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CHAPTER   3

Scanning—Theory and Practice

3.1 Overview

The primary function of a scanner is to read in characters from a source file and group them into tokens.
A scanner is sometimes called a lexical analyzer or lexer. The names scanner, lexical analyzer and lexer
are used interchangeably. Theac scanner we saw in Chapter 2 was quite simple and could easily be
coded by any competent programmer. We will now develop a thorough and systematic approach to
scanning that will allow us to create scanners for complete programming languages.

We will introduce formal notations for specifying the precise structure of tokens. At first glance this
may seem an unnecessary complication, given the simple token structure found in most programming
languages. However token structure can be more detailed and subtle than one might expect. For exam-
ple, we are all familiar with simple quoted strings in C, C++ or Java. The body of a string can be any
sequence of characters except a quote character (which must be escaped). But is this simple definition
really correct? Can a newline character appear in a string? In C, not unless it is escaped with a back-
slash. This is to avoid a “runaway string” which, lacking a closing quote, matches characters intended to
be part of other tokens. While C, C++ and Java allow escaped newlines in strings, Pascal is even stricter
and forbids them entirely. Ada goes further still and forbids all unprintable characters (precisely because
they are normally unreadable). Similarly, are null strings (of length zero) allowed? In C, C++, Java and
Ada they are, but Pascal forbids them. In Pascal a string is a packed array of characters, and zero length
arrays are disallowed.

A precise definition of tokens is obviously necessary to ensure that lexical rules are clearly stated and
properly enforced. Formal definitions also allow a language designer to anticipate design flaws. For
example, virtually all languages allow fixed decimal numbers, such as0.1  and10.01 . But should.1
or 10.  be allowed? In C, C++ and Java they are allowed, but in Pascal and Ada they are not—and for
an interesting reason. Scanners normally seek to match as many characters as possible so that, for exam-
ple,ABC is scanned as one identifier rather than three. But now consider the character sequence
1..10 . In Pascal and Ada, we wish this to be interpreted as a range specifier (1 to 10). If we were
careless in our token definitions, we might well scan1..10  as two real literals,1.  and.10 , which
would lead to an immediate (and unexpected) syntax error. (The fact that two reals cannot be adjacent is
reflected in the context-free grammar, which is enforced by the parser, not the scanner.)

Given a formal specification of token and program structure, it is possible to examine a language for
design flaws. For example, we could analyze all pairs of tokens that can be adjacent and determine
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whether the catenation of the two might be incorrectly scanned. If so, a separator is required (as is the
case for adjacent identifiers and reserved words), or the lexical or program syntax might need to be
redesigned. The point is that language design is far more involved than one might expect, and formal
specifications allow flaws to be discovered before the design is completed.

All scanners, independent of the tokens to be recognized, perform much the same function. Thus writ-
ing a scanner from scratch means reimplementing components common to all scanners, a significant
duplication of effort. The goal of ascanner generator is to limit the effort in building a scanner to spec-
ifying which tokens the scanner is to recognize. Using a formal notation, we tell the scanner generator
what tokens we want recognized; it is the generator’s responsibility to produce a scanner that meets our
specification. Some generators do not produce an entire scanner; rather, they produce tables that can be
used with a standard driver program. The combination of generated tables and standard driver yields the
desired custom scanner.

Programming a scanner generator is an example of declarative programming. That is, unlike ordinary
programming, which we call procedural, we do not tell a scanner generator how to scan but simply what
we want scanned. This is a higher-level approach and in many ways a more natural one. Much recent
research in computer science is directed toward declarative programming styles. (Database query lan-
guages and Prolog, a “logic” programming language, are declarative.) Declarative programming is most
successful in limited domains, such as scanning, where the range of implementation decisions that must
be automatically made is limited. Nonetheless, a long-standing (and as yet unrealized) goal of computer
scientists is to automatically generate an entire production-quality compiler from a specification of the
properties of the source language and target computer.

Though our primary focus in this text is on producing correct compilers, performance is sometimes a
real concern, especially in widely-used “production compilers.” Surprisingly, even though scanners per-
form a simple task, if poorly implemented, they can be significant performance bottlenecks. The reason
is that scanners must wade through the text of a program character by character.

Assume we wish to implement a very fast compiler that can compile a program in a few seconds. Let’s
use 30,000 lines a minute (500 lines a second) as our goal. (Compiler such as “Turbo C++” achieve such
speeds.) If an average line contains 20 characters, we must scan 10,000 characters per second. On a 10
MIPS processor (10,000,000 instructions executed per second), even if we did nothing but scanning,
we’d have only 1000 instructions per input character to spend. Since scanning isn’t the only thing a
compiler does, 250 instructions per character is more realistic. This is a rather tight budget given that
even a simple assignment takes several instructions on a typical processor. Though multi-MIPS proces-
sors are common these days and 30,000 lines per minute is an ambitious speed, it’s clear that a poorly
coded scanner can dramatically impact the performance of a compiler.

In Section 3.2 we introduce a declarative regular expression notation that is well suited to the formal
definition of tokens. In Section 3.3, the correspondence between regular expressions and finite automata
will be studied. Finite automata are especially useful because they are procedural in nature and can be
directly executed to read characters and group them into tokens. A well-known scanner generator, Lex,
will be considered in some detail in Section 3.4. A few alternatives will also be considered. Lex takes
token definitions (in a declarative form—regular expressions) and produces a complete scanner subpro-
gram, ready to be compiled and executed.

Our next topic of discussion, in Section 3.5, is the practical considerations needed to build a scanner and
integrate it with the rest of the compiler. These considerations include anticipating the tokens and con-
texts that may complicate scanning, avoiding performance bottlenecks, and recovering from lexical
errors. We conclude the chapter with Section 3.6 that explains how scanner generators, like Lex, trans-
late regular expressions into finite automata and how finite automata may be converted to equivalent
regular expressions. Readers who wish to view a scanner generator as simply a black box may skip this
section. However, the material does serve to reinforce the concepts of regular expressions and finite
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automata introduced earlier. The section also illustrates how finite automata can be built, merged, sim-
plified, and even optimized.

3.2 Regular Expressions

Regular expressions are a convenient means of specifying various simple (though possibly infinite) sets
of strings. Regular expressions are of practical interest because they can be used to specify the structure
of the tokens used in a programming language. In particular, regular expressions can be used to program
a scanner generator.

Regular expressions are widely used in computer applications other than compilers. The Unix utility
grep uses regular expressions to define search patterns in files. Unix shells allow a restricted form of
regular expressions when specifying file lists for a command. Most editors provide a “context search”
command that specifies desired matches using regular expressions.

The sets of strings defined by regular expressions are termed regular sets. For purposes of scanning, a
token class will be a regular set, whose structure is defined by a regular expression. Particular instances
of a token class are sometimes called lexemes, though we will simply call a string in a token class an
instance of that token. For example, we will call the stringabc  an identifier if it matches the regular
expression that defines the set of valid identifier tokens.

Our definition of regular expressions starts with a finite character set, or vocabulary (denotedV). This
vocabulary is normally the character set used by a computer. Today, the ASCII character set, which con-
tains a total of 128 characters, is very widely used.

An empty or null string is allowed (denotedλ, “lambda”). Lambda represents an empty buffer in which
no characters have yet been matched. It also represents optional parts of tokens. Thus an integer literal
may begin with a plus or minus, or it may begin withλ if it is unsigned.

Strings are built from characters in the character setV via catenation. As characters are catenated to a
string, it grows in length. The stringdo  is built by first catenatingd to λ, and then catenatingo to the
stringd. The null string, when catenated with any strings, yieldss. That is,s λ ≡ λ s ≡ s. Catenatingλ
to a string is like adding 0 to an integer—nothing changes.

Catenation is extended to sets of strings as follows: LetP andQ be sets of strings. The symbol∈ repre-
sents set membership. Ifs1 ∈ P ands2 ∈ Q then strings1s2 ∈(P Q). Small finite sets are conveniently
represented by listing their elements, which can be individual characters or strings of characters. Paren-
theses are used to delimit expressions, and |, the alternation operator, is used to separate alternatives. For
example,D, the set of the ten single digits, is defined asD = (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9). (In this
text we will often use abbreviations like(0 | … | 9) rather than enumerate a complete list of alternatives.
The “…” symbol is not part of our regular expression notation.)

The characters (, ), ' ,∗, +, and | are meta-characters (punctuation and regular expression operators).
Meta-characters must be quoted when used as ordinary characters to avoid ambiguity. (Any character or
string may be quoted, but unnecessary quotation is avoided to enhance readability.) For example the
expression ( '(' | ')' | ;  | , ) defines four single character tokens (left parenthesis, right parenthesis,
semicolon and comma) that we might use in a programming language. The parentheses are quoted to
show they are meant to be individual tokens and not delimiters in a larger regular expression.

Alternation can be extended to sets of strings. LetP andQ be sets of strings. Then strings ∈ (P | Q) if
and only ifs ∈ P or s ∈ Q. For example, ifLC is the set of lower-case letters andUC is the set of upper-
case letters, then(LC | UC) denotes the set of all letters (in either case).
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Large (or infinite) sets are conveniently represented by operations on finite sets of characters and
strings. Catenation and alternation may be used. A third operation, Kleene closure, is also allowed. The
operator∗ will represent the postfixKleene closure operator.

Let P be a set of strings. ThenP *  represents all strings formed by the catenation of zero or more selec-
tions (possibly repeated) fromP. (Zero selections are represented byλ). For example,LC* is the set of
all words composed only of lower-case letters, of any length (including the zero length word,λ).

Precisely stated, a strings ∈ P * if and only ifs can be broken into zero or more pieces: s = s1 s2 ...sn
such that eachsi ∈ P (n ≥ 0, 1 ≤ i ≤ n). We explicitly allown = 0, so thatλ is always inP * .

Now that we are familiar with the operators used in regular expressions, we can define regular expres-
sions as follows.

• ∅ is a regular expression denoting the empty set (the set containing no strings). ∅ is rarely used, but
is included for completeness.

• λ is a regular expression denoting the set that contains only the empty string. This set is not the same
as the empty set, because it contains one element.

• A strings is a regular expression denoting a set containing the single strings. If s contains meta-
characters,s can be quoted to avoid ambiguity.

• If A andB are regular expressions, thenA |B, A B, andA* are also regular expressions, denoting the
alternation, catenation, and Kleene closure of the corresponding regular sets.

Each regular expression denotes a set of strings (a regular set). Any finite set of strings can be repre-
sented by a regular expression of the form (s1 | s2 | … |sk ). Thus the reserved words of ANSI C can be
defined as(auto | break | case | …).

We will find the following additional operations useful. They are not strictly necessary, because their
effect can be obtained (perhaps somewhat clumsily) using the three standard regular operators (alterna-
tion, catenation, Kleene closure):

• P + denotes all strings consisting ofone or more strings in P catenated together: P*  = (P+| λ) and
P+ = P P* . For example, the expression( 0 | 1 )+ is the set of all strings containing one or more bits.

• If A is a set of characters, Not(A) denotes (V − A); that is, all characters in V not included inA.
Since Not(A) contains characters rather than strings, it must be finite, and is automatically regular.
Not(A) does not containλ sinceλ is not a character (it is a zero-length string). As an example,
Not(Eol) is the set of all characters excludingEol (the end of line character, '\n' in Java or C).

It is possible to extend Not to strings, rather than justV. That is, ifS is a set of strings, we can define
S to be (V* − S); that is the set of all strings except those inS. ThoughS is usually infinite, it is also
regular ifS is (see  Exercise 18).

• If k is a constant, the setAk represents all strings formed by catenatingk (possibly different) strings
from A. That is,Ak = (A A A …) (k copies). Thus( 0 | 1 )32 is the set of all bit strings exactly 32 bits
long.

Examples

We will now explore how regular expressions can be used to specify tokens. LetD be the set of the ten
single digits and letL be the set of all letters (52 in all). Then

• A Java or C++ single-line comment that begins with// and ends with Eol can be defined as:

Comment =  //  Not(Eol)* Eol
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This regular expression says a comment begins with two slashes and ends at thefirst end of line.
Within the comment we allow any sequence of characters not containing an end of line (this guaran-
tees the first end of line we see ends the comment).

• A fixed decimal literal (e.g.,12.345 ) can be defined as:

Lit = D+
. D+

We require one or more digits on both sides of the decimal point, so this definition excludes.12  and
35.

• An optionally signed integer literal can be defined as:

IntLiteral = ( '+' | − | λ ) D+

An integer literal is one or more digits preceded by a plus or minus or no sign at all (λ). So that the
plus is not confused with the Kleene closure operator, it is quoted.

• A more complicated example is a comment delimited by##  markers, which allows single#’s within
the comment body:

Comment2 =  ## ((# | λ)  Not(#) )* ##

Within this comment’s body, whenever a# appears, it must be followed by a non-# so that a prema-
ture end of comment marker,## , is not found.

All finite sets and many infinite sets are regular. But not all infinite sets are regular. For example, con-
sider the set of balanced brackets of the form [ [ […] ] ]. This set is defined formally as{ [m ]m | m ≥ 1 }.
This is a set that is known not to be regular. The problem is that any regular expression that tries to
define it either does not getall balanced nestings or it includes extra, unwanted strings. ( Exercise 14
proves this.)

It is easy to write a context-free grammar (CFG) that defines balanced brackets precisely. In fact, all reg-
ular sets can be defined by CFGs. Thus, our bracket example shows that CFGs are a more powerful
descriptive mechanism than regular expressions. Regular expressions are, however, quite adequate for
specifying token-level syntax. Moreover, for every regular expression we can create an efficient device,
called a finite automaton, that recognizes exactly those strings that match the regular expression’s pat-
tern.

3.3 Finite Automata and Scanners

A finite automaton (FA) can be used to recognize the tokens specified by a regular expression. An FA is
a simple, idealized computer that recognizes strings belonging to regular sets. It consists of:

• A finite set of states

• A set of transitions (or moves) from one state to another, labeled with characters inV

• A special state called thestart state

• A subset of the states called theaccepting, or final, states

These four components of a finite automaton are often represented graphically:
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Finite automata (the plural of automaton is automata) can be represented graphically using transition
diagrams. Using these diagrams, we start at the start state. If the next input character matches the label
on a transition from the current state, we go to the state it points to. If no move is possible, we stop. If
we finish in an accepting state, the sequence of characters read forms a valid token; otherwise, we have
not seen a valid token. In the diagram shown below, the valid tokens are the strings described by the reg-
ular expression(a b (c)+ )+.

As an abbreviation, a transition may be labeled with more than one character (for example, Not(c)). The
transition may be taken if the current input character matches any of the characters labeling the transi-
tion.

If an FA always has aunique transition (for a given state and character), the FA is deterministic (that is,
a deterministic FA, or DFA). Deterministic finite automata are easy to program and are often used to
drive a scanner. A DFA is conveniently represented in a computer by a transition table. A transition
table,T, is a two dimensional array indexed by a DFA state and a vocabulary symbol. Table entries are
either a DFA state or an error flag (often represented as a blank table entry). If we are in states, and read
characterc, thenT[s,c] will be the next state we visit, orT[s,c] will contain an error flag indicating that
c cannot be part of the current token. For example, the regular expression

// Not(Eol)* Eol

which defines a Java or C++ single-line comment, might be translated into

is a transition

is the start state

is an accepting state

is a state

a b c

c

a

Eol/ /

Not(Eol)

1 2 3 4
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The corresponding transition table is

A full transition table will contain one column for each character. To save space, table compression is
sometimes utilized. That is, only non-error entries are explicitly represented in the table, using hashing
or linked structures.

Any regular expression can be translated into a DFA that accepts (as valid tokens) the set of strings
denoted by the regular expression. This translation can be done manually by a programmer or automati-
cally using a scanner generator.

A DFA can be coded in a

• Table-driven form

• Explicit control form

In the table-driven form, the transition table that defines a DFA’s actions is explicitly represented in a
run-time table that is “interpreted” by a driver program. In the direct control form, the transition table
that defines a DFA’s actions appears implicitly as the control logic of the program. Typically individual
program statements correspond to distinct DFA states. For example, supposeCurrentChar is the cur-
rent input character. Using the DFA for the Java comments illustrated above, the two approaches would
produce the programs illustrated in Figures 1 and 2.

The first form is commonly produced by a scanner generator; it is token-independent. It uses a simple
driver that can scanany token if the transition table is properly stored inT. The latter form may be pro-
duced automatically or by hand. The token being scanned is “hardwired” into the code. This form of a
scanner is usually easy to read and often is more efficient, but is specific to a single token definition.

• Asume CurrentChar contains the first character to be scanned
1. State ← StartState
2. while true
3. do if CurrentChar = eof
4. then break
5. NextState ← T[State, CurrentChar]
6. if NextState  = error
7. then break
8. State ← NextState
9. READ(CurrentChar)

10. if State ∈AcceptingStates
11. then • Return or process valid token
12. else • Signal a lexical error

FIGURE  1 Scanner Driver Interpreting a Transition Table

State Character

/ Eol a b …

1 2

2 3

3 3 4 3 3 3

4
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• Asume CurrentChar contains the first character to be scanned
1. if CurrentChar = '/'
2. then READ(CurrentChar)
3. if CurrentChar = '/'
4. then repeat
5. READ(CurrentChar)
6. until CurrentChar ∈ { eol, eof }
7. else • Signal a lexical error
8. else • Signal a lexical error
9. if CurrentChar = eol

10. then • Return or process valid token
11. else • Signal a lexical error

FIGURE  2 Explicit Control Scanner

The following are two more examples of regular expressions and their corresponding DFAs:

• A FORTRAN-like real literal (which requires digits on either or both sides of a decimal point, or
just a string of digits) can be defined as

RealLit = (D+ (λ | . )) | (D* . D+)

which corresponds to the DFA

• An identifier consisting of letters, digits, and underscores, which begins with a letter and allows
no adjacent or trailing underscores, may be defined as

ID = L (L | D)* ( _ (L | D)+)*

This definition includes identifiers likesum or unit_cost , but excludes_one  andtwo_  and
grand___total . The corresponding DFA is

. D

DD

D .

L | D

L

L | D

_
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So far we haven’t saved or processed the characters we’ve scanned—they are matched and then thrown
away. It is useful to add an output facility to an FA; this makes the FA a transducer. As characters are
read, they can be transformed and catenated to an output string. For our purposes, we shall limit the
transformation operations to saving or deleting input characters. After a token is recognized, the trans-
formed input can be passed to other compiler phases for further processing. We use this notation:

For example, for Java and C++ comments, we might write

A more interesting example is given by Pascal-style quoted strings, according to the regular expression

(" ( Not(") | " " )* ")

A corresponding transducer might be

The input"""Hi"""  would produce output"Hi" .

3.4 The Lex Scanner Generator

We now discuss a very popular scanner generator, Lex. We will later briefly discuss a number of other
scanner generators. Lex was developed by M.E. Lesk and E. Schmidt of AT&T Bell Laboratories. It is
used primarily with programs written in C or C++, running under the UNIX operating system. Lex pro-
duces an entire scanner module, coded in C, that can be compiled and linked with other compiler mod-
ules. A complete description of Lex can be found in [Lesk and Schmidt 1975] and [Levine, Mason and
Brown 1992]. Flex (see [Paxson 1988]) is a widely used reimplementation of Lex that produces faster
and more reliable scanners. Valid Lex scanner specifications may, in general, be used with Flex without
modification.

The operation of Lex is illustrated in Figure 3. A scanner specification, defining the tokens to be
scanned and how they are to be processed, is presented to Lex. Lex then generates a complete scanner,

a
means save a in a token buffer

T(a)
means don’t save a (Toss it away)

T(Eol)T(/) T(/)

T(Not(Eol))

"T(")

Not(")

T(")
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coded in C. This scanner is then compiled and linked with other compiler components to create a com-
plete compiler.

FIGURE  3 The Operation of the Lex Scanner Generator

Using Lex saves us a great deal of effort in programming a scanner. We are relieved of the necessity of
explicitly programming many low level details of the scanner (reading character efficiently, buffering
them, matching characters against token definitions, and so on). Rather, we can focus on the character
structure of tokens, and how they are to be processed.

Our primary purpose in this section is to show how regular expressions and related information are pre-
sented to scanner generators. A good way to learn to use Lex is to start with the simple examples pre-
sented here and then gradually generalize them to solve the problem at hand. To inexperienced readers,
Lex’s rules may seem unnecessarily complex. It is best to keep in mind that the key is always the speci-
fication of tokens as regular expressions; the rest is there simply to increase efficiency and handle vari-
ous details.

3.4.1 Defining Tokens in Lex

Lex’s approach to scanning is simple. It allows the user to associate regular expressions with commands
coded in C (or C++). When input characters that match the regular expression are read, the command is
executed. As a user of Lex you don’t need to tell it how to match tokens; you need only say what you
want done when a particular token is matched.

Lex creates a filelex.yy.c  that contains an integer functionyylex (). This function is normally
called from the parser whenever another token is needed. The value returned byyylex () is the token
code of the token scanned by Lex. Tokens like white space are deleted simply by having their associated
command not return anything. Scanning continues until a command with a return in it is executed.
Figure 4 illustrates a simple Lex definition for the three reserved words of theac language (which was
introduced in Chapter 2). When a string matchingf  or i  or p is found, the appropriate token code is
returned. It is vital that the token codes returned when a token is matched are identical to those expected
by the parser. If they are not, the parser won’t “see” the same token sequence produced by the scanner.
This will cause the parser to generate false syntax errors based on the incorrect token stream it sees.

It is standard for the scanner and parser to share the definition of token codes to guarantee consistent
values are seen by both. The filey.tab.h , produced by the Yacc parser generator (see Chapter 6) is
often used to define shared token codes.

Scanner
Specification

Scanner
ModuleLex

(in C)
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%%

f { return(FLOATDCL); }

i { return(INTDCL); }

p { return(PRINT); }

%%

FIGURE  4 A Lex Definition for ac’s Reserved Words

The pair%% delimits sections of a Lex token specification. Three sections exist; the general form of a
Lex specification is

declarations

%%

regular expression rules

%%

subroutine definitions

In our simple example, we’ve used only the second section in which regular expressions and corre-
sponding C code are specified. The regular expressions illustrated in Figure 4 are simple—single char-
acter strings that match only themselves. The code executed returns a constant value representing the
appropriateac token.

If we wished, we could have quoted the strings representing the reserved words ("f"  or "i"  or "p" ),
but since these strings contain no delimiters or operators, quoting it is unnecessary. If you want to quote
such strings to avoid any chance of misinterpretation, that’s fine with Lex.

Our specification so far is quite incomplete. None of the other tokens inac are handled, particularly
identifiers and numbers. To handle these tokens correctly, we’ll introduce a useful concept—character
classes.

Characters often naturally fall into classes, with all characters in a class treated identically in a token
definition. Thus in the definition of anac identifier all letters (exceptf , i  andp) form a class since any
of them can be used to form an identifier. Similarly, in a number, any of the ten digit characters can be
used.

Character classes are delimited by[  and] ; individual characters are catenated without any quotation or
separators. However\ , ^ , ] and- , because of their special meaning in character classes, must be
escaped. Thus[xyz]  represents the class that can match a singlex , y, orz . The expression[\])]
represents the class that can match a single]  or ) . (The]  is escaped so that it isn’t misinterpreted as the
end of character class symbol.)

