
CS 701

Midterm Exam

Tuesday, October 30, 2001

9:00 AM— 11:00 AM

1263 CSST

Instructions
Answer question #1 and any three others. (If you answer more, only the first four will count.)

Point values are as indicated. Please try to make your answers neat and coherent. Remember, if

we can’t read it, it’s wrong. Partial credit will be given, so try to put something down for each

question (a blank answer always gets 0 points!).

1. (1 point)

Who manufactures the processor for computers labelled with “Intel inside”?

2. (33 points)

The Sethi-Ullman algorithm, as presented in class, assumes that all operands and results are

one word long. Many expressions in programs involve single and double word values. Single

word values fit within a single register; double word values are stored in two paired registers.

Assume that you are given an expression tree whose operands are all distinct variables. Each

variable is marked as single or double length. All operators produce a single word result if their

operands are both single length; otherwise a double length result is produced.

What changes must be made to the Sethi-Ullman register needs rules and to the Sethi-Ullman

code generator to accommodate this extension? (For simplicity, assume any pair of registers

may be used to hold a double length value.)

Illustrate your extensions using the following expression tree (a D or S subscript denotes a

double or single word operand):

+

+ +

+AD BS CS

DS ES

3. (a) (13 points)

What changes to the Chaitin/Briggs graph-coloring register allocator were made by George &

Appel to optimize register to register moves?

(b) (5 points)

How does the George/Appel register allocator avoid the dangers of “reckless coalescing” that

Chaitin’s allocator had?

(c) (5 points)

How does the George/Appel register allocator improve upon the “conservative coalescing”

approach of Briggs?

(d) (10 points)

Does the George/Appel scheme ever miss a chance to give two move-related nodes the same

color? If not, explain why. If so, give a simple example and suggest how their approach might

be improved upon.

4. (a) (11 points)

When a compiler must access an integer literal too large to be incorporated as an immediate

operand, it must load the value into a register prior to its use. If it happens that from the

program’s flow of control it must have previously loaded and used the same literal value, it

may be possible for multiple uses to share the same register. How can we determine if, at a use

of a literal L, whether L has necessarily already been loaded and used?

(b) (11 points)

Assume we know that a particular use of L necessarily follows some previous use of L. How

can we ensure that the current and previous uses of L share the same register? How can

allocation of a register to L be integrated into the general problem of allocating registers to

register candidates?

(c) (11 points)

It may happen that the only use of L is within a loop body. The analyses of parts (a) and (b)

don’t help here, since there are no earlier loads of L to reuse. An alternative is to add a load of

L outside the loop, thereby avoiding repeated loads of L in the loop body. Suggest how to

decide where to place the initial load of L. What are the factors that control your choice of

placement?

5. Consider the following C function:
void f (int a[]) {

for (i=2;i<1000;i++)
a[i]=a[i-2]*2;

}
Assume the function’s loop body is translated into the following SPARC code:

L: ld [%o0-8], %g2
addcc %g3, -1, %g3
sll %g2, 1, %g4
st %g4, [%o0]
bpos L
add %o0, 4, %o0

(a) (11 points)

Assuming there is no limit to the number of independent instructions that can be issued and

executed simultaneously, schedule the loop body to take as few cycles as possible. Do not

unroll or software pipeline the loop; just schedule its body as a basic block. How many cycles

are needed?
-2-

(b) (11 points)

This loop body contains a loop-carried dependence, since a[i] depends on a[i-2] . In this

case the dependence distance is two, since a[i] depends on the value of a[i] computed two

iterations earlier. How does the dependence distance influence our estimate of the best possible

initiation interval based on loop-carried dependences? What is the limit on the initiation

interval for the above loop based on its loop carried dependence? Is a software pipelined loop

based on this estimate of the initiation interval feasible? Why or why not?

(c) (11 points)

An alternative to software pipelining the above loop is to expand it, using different result

registers for each copy of the loop body. The expanded body can then be scheduled using

standard techniques. Assume the above loop body is expanded into two copies, using different

result registers for the two loads and the two shifts. Show the loop body that results after

scheduling. How many cycles per iteration are required? How close is this to the limiting

initiation interval you computed in part (b)?
-3-

	CS 701
	Midterm Exam
	1. (1 point)
	2. (33 points)
	3. (a) (13 points)
	4. (a) (11 points)
	5. Consider the following C function:

