
504CS 701 Fall 2007©

SSA and Value Numbering
We already know how to do available
expression analysis to determine if a
previous computation of an
expression can be reused.
A limitation of this analysis is that it
can’t recognize that two expressions
that aren’t syntactically identical may
actually still be equivalent.
For example, given
t1 = a + b

c = a

t2 = c + b

Available expression analysis won’t
recognize that t1 and t2 must be
equivalent, since it doesn’t track the
fact that a = c at t2.

505CS 701 Fall 2007©

Value Numbering
An early expression analysis
technique called value numbering
worked only at the level of basic
blocks. The analysis was in terms of
“values” rather than variable or
temporary names.
Each non-trivial (non-copy)
computation is given a number, called
its value number.
Two expressions, using the same
operators and operands with the same
value numbers, must be equivalent.

506CS 701 Fall 2007©

For example,
t1 = a + b

c = a

t2 = c + b

is analyzed as
v1 = a

v2 = b

t1 = v1 + v2

c = v1

 t2 = v1 + v2

Clearly t2 is equivalent to t1 (and
hence need not be computed).

507CS 701 Fall 2007©

In contrast, given
t1 = a + b

a = 2

t2 = a + b

the analysis creates
v1 = a

v2 = b

t1 = v1 + v2

v3 = 2

 t2 = v3 + v2

Clearly t2 is not equivalent to t1
(and hence will need to be
recomputed).

508CS 701 Fall 2007©

Extending Value Numbering to
Entire CFGs

The problem with a global version of
value numbering is how to reconcile
values produced on different flow
paths. But this is exactly what SSA is
designed to do!
In particular, we know that an
ordinary assignment
x = y

does not imply that all references to x
can be replaced by y after the
assignment. That is, an assignment is
not an assertion of value equivalence.

509CS 701 Fall 2007©

But,
 in SSA form
xi = yj

does mean the two values are always
equivalent after the assignment. If yj
reaches a use of xi, that use of xi can
be replaced with yj.
Thus in SSA form, an assignment is
an assertion of value equivalence.

510CS 701 Fall 2007©

We will assume that simple variable
to variable copies are removed by
substituting equivalent SSA names.
This alone is enough to recognize
some simple value equivalences.
As we saw,
t1 = a1 + b1
c1 = a1
t2 = c1 + b1

becomes
t1 = a1 + b1
t2 = a1 + b1

511CS 701 Fall 2007©

Partitioning SSA Variables
Initially, all SSA variables will be
partitioned by the form of the
expression assigned to them.
Expressions involving different
constants or operators won’t (in
general) be equivalent, even if their
operands happen to be equivalent.
Thus
v1 = 2 and w1 = a2 + 1

are always considered inequivalent.
But,
v3 = a1 + b2 and w1 = d1 + e2

may possibly be equivalent since both
involve the same operator.

512CS 701 Fall 2007©

Phi functions are potentially
equivalent only if they are in the
same basic block.
All variables are initially considered
equivalent (since they all initially are
considered uninitialized until explicit
initialization).
After SSA variables are grouped by
assignment form, groups are split.
If ai op by and ck op dl
are in the same group (because they
both have the same operator, op)
and ai /≡ ck or bj /≡ dl
then we split the two expressions
apart into different groups.
We continue splitting based on
operand inequivalence, until no more
splits are possible. Values still
grouped are equivalent.

513CS 701 Fall 2007©

Example

Now b4 isn’t equivalent to anything,
so split a5 and b5. In G7 split
operands b3, a5 and b5. We now have

if (...) {
 a1=0
 if (...)

b1=0
 else {

a2=x0
b2=x0 }

 a3=φ(a1,a2)
 b3=φ(b1,b2)
 c2=*a3
 d2=*b3 }
else {
 b4=10 }
a5=φ(a0,a3)
b5=φ(b3,b4)
c3=*a5
d3=*b5
e3=*a5

Initial Groupings:

G1=[a0,b0,c0,d0,e0,x0]
G2=[a1=0, b1=0]
G3=[a2=x0, b2=x0]
G4=[b4=10]
G5=[a3=φ(a1,a2),

b3=φ(b1,b2)]
G6=[a5=φ(a0,a3),

b5=φ(b3,b4)]
G7=[c2=*a3,

d2=*b3,
d3=*b5,
c3=*a5,
e3=*a5]