Ranges of characters are separated by a- ; [x-z]  is the same as[xyz] . [0-9]  is the set of all digits
and [a-zA-Z]  is the set of all letters, upper- and lower-case. \  is the escape character, used to repre-
sent unprintables and to escape special symbols. Following C conventions,\n  is the newline (that is,
end of line),\t  is the tab character,\\  is the backslash symbol itself, and\010  is the character corre-
sponding to octal 10.

The^  symbol complements a character class (it is Lex’s representation of theNot operation).[^xy]  is
the character class that matches any single character except x  andy. The^  symbol applies to all char-
acters that follow it in the character class definition, so[^0-9]  is the set of all characters that aren’t
digits. [^]  can be used to match all characters. (Avoid use of\0  in character classes; it can be con-
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fused with the null character’s special use as end of string terminator in C.) Table 1 illustrates a variety
of character classes and the character sets they define.

With character classes we can easily defineac identifiers, as shown in Figure 5. The character class
includes the range of characters,a to e, theng andh, then the rangej  to o, followed by the rangeq to
z . We are able to concisely represent the 23 characters that may form an ac identifier without having to
enumerate them all.

%%

[a-eghj-oq-z] { return(ID); }

%%

FIGURE  5 A Lex Definition for ac’s Identifiers

Tokens are defined using regular expressions. Lex provides the standard regular expression operators, as
well as some additions. Catenation is specified by the juxtaposition of two expressions; no explicit oper-
ator is used. Thus[ab][cd]  will match any of ad , ac , bc , and bd . When outside of character class
brackets, individual letters and numbers match themselves; other characters should be quoted (to avoid
misinterpretation as regular expression operators). For example,while  (as used in C, C++ and Java)
can be matched by the expressionswhile , "while" , or [w][h][i][l][e] .

Case is significant. The alternation operator is| . As usual, parentheses can be used to control grouping
of subexpressions. Therefore if we wish to match the reserved word while  allowing any mixture of
upper- and lowercase (as required in Pascal and Ada), we can use

(w|W)(h|H)(i|I)(l|L)(e|E)

Postfix operators*  (Kleene closure) and+ (positive closure) are also provided, as is? (optional inclu-
sion). expr?  matchesexpr  zero times or once. It is equivalent to(expr) | λ and obviates the need
for an explicitλ symbol. The character ". " matches any single character (other than a newline). The
character̂  (when used outside a character class) matches the beginning of a line. Similarly, the charac-
ter$ matches the end of a line. Thus,^A.*e$  could be used to match an entire line that begins withA
and ends withe.

TABLE 1. Lex Character Class Definitions

Character Class Set of Characters Denoted

[abc] Three characters: a, b and c

[cba] Three characters: a, b and c

[a-c] Three characters: a, b and c

[aabbcc] Three characters: a, b and c

[^abc] All characters except a, b and c

[\^\-\]] Three characters: ^ , -  and \

[^] All characters

"[abc]" Not a character class. This is one
five character string: [abc]
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We can now define all ofac’s tokens using Lex’s regular expression facilities. This is shown in Figure 6.

%%

(" ")+ { /* delete blanks */}

f { return(FLOATDCL); }

i { return(INTDCL); }

p { return(PRINT); }

[a-eghj-oq-z] { return(ID); }

([0-9]+)|([0-9]+"."[0-9]+) { return(NUM);  }

"=" { return(ASSIGN); }

"+" { return(PLUS); }

"-" { return(MINUS); }

%%

FIGURE  6 A Lex Definition for ac’s Tokens

Recall that a Lex specification of a scanner consists of three sections. The first section, which we’ve not
used so far, contains symbolic names associated with character classes and regular expressions. There is
one definition per line. Each definition line contains an identifier and a definition string, separated by a
blank or tab. The{  and}  symbols signal the macro-expansion of a symbol defined in the first section.
For example, given the definition

Letter [a −zA−Z]

the expression{Letter}  expands to[a-zA-Z] . Symbolic definitions can often make Lex specifica-
tions easier to read, as illustrated in Figure 7.

%%

Blank " "

Digits [0-9]+

Non_f_i_p [a-eghj-oq-z]

%%

{Blank}+ { /* delete blanks */}

f { return(FLOATDCL); }

i { return(INTDCL); }

p { return(PRINT); }

{Non_f_i_p} { return(ID); }

{Digits}|({Digits}"."{Digits}) { return(NUM);  }

"=" { return(ASSIGN); }

"+" { return(PLUS); }

"-" { return(MINUS); }

%%

FIGURE  7 An Alternative Lex Definition for ac’s Tokens

In the first section we can also include source code, delimited by%{ and%}, that is placed before the
commands and regular expressions of section two. This source code may include statements and vari-
able, procedure and type declarations that are needed to allow the commands of section two to be com-
piled. For example, we might use
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%{

#include "tokens.h"

%}

to include the definitions of token values returned when tokens are matched.

As we have seen, Lex’s second section defines a table of regular expressions and corresponding com-
mands in C. The first blank or tab not escaped or part of a quoted string or character class is taken as the
end of the regular expression, so avoid embedded blanks within regular expressions. When an expres-
sion is matched, its associated command is executed. If an input sequence matches no expression, the
sequence is simply copied verbatim to the standard output file. Input that is matched is stored in a global
string variableyytext  (whose length isyyleng ). Commands may alteryytext  in any way. The
default size ofyytext  is determined byYYLMAX, which is initially defined to be 200. All tokens, even
those that will be ignored like comments, are stored inyytext . Hence you may need to redefineYYL-
MAX to avoid overflow. An alternative approach to scanning comments, that is not prone to the danger of
overflowingyytext , involves the use of start conditions (see [Lesk and Schmidt 1975] or [Levine,
Mason and Brown 1992]). Flex, an improved version of Lex discussed in the next section, automatically
extends the size ofyytext  when necessary. This removes the danger that a very long token may over-
flow the text buffer.

The contents ofyytext  is overwritten as each new token is scanned. Therefore you must be careful if
you return the text of a token by simply returning a pointer intoyytext . You must copy the contents of
yytext  (using perhapsstrcpy ()) before the next call toyylex ().

Lex allows regular expressions to overlap (that is, to match the same input sequences). In the case of
overlap, two rules are used to determine which regular expression is matched. First, the longest possible
match is performed. Lex automatically buffers characters while deciding how many characters can be
matched. Second, if two expressions matchexactly the same string, the earlier expression (in order of
definition in the Lex specification) is preferred. Reserved words, for example, are often special cases of
the pattern used for identifiers. Their definitions are therefore placed before the expression that defines
an identifier token. Often a “catch all” pattern is placed at the very end of section two. It is used to catch
characters that don’t match any of the earlier patterns and hence are probably erroneous. Recall that ". "
matches any single character (other than a newline). It is useful in a catch-all pattern. However, avoid a
pattern like.*  which will consume all characters up to the next newline.

Although Lex is often used to produce scanners, it is really a general-purpose character processing tool,
programmed using regular expressions. Lex provides no character tossing mechanism because this
would be too special-purpose. It may therefore be necessary to process the token text (stored in
yytext ) before returning a token code. This is normally done by calling a subroutine in the command
associated with a regular expression. The definition of such subroutines may be placed in the final sec-
tion of the Lex specification. For example, we might want to call a subroutine to insert an identifier into
a symbol table before it is returned to the parser. Forac the line

{Non_f_i_p} {insert(yytext); return(ID);}

could do this, withinsert  defined in the final section. Alternatively, the definition ofinsert  could
be placed in a separate file containing symbol table routines. This would allowinsert  to be changed
and recompiled without rerunning Lex. (Some implementations of Lex generate scanners rather slowly.)

In Lex, end of file is not handled by regular expressions. A predefinedEOF token, with a token code of
zero, is automatically returned when end of file is reached at the beginning of a call toyylex (). It is up
to the parser to recognize the zero return value as signifying theEOF token.

