SSA and Value Numbering

We already know how to do available expression analysis to determine if a previous computation of an expression can be reused.

A limitation of this analysis is that it can't recognize that two expressions that aren't syntactically identical may actually still be equivalent.

For example, given

t1 = a + b c = a t2 = c + b

Available expression analysis won't recognize that t1 and t2 must be equivalent, since it doesn't track the $fact that **a** = **c** at **t2**.$

Value Numbering

An early expression analysis technique called *value numbering* **worked only at the level of basic blocks. The analysis was in terms of "values" rather than variable or temporary names.**

Each non-trivial (non-copy) computation is given a number, called its *value number***.**

Two expressions, using the same operators and operands with the same value numbers, must be equivalent.

CS 701 Fall 200 $\hat{\mathcal{T}}$ 505

 504 Fall 200 $\hat{7}^{\circ}$ 504

For example, t1 = a + b c = a t2 = c + b is analyzed as v1 = a v2 = b t1 = v1 + v2 c = v1 $t2 = v1 + v2$ **Clearly t2 is equivalent to t1 (and hence need not be computed).**

In contrast, given t1 = a + b a = 2 t2 = a + b the analysis creates v1 = a v2 = b t1 = v1 + v2 v3 = 2 $t2 = v3 + v2$ **Clearly t2 is not equivalent to t1 (and hence will need to be recomputed).**

Extending Value Numbering to Entire CFGs

The problem with a global version of value numbering is how to reconcile values produced on different flow paths. But this is exactly what SSA is designed to do!

In particular, we know that an ordinary assignment

x = y

does *not* **imply that all references to x can be replaced by y after the assignment. That is, an assignment** *is not* **an assertion of value equivalence.**

*But***,**

 in SSA form

 $x_i = y_j$

does **mean the two values are** *always* **equivalent after the assignment. If yj** reaches a use of x_i , that use of x_i *can* **be replaced with yj.**

Thus in SSA form, an assignment *is* **an assertion of value equivalence.**

We will assume that simple variable to variable copies are removed by substituting equivalent SSA names.

 508 CS 701 Fall 200 $\tilde{7}$ 508

This alone is enough to recognize some simple value equivalences.

As we saw,

 $t_1 = a_1 + b_1$ $c_1 = a_1$ $t_2 = c_1 + b_1$ **becomes**

$$
t_1 = a_1 + b_1
$$

$$
t_2 = a_1 + b_1
$$

Partitioning SSA Variables

Initially, all SSA variables will be partitioned by the *form* **of the expression assigned to them.**

 509 CS 701 Fall 200 $\tilde{7}$ 509

Expressions involving different constants or operators won't (in general) be equivalent, even if their operands happen to be equivalent. Thus

 v_1 = 2 and w_1 = a_2 + 1

are always considered inequivalent. But,

 $v_3 = a_1 + b_2$ and $w_1 = d_1 + e_2$ **may** *possibly* **be equivalent since both involve the same operator.**

Phi functions are potentially equivalent only if they are in the same basic block.

All variables are initially considered equivalent (since they all initially are considered uninitialized until explicit initialization).

After SSA variables are grouped by assignment form, groups are split.

If $\mathsf{a_i}$ op $\mathsf{b_y}$ and $\mathsf{c_k}$ op $\mathsf{d_l}$

are in the same group (because they both have the same operator, op) and $a_i \neq c_k$ or $b_i \neq d_l$ **then we split the two expressions**

apart into different groups.

We continue splitting based on operand inequivalence, until no more splits are possible. Values still grouped are equivalent.

 512 CS 701 Fall 200 $\hat{7}^{\circ}$

if (...) { $a_1 = 0$ **if (...)** $$ **else {** $a_2 = x_0$ $b_2 = x_0$ } $a_3 = \phi(a_1, a_2)$ $b_3 = \phi(b_1, b_2)$ c_2 =*a₃ d_2 =*b₃ } **else {** $b_4=10$ } $a_5 = \phi(a_0, a_3)$ $b_5 = \phi(b_3, b_4)$ c_3 =***a**₅ d_3 =* b_5 e_3 =*a₅ **Final Groupings:** $G_1 = [a_0, b_0, c_0, d_0, e_0, x_0]$ $G_2 = [a_1 = 0, b_1 = 0]$ $G_3 = [a_2 = x_0, b_2 = x_0]$ $G_4 = [b_4 = 10]$ $G_5 = [a_3 = \phi(a_1, a_2)]$ $b_3 = \phi(b_1, b_2)$ G_{6a} =[**a**₅= ϕ (**a**₀, **a**₃)[]] G_{6b} =[**b**₅= ϕ (**b**₃,**b**₄)</sub>] G_{7a} =[**c**₂=*a₃*,* d_2 =*b₃ $G_{7b}=[d_3=$ ***** $b_5]$ $G_{7c}=[c_{3}***a_{5}$ e_3 =*a₅]

Variable \mathbf{e}_3 can use \mathbf{c}_3 's value and \mathbf{d}_2 can use **c**₂'s value.

