Computing DomiNATORS

Dominators can be computed as a
Set-valued Forward Data Flow
Problem.

f a node N dominates all of node M's
nredecessors, then N appears on all
naths to M. Hence (N dom M).

Similarly, if M doesn't dominate all of
M's predecessors, then there is a path
to M that doesn't include M. Hence
—(N dom M).

These observations give us a "data
flow equation” for dominator sets:

dom(N) = {N} U "™ dom(M)

M € Pred(N)

S 701 Fall 2007

393

ne analysis domain is the lattice of
| subsets of nodes. Top is the set of
| nodes; bottom is the empty set.
ne ordering relation is subset.

— o o —

The meet operation is intersection.

The Initial Condition is that
Domin(by) = ¢

Domin(b) = ™ DomOut(c)

¢ € Pred(b)

DomOut(b) = Domin(b) U {b}

S 701 Fall 2007 394

Loops Reouire CaARe

Loops in the Control Flow Graph
Induce circularities in the Data Flow

equations for Dominators. In

OG_:D

we have the rule dom(B) =
DomOut(B) =

Domin(B) U {B} =

{B} U (DomOut(B) N DomOut(A))

If we choose DomOut(B) = ¢ initially,
we get DomOut(B) =

{B} U (¢ » DomOut(A)) = {B}
which Is wrong.

€5 701 Fall 2007 395

Instead, we should use the Universal
Set (of all nodes) which is the identity

for N.

Then we get DomOut(B) =
{B} U ({all nodes} N DomOut(A)) =

{B} U DomOut(A)
which is correct.

€5 701 Fall 2007 396

A Worklist AlGgorithm for
DoMINATORS

The data flow equations we have

developed for dominators can be

evaluated using a simple Worklist
Algorithm.

Initially, each node’s dominator set is
set to the set of all nodes. We add the
start node to our worklist.

For

each node on the worklist, we

reevaluate its dominator set. If the set

cha

nges, the updated dominator set is

used, and all the node’'s successors are

add
upce

ed to the worklist (so that the
ated dominator set can be

pro

nagated).

S 701 Fall 2007

397

The algorithm terminates when the
worklist becomes empty, indicating

that a stable solution has been found.

Compute Dominators() {
For (each n € NodeSet)
Dom(n) = NodeSet
WorkList = {StartNode}
While (WorkList # ¢) {

Remove any node Y from WorkList
New = {Y} U ™ Dom(X)

X € Pred(Y)
If New = Dom(Y) {
Dom(Y) = New

For (each Z € Succ(Y))
WorkList = WorkList U {Z}

i3

S 701 Fall 2007

398

Example

ALL

Start

¢ ALL

PN
s

ALL

ALL

ALL

ALL

ALL

Me— Mle— O

S]

ALL

Initially the WorkList = {Start}.
Be careful when Pred(Node) = ¢.

€5 701 Fall 2007 399

Start {start] Start

i {start,A} i
{start,A,B}/ \ {start,A,C} B/ ‘\
B C C D

N 4

{start,A,D}

{start,A,D,E,F}

> E

{start,A,D,E} i I}
: ¢
F

End

{start,A,D,E,F,End}¢

| Dominator Tree
End

Control Flow Graph

S 701 Fall 2007 400

PostdomINANCE

A block Z postdominates a block Y
(Z pdom Y) if and only if all paths
from Y to an exit block must pass
through Z. Notions of immediate
postdominance and a postdominator
tree carry over.

Note that if a CFG has a single exit
node, then postdominance is
equivalent to dominance if flow is

reversed (going from the exit node to
the start node).

S 701 Fall 2007 401

m
S
o

Start

Ale— Ot Mae— T a—

>

'

Start

Me— Mle— O
we)

Postdominator Tree

S]

Control Flow Graph

S 701 Fall 2007 402

DomiINANCE FRONTIERS

Dominators and postdominators tell
us which basic block must be
executed prior to, of after, a block N.

It Is interesting to consider blocks
“Just before” or "just after” blocks
we're dominated by, or blocks we

dominate.

The Dominance Frontier of a basic
block N, DF(N), is the set of all blocks
that are immediate successors to
blocks dominated by N, but which
aren't themselves strictly dominated
by N.

S 701 Fall 2007

403

DF(N) =
{Z|M—Z & (N dom M) &
—(N sdom Z2)}

The dominance frontier of N is the set
of blocks that are not dominated N

and which are "first reached” on
paths from N.

S 701 Fall 2007 404

Example

3

PN

'

E

'

F

Control Flow Graph

I
PN

F

C D||E

Dominator Tree

Block B C D E F
Dominance {F} {E} {E} {F} ()
Frontier

S 701 Fall 2007

405

A block can be in its own Dominance
Frontier:

Here, DF(A) = {A}
Why? Reconsider the definition:

DF(N) =
{Z| M—Z & (N dom M) &
—(N sdom 2)}

Now B is dominated by A and B—A.