If more than one source file must be scanned, this fact is hidden inside the scanner mechanism.
yylex () uses three user-defined functions to handle character-level input and output. They are
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input() read a single character, 0 on end of file.

output(c) write a single character to the output.

unput(c) put a single character back into the input to be re-read.

Whenyylex () encounters end of file, it calls a user-supplied integer function namedyywrap (). The
purpose of this routine is to “wrap up” input processing. It returns the value one if there is no more
input. Otherwise, it returns zero and arranges forinput () to provide more characters.

The compiler writer may supply theinput (), output (), unput (), andyywrap () functions (usually
as C macros). Lex supplies default versions that read characters from the standard input and write them
to the standard output. The default version ofyywrap () simply returns one, signifying that there is no
more input. (The use ofoutput () allows Lex to be used as a tool for producing stand-alone data
“filters” for transforming a stream of data.)

Lex-generated scanners normally select the longest possible input sequence that matches some token
definition. Occasionally this can be a problem. For example, if we allow Fortran-like fixed-decimal lit-
erals like1.  and.10  and the Pascal subrange operator ".. " then1..10  will most likely be mis-
scanned as two fixed-decimal literals rather than two integer literals separated by the subrange operator.
Lex allows us to define a regular expression that applies only if some other expression immediately fol-
lows it. That is,r/s  tells Lex to match regular expressionr  but only if regular expression s immedi-
ately follows it.s  is right context; it isn’t part of the token that is matched, but it must be present forr
to be matched. Thus[0-9]+/".."  would match an integer literal, but only if ".."  immediately fol-
lows it. Since this pattern covers more characters than the one defining a fixed-decimal literal, it takes
precedence. The longest match is still chosen, but the right-context characters are returned to the input
so that they can be matched as part of a later token.

The operators and special symbols most commonly used in Lex are summarized in Table 2 . Note that a
symbol sometimes has one meaning in a regular expression and an entirely different meaning in a char-
acter class (i.e., within a pair of brackets). If you find Lex behaving unexpectedly, it’s a good idea to
check this table to be sure of how the operators and symbols you’ve used behave. Ordinary letters and
digits, and symbols not mentioned (like@) represent themselves. If you’re not sure if a character is spe-
cial or not, you can always escape it or make it part of a quoted string.

In summary, Lex is a very flexible generator that can produce a complete scanner from a succinct defini-
tion. The difficult part is learning Lex’s notation and rules. Once you’ve done this, Lex will relieve you
of the many of chores of writing a scanner (reading characters, buffering them, deciding which token
pattern matches, etc.). Moreover, Lex’s notation for representing regular expressions is used in other
Unix programs, most notably thegrep  pattern matching utility.

Lex can also transform input as a preprocessor, as well as scan it. It provides a number of advanced fea-
tures beyond those discussed here. Lex does require that code segments be written in C, and hence is not
language-independent.

TABLE 2. Meaning of Operators and Special Symbols in Lex

Symbol Meaning in Regular Expressions Meaning in Character Classes

( Matches with ) to group sub-expressions. Represents itself.

) Matches with ( to group sub-expressions. Represents itself.

[ Begins a character class. Represents itself.

] Represents itself. Ends a character class.

{ Matches with } to signal macro-expansion. Represents itself.
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3.4.2 Other Scanner Generators

Lex is certainly the most widely-known and widely-available scanner generator because it is distributed
as part of the Unix system. Even after years of use it still has bugs, and produces scanners too slow to be
used in production compilers. [Jacobsen 1987] has shown that Lex can be improved so that it is always
faster than a hand-written scanner. As noted earlier, Flex (Fast Lex) is a freely distributabled Lex clone.
It produces scanners that are considerably faster than the ones produced by Lex. Flex also provides
options that allow tuning of the scanner size versus its speed, as well as some features that Lex does not
have (such as support for eight-bit characters). If Flex is available on your system you should use it
instead of Lex.

Lex has also been implemented in languages other than C. JLex [Berk 1997] is a Lex-like scanner gen-
erator written in Java that generates Java scanner classes. It is of particular interest to individuals writing
compilers in Java. Alex, [Self 1990], is an Ada version of Lex. Lexgen, [Appel 1989], is an ML version
of Lex.

An interesting alternative to Lex is GLA (Generator for Lexical Analyzers), [Gray 1988]. GLA takes a
description of a scanner based on regular expressions and a library of common lexical idioms (such as
“pascal comment” and produces adirectly executable (that is, not transition table-driven) scanner writ-
ten in C. GLA was designed with both ease of use and efficiency of the generated scanner in mind.
Experiments show it to be typically twice as fast as Flex and only slightly slower than a trivial program
that reads and “touches” each character in an input file. The scanners it produces are more than compet-
itive with the best hand-coded scanners. Another tool that produces directly executable scanners is
RE2C, [Bumbulis 1993]. The scanners it produces are easily adaptable to a variety of environments and
yet scanning speed is excellent.

Scanner generators are usually included as parts of complete suites of compiler development tools.
These suites are often available on DOS and Macintosh systems as well as Unix systems. Among the

} Matches with { to signal macro-expansion. Represents itself.

" Matches with " to delimit strings
(only \ is special within strings).

Represents itself.

\ Escapes individual characters.
Also used to specify a character by its octal
code.

Escapes individual characters.
Also used to specify a character
by its octal code.

. Matches any one character except \n. Represents itself.

| Alternation (or) operator. Represents itself.

* Kleene closure operator (zero or more matches).Represents itself.

+ Positive closure operator (one or more matches).Represents itself.

? Optional choice operator (one or zero matches). Represents itself.

/ Context sensitive matching operator. Represents itself.

^ Matches only at beginning of a line. Complements remaining
characters in the class.

$ Matches only at end of a line. Represents itself.

- Represents itself. Range of characters operator.

TABLE 2. Meaning of Operators and Special Symbols in Lex

Symbol Meaning in Regular Expressions Meaning in Character Classes
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most widely-used and highly-recommended of these are DLG (part of the PCCTS tools suite, [Parr
1991]), CoCo/R, [Moessenboeck 1991], an integrated scanner/parser generator, and Rex, [Grosch
1989], part of the Karlsruhe Cocktail tools suite.

3.5 Practical Considerations

In this section we discuss the practical considerations necessary to build real scanners for real program-
ming languages. As one might expect, the finite automaton model we have developed sometimes falls
short and must be supplemented. Efficiency concerns must be addressed. Further, some provision for
error handling must be incorporated into any practical scanner.

We shall discuss a number of potential problem areas. In each case, solutions will be weighed, particu-
larly in conjunction with the Lex scanner generator we have studied.

3.5.1 Processing Identifiers and Literals

In simple languages with only global variables and declarations, it is common to have the scanner
immediately enter an identifier into the symbol table if it is not already there. Whether the identifier is
entered or is already in the table, a pointer to the symbol table entry is then returned from the scanner.

In block-structured languages, we usually don’t ask the scanner to enter or look up identifiers in the
symbol table because an identifier can be used in many contexts (as a variable, in a declaration, as a
member of a class, a label, and more). It is not possible, in general, for the scanner to know when an
identifier should be entered into the symbol table for the current scope or when it should return a pointer
to an instance from an earlier scope. Some scanners just copy the identifier into a private string variable
(that can’t be overwritten) and return a pointer to it. A later compiler phase, the type checker, will
resolve the identifier’s intended usage.

Sometimes a string space is used to store identifiers (see Chapter 8). This avoids frequent calls to mem-
ory allocators likenew or malloc  to allocate private space for a string and avoids the space overhead
of storing multiple copies of the same string. If a string space is used, the scanner can enter an identifier
into the string space and return a string space pointer rather than the actual text.

An alternative to a string space is a hash table that stores identifiers and assigns to each a unique serial
number. All identifiers that have the same text get the same serial number; identifiers with different texts
always get different serial numbers. A serial number is a small integer that can be used instead of a
string space pointer. Serial numbers are ideal indices into symbol tables (which need not be hashed)
because they are small contiguously assigned integers. A scanner can hash an identifier when it is
scanned and return its serial number as part of the identifier token.