514CS 701 Fall 2007©

Variable e3 can use c3’s value and d2
can use c2’s value.

if (...) {
 a1=0
 if (...)

b1=0
 else {

a2=x0
b2=x0 }

 a3=φ(a1,a2)
 b3=φ(b1,b2)
 c2=*a3
 d2=*b3 }
else {
 b4=10 }
a5=φ(a0,a3)
b5=φ(b3,b4)
c3=*a5
d3=*b5
e3=*a5

Final Groupings:

G1=[a0,b0,c0,d0,e0,x0]
G2=[a1=0, b1=0]
G3=[a2=x0, b2=x0]
G4=[b4=10]
G5=[a3=φ(a1,a2),

b3=φ(b1,b2)]
G6a=[a5=φ(a0,a3)]
G6b=[b5=φ(b3,b4)]
G7a=[c2=*a3,

d2=*b3]
G7b=[d3=*b5]
G7c=[c3=*a5,

e3=*a5]

515CS 701 Fall 2007©

Limitations of Global Value
Numbering

As presented, our global value
numbering technique doesn’t
recognize (or handle) computations
of the same expression that produce
different values along different paths.
Thus in

variable a3 isn’t equivalent to either
a1 or a2.

a1=1
t1=a1+b0

a2=2
t2=a2+b0

a3=φ(a1,a2)
t3=a3+b0

516CS 701 Fall 2007©

But,
we can still remove a redundant
computation of a+b by moving the
computation of t3 to each of its
predecessors:

Now a redundant computation of a+b
is evident in each predecessor block.
Note too that this has a nice register
targeting effect—e1, e2 and e3 can be
readily mapped to the same live
range.

a1=1
t1=a1+b0

a2=2
t2=a2+b0

e3=φ(e1,e2)
t3=e3

e1=a1+b0 e2=a2+b0

517CS 701 Fall 2007©

The notion of moving expression
computations above phi functions
also meshes nicely with notion of
partial redundancy elimination. Given

moving a+b above the phi produces

Now a+b is computed only once on
each path, an improvement.

a1=1
t1=a1+b0

a2=2

a3=φ(a1,a2)
t3=a3+b0

a1=1
t1=a1+b0

a2=2
t2=a2+b0

t3=φ(t1,t2)

518CS 701 Fall 2007©

Reading Assignment
• Read "Global Optimization by

Suppression of Partial Redundancies,”
Morel and Renvoise.
(Linked from the class Web page.)

• Read “Profile Guided Code Positioning,”
Pettis and Hansen.
(Linked from the class Web page.)

519CS 701 Fall 2007©

Partial Redundancy Analysis
Partial Redundancy Analysis is a
boolean-valued data flow analysis
that generalizes available expression
analysis.
Ordinary available expression analysis
tells us if an expression must already
have been evaluated (and not killed)
along all execution paths.
Partial redundancy analysis, originally
developed by Morel & Renvoise,
determines if an expression has been
computed along some paths.
Moreover, it tells us where to add
new computations of the expression
to change a partial redundancy into a
full redundancy.

520CS 701 Fall 2007©

This technique never adds
computations to paths where the
computation isn’t needed. It strives to
avoid having any redundant
computation on any path.
In fact, this approach includes
movement of a loop invariant
expression into a preheader. This loop
invariant code movement is just a
special case of partial redundancy
elimination.

521CS 701 Fall 2007©

Basic Definition & Notation
For a Basic Block i and a particular
expression, e:
Transpi is true if and only if e’s
operands aren’t assigned to in i.
Transpi ≡ ¬ Killi

Compi is true if and only if e is
computed in block i and is not killed
in the block after computation.
Compi ≡ Geni

522CS 701 Fall 2007©

AntLoci (Anticipated Locally in i) is
true if and only if e is computed in i
and there are no assignments to e’s
operands prior to e’s computation.
If AntLoci is true, computation of e in
block i will be redundant if e is
available on entrance to i.