Example

Now **b**₄ isn't equivalent to anything, **so split** a_5 and b_5 . In G_7 split **operands b3, a5 and b5. We now have**

 513 CS 701 Fall 200 $\hat{7}^{\circ}$

Limitations of Global Value Numbering

As presented, our global value numbering technique doesn't recognize (or handle) computations of the same expression that produce different values along different paths.

Thus in

variable a₃ isn't equivalent to either a_1 or a_2 .

*But***,**

we can still remove a redundant computation of a+b by moving the computation of t_3 to each of its **predecessors:**

Now a redundant computation of a+b is evident in each predecessor block. Note too that this has a nice register targeting effect—e1, e2 and e3 can be readily mapped to the same live range.

CS 701 Fall 200 $\hat{\mathcal{T}}$ 516

The notion of moving expression computations above phi functions also meshes nicely with notion of partial redundancy elimination. Given

moving a+b above the phi produces

Now a+b is computed only once on each path, an improvement.

 517 CS 701 Fall 200 $\hat{7}^{\circ}$ 6517

Reading Assignment

- **• Read "Global Optimization by Suppression of Partial Redundancies," Morel and Renvoise. (Linked from the class Web page.)**
- **• Read "Profile Guided Code Positioning," Pettis and Hansen. (Linked from the class Web page.)**

Partial Redundancy Analysis

Partial Redundancy Analysis is a boolean-valued data flow analysis that generalizes available expression analysis.

Ordinary available expression analysis tells us if an expression must already have been evaluated (and not killed) along *all* **execution paths.**

Partial redundancy analysis, originally developed by Morel & Renvoise, determines if an expression has been computed along *some* **paths. Moreover, it tells us where to add new computations of the expression to change a partial redundancy into a full redundancy.**

This technique *never* **adds computations to paths where the computation isn't needed. It strives to avoid having any redundant computation on any path.**

In fact, this approach includes movement of a loop invariant expression into a preheader. This loop invariant code movement is just a special case of partial redundancy elimination.

Basic Definition & Notation

For a Basic Block i and a particular expression, e: Transpi is true if and only if e's operands aren't assigned to in i. $Transp_i \equiv \neg$ Kill_i

Compi is true if and only if e is computed in block i and is not killed in the block after computation. Compi ≡ **Geni**

CS 701 Fall 200 $\hat{\mathcal{T}}$ 521

We'll need some standard data flow

 520 CS 701 Fall 200 $\tilde{7}$ 620

AntLoci (Anticipated Locally in i) is true if and only if e is computed in i and there are no assignments to e's operands prior to e's computation. If AntLoc_i is true, computation of e in **block i will be redundant if e is available on entrance to i.**

analyses we've seen before: AvIni = Available In for block i $= 0$ (false) for b_0 **=** AND **AvOutpAvOuti = Compi OR** $(Avln_i \; AND \; Transporti>$ ≡ **Geni OR** $(Avln_i AND \rightarrow$ Kill_i) **p** ∈ **Pred(i)**

Partial Availability

Partial availability is similar to available expression analysis except that an expression must be computed (and not killed) along *some* **(not necessarily** *all***) paths:**

PavIni

 $= 0$ (false) for b_0

 = OR PavOutp p ∈ **Pred(i)**

PavOuti = Compi OR (PavIni AND Transpi)

Where are Computations Added?

The key to partial redundancy elimination is deciding where to add computations of an expression to change partial redundancies into full redundancies (which may then be optimized away).

We'll start with an "enabling term." Consti = AntIni AND [PavIni OR (Transpi AND ¬ **AntLoci)]**

CS 701 Fall 200 $\hat{\mathcal{T}}$ 525

This term say that we require the expression to be:

- **(1) Anticipated at the start of block i (somebody wants the expression)** *and*
- **(2a) The expression must be partially available (to perhaps transform into full availability)**

or

(2b) The block neither kills nor computes the expression.

Next, we compute PPIni and PPOuti . PP means "possible placement" of a computation at the start (PPIni) or end (PPOuti) of a block.

These values determine whether a computation of the expression would be "useful" at the start or end of a basic block.

PPOuti

= 0 (false) for all exit blocks

$$
= \begin{array}{ll} \text{AND} & \text{PPIn}_S \\ s \in \text{Succ}(i) \end{array}
$$

We try to move computations "up" (nearer the start block).

It makes sense to compute an expression at the end of a block if it makes sense to compute at the start of all the block's successors.

CS 701 Fall 200 $\hat{\mathcal{T}}$ 528

PPIn_i = 0 (false) for b₀. = Const_i

AND (AntLoci OR (Transpi AND PPOuti))

AND **(PPOutp OR AvOutp) p** ∈ **Pred(i)**

To determine if PPIn_i is true, we first **check the enabling term. It makes sense to consider a computation of the expression at the start of block i if the expression is anticipated (wanted) and partially available or if the expression is anticipated (wanted) and it is neither computed nor killed in the block.**

We then check that the expression is anticipated locally or that it is unchanged within the block and possibly positioned at the end of the block.