In some languages, such as C, C++ and Java, case is significant, but in others, such as Ada and Pascal,
case is insignificant. If case is significant, identifier text must be stored or returned exactly as it was
scanned. Reserved word lookup must distinguish between identifiers and reserved words that differ only
in case. However, if case is insignificant, we need to guarantee that case differences in the spelling of an
identifier or reserved word do not cause errors. An easy way to do this is to put all tokens scanned as
identifiers into a uniform case before they are returned or looked up in a reserved word table.

Other tokens, such as literals, require processing before they are returned. Integer and real (floating) lit-
erals are converted to numeric form and returned as part of the token. Numeric conversion can be tricky
because of the danger of overflow or roundoff errors. It is wise to use standard library routines like
atoi  andatof  (in C) andInteger.intValue  andFloat.floatValue  (in Java). For string
literals, a pointer to the text of the string (with escaped characters expanded) should be returned.
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The design of C contains a flaw that requires a C scanner to do a bit of special processing. Consider the
character sequence

a (* b);

This can be a call to procedurea, with *b  as the parameter. Ifa has been declared in atypedef  to be
a type name, the above character sequence can also be the declaration of an identifierb that is a pointer
variable (the parentheses are not needed, but they are legal).

C contains no special marker separating declarations from statements, so the parser will need some help
in deciding whether it is seeing a procedure call or a variable declaration. One way to do this is to create,
while scanning and parsing, a table of currently-visible identifiers that have been defined intypedef
declarations. When an identifier in this table is scanned, a specialtypeid  token is returned (rather than
an ordinaryid  token). This allows the parser to easily distinguish the two constructs—they now begin
with different tokens.

Why does this complication exist in C?typedef  statements were not in the original definition of C in
which the lexical and syntactic rules were established. When thetypedef  construct was added, the
ambiguity was not immediately recognized (parentheses, after all, are rarely used in variable declara-
tions). When the problem was finally recognized it was too late, and the “trick” described above had to
be devised to resolve the correct usage.

3.5.2 Reserved Words

Virtually all programming languages have symbols (such asif  andwhile ) that match the lexical syn-
tax of ordinary identifiers. These symbols are termed key words. If the language has a rule that key
words may not be used as programmer-defined identifiers, then they are termed reserved words (that is,
they are reserved for special use).

Most programming languages choose to make key words reserved. This simplifies parsing, which drives
the compilation process. It also makes programs more readable. For example, in Pascal and Ada subpro-
grams without parameters are called asname;  (no parentheses are required). Now assume thatbegin
andend  are not reserved and some devious programmer has declared procedures namedbegin  and
end . The following program can be parsed in many ways; its meaning is not well defined:

begin

  begin;

  end;

  end;

  begin;

end

With careful design, outright ambiguities can be avoided. For example, in PL/I key words are not
reserved, but procedures are called using an explicitcall  key word. Nonetheless, opportunities for
convoluted usage abound because key words may be used as variable names:

if if then else = then;

The problem with reserved words is that if they are too numerous, they may confuse inexperienced pro-
grammers who unknowingly choose an identifier name that clashes with a reserved word. This usually
causes a syntax error in a program that “looks right” and in fact would be right were the symbol in ques-
tion not reserved. COBOL is infamous for this problem, having several hundred reserved words. For
example, in COBOL,zero  is a reserved word. So iszeros . So iszeroes !
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In Section 3.4.1 we were able to recognize reserved words by creating distinct regular expressions for
each reserved word. This approach was feasible because Lex (and Flex) allow more than one regular
expression to match a character sequence, with the earliest expression that matches taking precedence.

Creating regular expressions for each reserved word will increase the number of states in the transition
table a scanner generator creates. [Gray 1988] reports that in as simple a language as Pascal (which has
only 35 reserved words), the number of states increases from 37 to 165 when each reserved word is
defined by its own regular expression. In uncompressed form with 127 columns for ASCII characters
(excluding null), the number of transition table entries would increase from 4699 to 20,955. This may
not be a problem with modern multi-megabyte memories. Nonetheless, some scanner generators, like
Flex, allow you to choose to optimize scanner size or scanner speed.

In  Exercise 18 it is established that any regular expression may be complemented to obtain all strings
not in the original regular expression. That isA, the complement ofA, is regular ifA is. Using comple-
mentation we can write a regular expression for nonreserved identifiers:

That is, if we take the complement of the set containing reserved words and all non-identifier strings, we
get all strings thatare identifiersexcluding the reserved words. Unfortunately, neither Lex nor Flex pro-
vide a complement operator for regular expressions (^  works only on character sets).

We could just write down a regular expression directly, but this is too complex to seriously consider.
SupposeEND is the only reserved word, and identifiers contain only letters. Then

L | (L L) | ((L L L) L+) | ((L − 'E') L*) | (L (L − 'N') L*) | (L L (L − 'D') L*)

defines identifiers shorter or longer than three letters, or not starting withE or withoutN in position two,
and so forth.

Many hand-coded scanners treat reserved words as ordinary identifiers (as far as matching tokens is
concerned) and then use a separate table lookup to detect them. Automatically generated scanners can
also use this approach, especially if transition table size is an issue.

After what looks like an identifier is scanned, a table of exceptions is consulted to see if a reserved word
has been recognized. If case is significant in reserved words, the exception lookup will require an exact
match; otherwise, the token should be translated to a standard form (all upper- or lowercase) before the
lookup.

An exception table may be organized in a variety of ways. An obvious organization is a sorted list of
exceptions suitable for a binary search. A hash table may also be used. For example, the length of a
token may be used as an index into a list of exceptions of the same length. If exception lengths are well
distributed, few comparisons will be needed to determine whether a token is an identifier or a reserved
word. It has been shown by [Cichelli 1980] that perfect hash functions are possible. That is, each
reserved word is mapped to a unique position in the exception table, and no position in the table is
unused. A token is either the reserved word selected by the hash function or it is an ordinary identifier.

If identifiers are entered into a string space or given a unique serial number by the scanner, then reserved
words can be entered in advance. If what looks like an identifier is found to have a serial number or
string space position smaller than the initial position assigned to identifiers, then we immediately know
that a reserved word rather than an identifier has been scanned. In fact with a little care it is possible to
assign initial serial numbers so that they match exactly the token codes used for reserved words. That is,
if an identifier is found to have a serial numbers wheres is less than the number of reserved words,
thens must be the correct token code for the reserved word just scanned.

ident if while …( )
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3.5.3 Compiler Directives and Listing Source Lines

Compiler directives and pragmas are used to control compiler options (listings, source file inclusion,
conditional compilation, optimizations, profiling, and so on). They may be processed either by the scan-
ner or later compiler phases. If the directive is a simple flag, it can be extracted from a token. The com-
mand is then executed, and finally the token is deleted. More elaborate directives, like Ada pragmas,
have nontrivial structure and need to be parsed and translated like any other statement.

A scanner may have to handle source inclusion directives, which cause it to suspend reading the current
file and to begin reading and scanning the contents of the specified file. Since an included file may itself
contain an include directive, the scanner maintains a stack of open files. When the file at the top of the
stack is completely scanned, it is popped, and scanning resumes with the file now at the top of the stack.
When the entire stack is empty, end of file is recognized and scanning is completed. Because C has a
rather elaborate macro definition and expansion facility, it is typically handled by a preprocessing phase
prior to scanning and parsing. The preprocessor,cpp , may in fact be used with languages other than C
to obtain the effects of source file inclusion, macro processing, etc.

Some languages (like C and PL/I) include conditional compilation directives that control whether state-
ments are compiled or ignored. Such directives are useful in creating multiple versions of a program
from a common source. Usually these directives have the general form of anif  statement, and hence a
conditional expression will be evaluated. Characters following the expression will then be scanned and
passed to the parser or ignored until anend if  delimiter is reached. If conditional compilation struc-
tures can be nested, a skeletal parser for the directives may be needed.