523CS 701 Fall 2007©

We’ll need some standard data flow
analyses we’ve seen before:
AvIni = Available In for block i

 = 0 (false) for b0

 =

AvOuti = Compi OR
 (AvIni AND Transpi)

≡ Geni OR
 (AvIni AND ¬ Killi)

AND
p ∈ Pred(i)

 AvOutp

524CS 701 Fall 2007©

We anticipate an expression if it is
very busy:
AntOuti = VeryBusyOuti
 = 0 (false) if i is an exit block

 =

AntIni = VeryBusyIni

 = AntLoci OR
 (Transpi AND AntOuti)

AND
s ∈ Succ(i)

 AntIns

525CS 701 Fall 2007©

Partial Availability
Partial availability is similar to
available expression analysis except
that an expression must be computed
(and not killed) along some (not
necessarily all) paths:
PavIni

 = 0 (false) for b0

 =

PavOuti = Compi OR
 (PavIni AND Transpi)

OR
p ∈ Pred(i)

 PavOutp

526CS 701 Fall 2007©

Where are Computations
Added?

The key to partial redundancy
elimination is deciding where to add
computations of an expression to
change partial redundancies into full
redundancies (which may then be
optimized away).

527CS 701 Fall 2007©

We’ll start with an “enabling term.”
Consti = AntIni AND

[PavIni OR (Transpi AND ¬ AntLoci)]

This term say that we require the
expression to be:
(1) Anticipated at the start of block i
 (somebody wants the expression)
and
(2a) The expression must be partially

available (to perhaps transform
into full availability)

or
(2b) The block neither kills nor

computes the expression.

528CS 701 Fall 2007©

Next, we compute PPIni and PPOuti.
PP means “possible placement” of a
computation at the start (PPIni) or
end (PPOuti) of a block.

These values determine whether a
computation of the expression would
be “useful” at the start or end of a
basic block.
PPOuti
= 0 (false) for all exit blocks

=

We try to move computations “up”
(nearer the start block).
It makes sense to compute an
expression at the end of a block if it
makes sense to compute at the start
of all the block’s successors.

AND
s ∈ Succ(i)

 PPIns

529CS 701 Fall 2007©

PPIni = 0 (false) for b0.

 = Consti
AND (AntLoci OR (Transpi AND PPOuti))

To determine if PPIni is true, we first
check the enabling term. It makes sense
to consider a computation of the
expression at the start of block i if the
expression is anticipated (wanted) and
partially available or if the expression is
anticipated (wanted) and it is neither
computed nor killed in the block.
We then check that the expression is
anticipated locally or that it is
unchanged within the block and possibly
positioned at the end of the block.

AND
p ∈ Pred(i)

 (PPOutp OR AvOutp)

530CS 701 Fall 2007©

Finally, we check that all the block’s
predecessors either have the expression
available at their ends or are willing to
position a computation at their end.

Note also, the bi-directional nature of
this equation.

531CS 701 Fall 2007©

Inserting New Computations
After PPIni and PPOuti are computed, we
decide where computations will be
inserted:
Inserti = PPOuti AND (¬ AvOuti) AND
 (¬ PPIni OR ¬ Transpi)

This rule states that we really will
compute the expression at the end of
block i if this is a possible placement
point and the expression is not already
computed and available and moving the
computation still earlier doesn’t work
because the start of the block isn’t a
possible placement point or because the
block kills the expression.

532CS 701 Fall 2007©

Removing Existing
Computations

We’ve added computations of the
expression to change partial
redundancies into full redundancies.
Once this is done, expressions that
are fully redundant can be removed.
But where?
 Removei = AntLoci and PPIni

This rule states that we remove
computation of the expression in
blocks where it is computed locally
and might be moved to the block’s
beginning.

533CS 701 Fall 2007©

Partial Redundancy Subsumes
Available Expression Analysis

Using partial redundancy analysis, we
can find (and remove) ordinary fully
redundant available expressions.
Consider a block, b, in which:
(1) The expression is computed

(anticipated) locally
and
(2) The expression is available on

entrance
Point (1) tells us that AntLocb is true

534CS 701 Fall 2007©

Moreover, recall that
PPInb = Constb AND
 (AntLocb OR ...)

Constb = AntInb AND [PavInb OR ...]

We know AntLocb is true ⇒ AntInb =
true.
Moreover, AvInb = true ⇒ PavInb = true.

Thus Constb = true.

If AvInb is true, AvOutp is true for all p ∈
Pred(b).
Thus PPInb AND AntLocb = true =
Removeb

AND
p ∈ Pred(i)

 (AvOut p)OR ...

