2005
©

Group Procedures by Call
Frequency

We find the pair of procedures that
call each other most often, and group
them for contiguous positioning.
The notation [A,D] means A and D
will be adjacent (either in order A-D
or D-A).
The two procedures chosen are
combined in the call graph, which is
simplified (much like move-related
nodes in an interference graph):

C [A,D]

EF

7

8 2

1

549CS 701 Fall 2005
©

Now C and F are grouped, without
their relative order set (as yet):

Next [A,D] and [C,F] are to be joined,
but in what exact order?
Four orderings are possible:
 A-D-C-F ≡ F-C-D-A
 A-D-F-C ≡ C-F-D-A
 D-A-C-F ≡ F-C-A-D
 D-A-F-C ≡ C-F-A-D
Are these four orderings equivalent?

[C,F] [A,D]

E

7

21

550CS 701 Fall 2005
©

No—Look at the original call graph.
At the boundary between [A,D] and
[C,F], which of the following is best:
 D-C (3 calls),
 D-F (0 calls)
 A-C (4 calls)
 A-F (0 calls)
A-C has the highest call frequency, so
we choose D-A-C-F.
Finally, we have:

We place E near D (call frequency 2)
rather than near F (call frequency 1).
Our final ordering is
 E-D-A-C-F.

E3
D-A-C-F

551CS 701 Fall 2005
©

Basic Block Placement
We often see conditionals of the form
 if (error-test)
 {Handle error case}
 {Rest of Program}
Since error tests rarely succeed (we
hope!), the error handling code
“pollutes” the I-cache.
In general, we’d like to order basic
blocks not in their order of
appearance in the source program,
but rather in order of their execution
along frequently executed paths.
Placing frequently executed basic
blocks together in memory fills the I-
cache nicely, leads to a smaller
working set and makes branch
prediction easier.

552CS 701 Fall 2005
©

Pettis & Hansen suggest that we
profile execution to determine the
frequency of inter-block transitions.
We then will group blocks together
that execute in sequence most often.
At the start, all basic blocks are
grouped into singleton chains of one
block each.
Then, in decreasing order of transition
frequency, we visit arcs in the CFG.
If the blocks in the source and target
can be linked into a longer chain
then do so, else skip to the next
transition.
When we are done, we have linked
together blocks in paths in the CFG
that are most frequently executed.

553CS 701 Fall 2005
©

Linked basic blocks are allocated
together in memory, in the sequence
listed in the chain.

554CS 701 Fall 2005
©

Example

A

B

C

D

E F

G

H

I

1000

7000

6500 500

2500 4000

2500
4000

500

6500

900

555CS 701 Fall 2005
©

Initially, each bock is in its own chain.
Frequency Action
7000 Form B-C
6500 Form B-C-D
6500 Form H-B-C-D
4000 Form H-B-C-D-F
4000 H is already placed
2500 E can’t be placed after D,

leave it alone
2500 H is already placed
1000 A can’t be placed before B,

leave it alone
900 I can’t be placed after B,

leave it alone
500 G can’t be placed after C,

leave it alone
500 Form G-I

556CS 701 Fall 2005
©

We will place in memory the following
chains of basic blocks:

H-B-C-D-F, E, A, G-I
On some computers, the direction of a
conditional branch predicts whether the
branch is expected to be taken or not
(e.g., the HP PA-RISC). On such
machines, a backwards branch (forming a
loop) is assumed taken; a forward branch
is assumed not taken.
If the target architecture makes such
assumptions regarding conditional
branches, we place chains to (where
possible) correctly predict the branch
outcome.
Thus E and G-I are placed after H-B-C-
D-F since D→E and C→G normally aren’t
taken.

557CS 701 Fall 2005
©

On the SPARC (V 9) you can set a bit in
each conditional branch indicating
expected taken/not taken status.
On many machines internal branch
prediction hardware can over-rule poorly
made (or absent) static predictions.

558CS 701 Fall 2005
©

Procedure Splitting
When we profile the basic blocks
within a procedure, we’ll see some
that are frequently executed, and
others that are executed rarely or
never.
If we allocate all the blocks of a
procedure contiguously, we’ll intermix
frequently executed blocks with
infrequently executed ones.
An alternative is “fluff removal.” We
can split a procedure’s body into two
sets of basic blocks: these executed
frequently and those executed
infrequently (the dividing line is, of
course, somewhat arbitrary).

559CS 701 Fall 2005
©

Now when procedure bodies are
placed in memory, frequently
executed basic blocks will be placed
near each other, and infrequently
executed blocks will be placed
elsewhere (though infrequently
executed blocks are still placed near
each other). In this way be expect to
make better use of page frames and I-
cache space, filling them with mostly
active basic blocks.