Another function of the scanner is to list source lines and to prepare for the possible generation of error
messages. This is straightforward, but a bit of care is required. The most obvious way to produce a
source listing is to echo characters as they are read, using end of line conditions to terminate a line,
increment line counters, and so on. This approach has a number of short-comings, however:

• Error messages may need to be printed, and these should appear merged with source lines, with
pointers to the offending symbol.

• A source line may need to be edited before it is written. This may involve inserting or deleting sym-
bols (for example, for error repair), replacing symbols (because of macro preprocessing), and refor-
matting symbols (to prettyprint a program).

• Source lines that are read are not always in a one-to-one correspondence with source listing lines
that are written. For example, in UNIX a source program can legally be condensed into a single line
(UNIX places no a priori limit on line lengths). A scanner that attempts to buffer entire source lines
may well overflow buffer lengths.

In light of these considerations, it is best to build output lines (which normally are bounded by device
limits) incrementally as tokens are scanned. The token image placed in the output buffer may not be an
exact image of the token that was scanned, depending on error repair, prettyprinting, case conversion, or
whatever else is required. If a token cannot fit on an output line, the line is written and the buffer is
cleared. (To simplify editing, line numbers ought to correspond to source lines.) In rare cases a token
may need to be broken; for example, if a string is so long that its text exceeds the output line length.

Even if a source listing is not requested, each token should contain the line number in which it appeared.
The token’s position in the source line may also be useful. If an error involving the token is noted, the
line number and position marker can used to improve the quality of error messages. The message can
specify where in the source file the error occurred. It is straightforward to open the source file and list
the source line containing the error with the error message immediately below it. Sometimes, an error
may not be detected until long after the line containing the error has been processed. An example of this
is agoto  to an undefined label. If such delayed errors are rare (as they usually are), a message citing a
line number can be produced—for example, “Undefined label in statement 101.” In languages that
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freely allow forward references, delayed errors may be numerous. For example, Java allows declara-
tions of methods after they are called. In this case, a file of error messages keyed with line numbers can
be written and later merged with the processed source lines to produce a complete source listing.

A common view is that compilers should just concentrate on translation and code generation and leave
the listing and prettyprinting (but not error messages) to other tools. This considerably simplifies the
scanner.

3.5.4 Scanner Termination

A scanner is designed to read input characters and partition them into tokens. What happens when the
end of the input file is reached? It is convenient to create anEof pseudocharacter when this occurs.
In Java, for example,InputStream.read (), which reads a single byte, returns−1 when end of file is
reached. A constant,EOF, defined as−1 can be treated as an “extended” ASCII character. This character
then allows the definition of an Eof token that can be passed back to the parser. An Eof token is useful
in a CFG because it allows the parser to verify that the logical end of a program corresponds to its phys-
ical end. In fact LL(1) parsers (Chapter 5) and LALR(1) parsers (Chapter 6) require an end of file token.

What should happen if a scanner is called after the end of file is reached? Obviously, a fatal error could
be registered, but this would destroy our simple model in which the scanner always returns a token. A
better approach is to continue to return the Eof token to the parser. This allows the parser to handle ter-
mination cleanly, especially since the Eof token is normally syntactically valid only after a complete
program is parsed. If the Eof token appears too soon or too late, the parser can perform error repair or
issue a suitable error message.

3.5.5 Multicharacter Lookahead

We can generalize finite automata to look ahead beyond the next input character. This feature is impor-
tant for implementing a scanner for FORTRAN. In FORTRAN, the statement DO 10 J = 1,100
specifies a loop, with indexJ  ranging from1 to 100 . In contrast, the statement DO 10 J = 1.100
is an assignment to the variableDO10J. In FORTRAN blanks are not significant except in strings. A
FORTRAN scanner can determine whether theO is the last character of aDO token only after reading as
far as the comma (or period). (In fact, the erroneous substitution of a '. ' for a ', ' in a FORTRANDO
loop once caused a 1960s-era space launch to fail! Because the substitution resulted in a valid statement,
the error was not detected until run-time, which in this case was after the rocket had been launched. The
rocket deviated from course and had to be destroyed.)

FIGURE  8 An FA That Scans Integer and Real Literals and the Subrange Operator
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We’ve already seen a milder form of the extended lookahead problem that occurs in Pascal and Ada. To
scan10..100  we need two-character lookahead after the10 . Suppose we use the FA of Figure 8.
Given10..100  we would scan three characters and stop in a non-accepting state. Whenever we stop
reading in a non-accepting state, we can back up along accepted characters until an accepting state is
found. Characters we back up over are rescanned to form later tokens. If no accepting state is reached
during backup, we have a lexical error and invoke lexical error recovery.

In Pascal or Ada we know we never have more than two-character lookahead, which simplifies buffer-
ing characters to be rescanned. Alternatively, we can add a new accepting state to the above automaton,
corresponding to a pseudotoken of the form (D+.). If this token is recognized, we strip the trailing '. '
from the token text and buffer it for later reuse. We then return the token code of an integer literal. In
effect we are simulating the effect of a context-sensitive match as provided by Lex’s/  operator.

Multiple character lookahead may also be a consideration in scanning invalid programs. For example, in
C (and many other programming languages)12.3e+q  is an invalid token. Many C compilers simply
flag the entire character sequence as invalid (a floating value with an illegal exponent). If we follow our
general scanning philosophy of matching the longest valid character sequence, the scanner could be
backed up to produce four tokens. Since this token sequence (12.3 , e, +, q) is invalid, the parser will
detect a syntax error when it processes the sequence. Whether we decide to consider this a lexical error
or a syntax error (or both) is unimportant, but some phase of the compiler must detect the error.

It is not difficult to build a scanner that can perform general backup. This allows the scanner to operate
correctly no matter how token definitions overlap. As each character is scanned, it is buffered, and a flag
is set indicating whether the character sequence scanned so far is a valid token (the flag might be the
appropriate token code). If we reach a situation in which we are not in an accepting state and cannot
scan any more characters, backup is invoked. We extract characters from the right end of the buffer and
queue them for rescanning. This process continues until we reach a prefix of the scanned characters
flagged as a valid token. This token is returned by the scanner. If no prefix is flagged as valid, we have a
lexical error. (Lexical errors are discussed in Section 3.5.7.)

Buffering and backup are essential in general purpose scanners like those generated by Lex. It is impos-
sible to know in advance which regular expression pattern will be matched. Instead, the generated scan-
ner (using its internal deterministic finite automaton) follows all patterns that are possible matches. If a
particular pattern is found to be unmatchable, an alternative pattern that matches a shorter input
sequence may be chosen. The scanner will backup to the longest input prefix that can be matched, sav-
ing buffered characters that will be matched in a later call to the scanner.

As an example of scanning with backup, consider our earlier example of12.3e+q . The following
table illustrates how the buffer is built and flags are set:

When theq is scanned, backup is invoked. The longest character sequence that is a valid token is12.3 ,
so a floating-point literal is returned.e+ is requeued so that it can be later rescanned.

Buffered Token Token Flag

1 Integer Literal

12 Integer Literal

12. Floating-point Literal

12.3 Floating-point Literal

12.3e Invalid (but valid prefix)

12.3e+ Invalid (but valid prefix)
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3.5.6 Performance Considerations

Our main concern in this chapter is learning how to write correct and robust scanners. Because scanners
do so much character-level processing, they can be a real performance bottleneck in production compil-
ers. Hence it is a good idea to consider briefly what to do to increase scanning speed. One approach is to
use a scanner generator like Flex or GLA that is designed to generate fast scanners. These generators
will incorporate many “tricks” that increase speed in non-obvious ways.