Moreover, A does not strictly
dominate itself. So, it meets the
definition.

S 701 Fall 2007 406

PostdomiNnance FRONTIERS

The Postdominance Frontier of a basic
block N, PDF(N), is the set of all
blocks that are immediate
predecessors to blocks postdominated
by N, but which aren't themselves
postdominated by N.

PDF(N) =
{Z|Z—>M & (N pdom M) &
—(N pdom 2)}

The postdominance frontier of N is
the set of blocks closest to N where a
C

noice was made of whether to reach
N or not.

S 701 Fall 2007 407

Example

! ™

A

PN

PN

C D
e SRLE L
E .
¢ Postominator Tree
F
Control Flow Graph
Block A B C D E F
Postdominance 0) {A} | {B} | {B} | {A} 0)
Frontier

S 701 Fall 2007

408

Control Dependence

Since CFGs model flow of control, it
Is useful to identify those basic blocks
whose execution is controlled by a
branch decision made by a
predecessor.

We say Y is control dependent on X if,
reaching X, choosing one out arc will
force Y to be reached, while choosing
another arc out of X allows Y to be
avoided.

Formally, Y is control dependent on X
If and only If,

(a) Y postdominates a successor of X.

(b) Y does not postdominate all
successors of X.

X iIs the most recent block where a
choice was made to reach Y or not.

S 701 Fall 2007

409

Control Dependence Graph

We can build a Control Dependence
Graph that shows (in graphical form)
all Control Dependence relations.

(A Block can be Control Dependent on
itself.)

S 701 Fall 2007 410

Olg—| W |a—| >

PN

D E

N

F

G

'

H

Control Flow Graph

iﬁ\
:

A

'
PN

C D E

Postominator Tree
A

%
e

NN

D E

Control Dependence

Graph

What happened to H in the CD Graph?

S 701 Fall 2007

411

Let's reconsider the CD Graph:

i Cig\

Y I
FaN .
N F s Cont(;(;; I;):epenEdence

G

v

H

Control Flow Graph

Blocks C and F, as well as D and E,
seem to have the same control
dependence relations with their
parent. But this isn't so!

C and F are control equivalent, but D
and E are mutually exclusive!

S 701 Fall 2007

412

Improving The RepResenTATION

of Control Dependence

We can label arcs in the CFG and t
CD Graph with the condition (T or
or some switch value) that caused t
arc to be selected for execution.

This labeling then shows the

gls

gls

conditions that lead to the execution

of a given block.

To allow the exit block to appear in

the CD Graph, we can also add
“artificial” start and exit blocks,
linked together.

S 701 Fall 2007

413

Start

: 7
' PR
(CIRE

g

Exit

Control Dependence
Graph

Control Flow Graph

Now C and F have the same Control
Dependence relations—they are part
of the same extended basic block.

But D and E aren't identically control
dependent. Similarly, A and H are
control equivalent, as are B and G.

S 701 Fall 2007

414

Data Flow Frameworks
Revisited

Recall that a Data Flow problem is
characterized as:

(a) A Control Flow Graph
(b) A Lattice of Data Flow values

(c) A Meet operator to join solutions
from Predecessors or Successors

(d) A Transfer Function
Out = f(In) or In = f, (Out)

S 701 Fall 2007 415

Value LATTiCE

The lattice of values is usually a meet
semilattice defined by:

A: a set of values

T and L ("top" and “bottom"):
distinguished values in the lattice

<: A reflexive partial order relating
values in the lattice

A: An associative and commutative
meet operator on lattice values

S 701 Fall 2007 416

LatTice Axioms

The following axioms apply to the
lattice defined by A, T, 1, < and A:

as<b < aanb=a
ana=a
aAnb)<a
aAb)<Db
aAT)=a
anl)=1

S 701 Fall 2007 a7

Monotone TransFer FuncTtion

Transfer Functions, f:L — L (where L

is the Data Flow Lattice) are normally
required to be monotone.

Thatisx<y =

fo(x) < fy(y).

This rule states that a "worse” input

can't produce a

"better” output.

Monotone transfer functions allow us
to guarantee that data flow solutions

are stable.

If we had f,(T) = L and f,(L)=T,
then solutions might oscillate

between T and _

_ indefinitely.

Since L <T, f,(L) should be < fi(T).

But fy(L) =Tw

nich is not < i (T) =

1. Thus f, isn't monotone.

S 701 Fall 2007

418

DominatoRrs Fit The Data Flow
Framework

Given a set of Basic Blocks, N, we
have:

A is 2N (all subsets of Basic Blocks).
T is N.

L is ¢.

as<b=ach.

f;(in) =In U {Z}

A is M (set intersection).

S 701 Fall 2007

419

The required axioms are satisfied:
acb oanb=a

aNa=a

anNb)ca

anNb)cb

an N) =a

@an)=¢

Also f; is monotone since

acb=au{Zlc bu {Z} =
fz(a) = fz(b)

S 701 Fall 2007 420