535CS 701 Fall 2007©

Are any computations added earlier (to
any of b’s ancestors)?
No:
Inserti = PPOuti AND (¬ AvOuti) AND
 (¬ PPIni OR ¬ Transpi)

But for any ancestor, i, between the
computation of the expression and b,
AvOuti is true, so Inserti must be false.

536CS 701 Fall 2007©

Examples of Partial
Redundancy Elimination

At block 3, x+3 is partially, but not
fully, redundant.
PPIn3 = Const3 AND
 (AntLoc3 OR ...)

Const3 = AntIn3 AND [PavIn3 OR ...]
Now AntIn3 = true and PavIn3 = true.

Const3 = true AND true = true

x=1 x=2
x+3

x+3

1 2

3

AND
p ∈ Pred(3)

 (PPOutp OR AvOutp)

537CS 701 Fall 2007©

PPout1 = PPIn3

Default initialization of PPIn and
PPOut terms is true, since we AND
terms together.
AntLoc3 = true.

PPIn3 = true AND true

 =

PPOut1 AND AvOut2= true AND true
= PPIn3 = PPOut1.

 Insert1 = PPOut1 AND (¬ AvOut1)
AND (¬ PPIn1 OR ¬ Transp1) =

 PPOut1 AND (¬ AvOut1)
AND (¬ Transp1) = true,

so x+3 is inserted at the end of block
3.

AND
p ∈ Pred(3)

 (PPOutp OR AvOutp)

538CS 701 Fall 2007©

Remove3 = AntLoc3 and PPIn3
= true AND true = true, so x+3 is
removed from block 3.
Is x+3 inserted at the end of block 2?
(It shouldn’t be).

 Insert2 = PPOut2 AND (¬ AvOut2)
AND (¬ PPIn2 OR ¬ Transp2) =

 PPOut2 AND false AND
 (¬ PPIn2 OR ¬ Transp2) = false.
We now have

x=1 x=2
x+3

1 2

3

x+3

539CS 701 Fall 2007©

Computations May Move Up
Several Blocks

Again, at block 4, x+3 is partially, but
not fully, redundant.
PPIn4 = Const4 AND
 (AntLoc4 OR ...)

x=1 x=2
x+3

1 2

3

x+3
4

AND
p ∈ Pred(4)

 (PPOutp OR AvOutp)

540CS 701 Fall 2007©

Const4 = AntIn4 AND [PavIn4 OR ...]
Now AntIn4 = true and PavIn4 = true.

Const4 = true AND true = true

PPout3 = PPIn4.

AntLoc4 = true.

PPIn4 = true AND true

 =

PPOut3 = true.

PPIn3 = Const3 AND
 ((Transp3 AND PPOut3) OR ...)

Const3 = AntIn3 AND [PavIn3 OR ...]
AntIn3 = true and PavIn3 = true.

AND
p ∈ Pred(4)

 (PPOutp OR AvOutp)

AND
p ∈ Pred(3)

 (PPOutp OR AvOutp)

541CS 701 Fall 2007©

Const3 = true AND true = true

PPOut1 = PPIn3

Transp3 = true.

PPIn3 = true AND (true AND true)

 =

PPOut1 AND AvOut2= true AND true
= PPIn3 = PPOut1.

AND
p ∈ Pred(3)

 (PPOutp OR AvOutp)

542CS 701 Fall 2007©

Where Do We Insert
Computations?

 Insert3 = PPOut3 AND (¬ AvOut3)
AND (¬ PPIn3 OR ¬ Transp3) =

 true AND (true) AND
 (false OR false) = false
so x+3 is not inserted at the end of
block 3.
Insert2 = PPOut2 AND (¬ AvOut2)

AND (¬ PPIn2 OR ¬ Transp2) =

 PPOut2 AND (false)
AND (¬ PPIn2 OR ¬ Transp2)=false,

so x+3 is not inserted at the end of
block 2.

543CS 701 Fall 2007©

 Insert1 = PPOut1 AND (¬ AvOut1)
AND (¬ PPIn1 OR ¬ Transp1) =

 true AND (true) AND
 (¬ PPIn1 OR true) = true

so x+3 is inserted at the end of block
3.
Remove4 = AntLoc4 and PPIn4

 = true AND true = true, so x+3 is
removed from block 4.

We finally have

x=1 x=2
x+3

1 2

3

4

x+3