 529 CS 701 Fall 200 $\tilde{7}$ 629

Finally, we check that all the block's predecessors either have the expression available at their ends or are willing to position a computation at their end.

Note also, the bi-directional nature of this equation.

Inserting New Computations

After PPIni and PPOuti are computed, we decide where computations will be inserted:

Inserti = PPOuti AND (¬ **AvOuti) AND (**¬ **PPIni OR** ¬ **Transpi)**

This rule states that we really will compute the expression at the end of block i if this is a possible placement point and the expression is not already computed and available and moving the computation still earlier doesn't work because the start of the block isn't a possible placement point or because the block kills the expression.

 530 CS 701 Fall 200^{$\frac{6}{5}$}

Removing Existing Computations

We've added computations of the expression to change partial redundancies into full redundancies. Once this is done, expressions that are fully redundant can be removed.

But where?

 $Remove_i = AntLoc_i$ and PPIn_i

This rule states that we remove computation of the expression in blocks where it is computed locally and might be moved to the block's beginning.

Partial Redundancy Subsumes Available Expression Analysis

Using partial redundancy analysis, we can find (and remove) ordinary fully redundant available expressions.

Consider a block, b, in which:

(1) The expression is computed (anticipated) locally

and

(2) The expression is available on entrance

Point (1) tells us that AntLoc_h is true

 532 CS 701 Fall 200 $\hat{7}^{\circ}$ 632

Moreover, recall that $PPIn_b = Const_b$ AND **(AntLoc**_b OR ...) $Const_b = AntIn_b AND [PavIn_b OR ...]$ We know $AntLoc_b$ is true \Rightarrow Antln_b = **true.** Moreover, $AvIn_h = true \implies PavIn_h = true$. Thus $Const_h = true$. **If AvIn**_b is true, AvOut_p is true for all $p \in$ **Pred(b).** Thus $PPIn_b$ AND AntLoc_b = true = **Remove**_h AND **(AvOut ^p OR ...) p** ∈ **Pred(i)**

Are any computations added earlier (to any of b's ancestors)?

CS 701 Fall 200 $\hat{\mathcal{T}}$ 533

No:

Inserti = PPOuti AND (¬ **AvOuti) AND (**¬ **PPIni OR** ¬ **Transpi)**

But for any ancestor, i, between the computation of the expression and b, AvOuti is true, so Inserti must be false.

CS 701 Fall 200 $\hat{\mathcal{T}}$ 537

 $Remove₃ = AntLoc₃$ and PPIn₃ **= true AND true = true, so x+3 is removed from block 3. Is x+3 inserted at the end of block 2? (It shouldn't be).** $Insert_2 = PPOut_2$ AND $(-AvOut_2)$ AND $\left(\neg$ PPIn₂ OR \neg Transp₂) = **PPOut₂** AND false AND $(-$ PPIn₂ OR \rightarrow Transp₂) = false. **We now have x=1 x=2 x+3** $1 \sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ **3 x+3**

 539 CS 701 Fall 200^{$\frac{6}{5}$}


```
Const<sub>3</sub> = true AND true = truePPOut_1 = PPIn_3Transp<sub>3</sub> = true.PPIn3 = true AND (true AND true)
    =
AND
 (PPOutp OR AvOutp)
PPOut1 AND AvOut2
= true AND true
= PPIn<sub>3</sub> = PPOut<sub>1</sub>.
   p ∈ Pred(3)
```
 541 Cs 701 Fall 200 $\widehat{7}$ 641

Where Do We Insert Computations?

> $Insert_3 = PPOut_3 AND (-Avol_3)$ AND (\neg PPIn₃ OR \neg Transp₃) = **true AND (true) AND (false OR false) = false so x+3 is** *not* **inserted at the end of block 3.** $Insert_2 = PPOut_2$ AND $\left(\neg \text{AvOut}_2\right)$ AND (\neg PPIn₂ OR \neg Transp₂) = **PPOut₂** AND (false) **AND** (\neg **PPIn**₂ OR \neg **Transp₂)=false**, **so x+3 is** *not* **inserted at the end of block 2.**

 $Insert_1 = PPOut_1 AND (-AvOut_1)$ AND (\neg PPIn₁ OR \neg Transp₁) = **true AND (true) AND** $(-$ PPIn₁ OR true) = true **so x+3** *is* **inserted at the end of block 3.** $Remove_4 = AntLoc_4$ and $PPln_4$ **= true AND true = true, so x+3 is removed from block 4. We finally have x=1 x=2 x+3** $1 \sqrt{2} - 1$ $\sqrt{2} - 2$ 2 **3 x+3**

4