If you code a scanner by hand, a few general principles, if followed, can increase scanner performance
dramatically. First, try to block character-level operations whenever possible. That is, it is usually better
to do one operation onn characters rather than n operations on single characters. This is most apparent
in reading characters. In our examples we’ve read input one character as a time, perhaps using Java’s
InputStream.read  (or a C or C++ equivalent). Single character reads make our discussion simpler,
but they are quite inefficient. A subroutine call can cost hundreds or thousands of instructions to exe-
cute—far too much for a single character. Routines such asInputStream.read (buffer ) perform
block reads, putting an entire block of characters directly intobuffer . Usually the number of charac-
ters read is set to the size of a disc block (512 or perhaps 1024 bytes) so that an entire disc block can be
read in one operation. If fewer than the requested number of characters are returned, we know we have
reached end of file, and an end of file character can be set to indicate this.

One problem with reading blocks of characters is that the end of a block won’t usually correspond to the
end of a token. For example near the end of a block we might see the beginning of a quoted string, but
not its end. If we do another read operation to get the rest of the string, the first part may be overwritten.

To avoid this problem, we may do double-buffering, as shown in Figure 9. Input is first read into the left
buffer, then the right buffer, and then the left buffer is overwritten. Unless a token whose text we want to
save is longer than the buffer length, tokens can cross a buffer boundary without difficulty. If we make
the buffer size large enough (say 512 or 1024 characters), the chance of losing part of a token is very
low. If we find that the length of a token is near the buffer length, we can extend the buffer size, perhaps
by using Java-styleVector  objects rather than arrays to implement buffers.

FIGURE  9 An Example of Double Buffering

Whenever we fetch a character from one of the buffers, we must ask if we are at the end of the left buffer
or at the end of the right buffer. We can speed this “end of buffer” check by using a sentinel character.
This is a character that can’t appear in the input. We place the sentinel character just beyond the end of a
buffer. When we fetch a character for scanning, we check to see if it is a sentinel. If it is, we’re at the end
of a buffer and it is time to read more input into the other buffer.

Besides doing block reads, we can speed a scanner by avoiding unnecessary copying of characters.
Because we see so many characters during scanning, moving them from one place to another can be
costly. With block reads we directly read into our scanning buffer rather than into an intermediate input
buffer. As we scan characters, we need not copy characters from the input buffer unless we recognize a
token whose text must be saved or processed (an identifier or a literal). With care we can process the
token’s text directly from the input buffer.

At some point using a profiling tool, likeqpt , prof , gprof , orpixie  may allow you to find unex-
pected performance bottlenecks in your scanner.

System.out.println("Four score and seven years ago,");
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3.5.7 Lexical Error Recovery

A character sequence that can’t be scanned into any valid token is a lexical error. Though such errors are
uncommon, they must be handled by a scanner. It is unreasonable to stop compilation because of what
is often a minor error, so usually we try some sort of lexical error recovery. Two approaches come to
mind:

• Delete the characters read so far and restart scanning at the next unread character.

• Delete the first character read by the scanner and resume scanning at the character following it.

Both of these approaches are reasonable. The former is easy to do. We just reset the scanner and begin
scanning anew. The latter is a bit harder but also is a bit safer (in that less is immediately deleted). It can
be implemented using the buffering mechanism described previously for scanner backup.

In most cases, a lexical error is caused by the appearance of some illegal character, which will usually
appear as the beginning of a token. In such a case, the two approaches work equally well. The effects of
lexical error recovery might well create a syntax error, which will be detected and handled by the parser.
Consider,…for$tnight …. The$ would terminate scanning offor . Since no valid token begins
with $, it would be deleted. Thentnight  would be scanned as an identifier. In effect we’d get …for
tnight …, which will cause a syntax error. Such occurrences are unavoidable, though a good syntac-
tic error-repair algorithm will often make some reasonable repair.

If the parser has a syntactic error-repair mechanism, it can be useful to return a special warning token
when a lexical error occurs. The semantic value of the warning token is the character string deleted to
restart scanning. When the parser sees the warning token, it is warned that the next token is unreliable
and that error repair may be required. Furthermore, the text that was deleted may be helpful in choosing
the most appropriate repair.

Certain lexical errors require special care. In particular, runaway strings and comments ought to receive
special error messages. First consider runaway strings. In Java strings are not allowed to cross line
boundaries, so a runaway string is detected when an end of a line is reached within the string body.
Ordinary recovery heuristics are often inappropriate for this error. In particular, deleting the first charac-
ter (the double quote character) and restarting scanning will almost certainly lead to a cascade of further
“false” errors as the string text is inappropriately scanned as ordinary input.

One way to catch runaway strings is to introduce an error token. An error token isnot a valid token; it is
never returned to the parser. Rather, it is a pattern for an error condition that needs special handling.
We’ll use an error token to represent a string terminated by an end of line rather than a double quote
character. For a valid string, in which internal double quotes and back slashes are escaped (and no other
escaped characters are allowed), we can use

" ( Not( " | Eol | \ ) | \" | \\ )* "

For a runaway string we can use

" ( Not( " | Eol | \ ) | \" | \\ )* Eol

(Eol is the end of line character.) When a runaway string token is recognized, a special error message
should be issued. Further, the string may be repaired into a correct string by returning an ordinary string
token with the opening double quote and closing Eol stripped (just as ordinary opening and closing dou-
ble quotes are stripped). Note however that this repair may or may not be “correct.” If the closing double
quote is truly missing, the repair will be good; if it is present on a succeeding line, a cascade of inappro-
priate lexical and syntactic errors will follow until the closing double quote is finally reached.

Some PL/I compilers issue special warnings if comment delimiters appear within a string. Though legal,
such strings almost always result from errors that cause a string to extend father than was intended. A
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special string token can be used to implement such warnings. A valid string token is returnedand an
appropriate warning message is issued.

In languages like C, C++, Java and Pascal, which allow multiline comments, improperly terminated
(runaway) comments present a similar problem. A runaway comment is not detected until the scanner
finds a close comment symbol (possibly belonging to some other comment) or until the end of file is
reached. Clearly a special error message is required.

Let’s look at Pascal-style comments that begin with a{  and end with a} . Comments that begin and end
with a pair of characters, like/*  and*/  in Java, C and C++, are a bit trickier to get right (see  Exercise
6). Correct Pascal comments are defined quite simply:

{ Not( } )* }

To handle comments terminated byEof, our error token approach can be used:

{ Not( } )* Eof

To handle comments closed by a close comment belonging to another comment (for example,
{ … missing close comment … { normal comment } ), we issue a warning (but not an
error message; this form of comment is lexically legal). In particular, a comment containing an open
comment symbol in its body is most probably a symptom of the kind of omission depicted above. We
therefore split our legal comment definition into two tokens. The one that accepts an open comment in
its body causes a warning message ("Possible unclosed comment" ) to be printed. We now
have three token definitions:

{ Not( } )* } and {  (Not( { | } )* { Not( { | } )* )+ } and { Not( } )* Eof

The first definition matches correct comments that do not contain an open comment in their body. The
second definition matches correct, but suspect, comments that contain at least one open comment in
their body. The final definition is an error token that matches a “runaway comment” terminated by the
end of file marker.

Of course, single line comments, found in Java and C++, are always terminated by Eol, and do not fall
prey to the runaway comment problem. They do, however, require that each line of a multiline comment
contain an open comment marker. Note too that, as we saw above, nested comments normally fail
because FAs and regular expressions cannot recognize properly balanced open comment/close comment
sequences. This failure to recognize such sequences causes problems when we want comments to nest,
particularly when we “comment-out” a piece of code (which itself may well contain comments). Condi-
tional compilation constructs, like#if  and#endif  used in C and C++ are designed to safely disable
compilation of selected parts of a program.

3.6 Translating Regular Expressions and Finite Automata

Regular expressions are equivalent to FAs. In fact, the main job of a scanner generator program like Lex
is to transform a regular expression definition into an equivalent FA. It does this by first transforming
the regular expression into a nondeterministic finite automaton (NFA). Upon reading a particular input,
an NFA is not required to make a unique (deterministic) choice of which state to visit. For example, as
shown in Figure 10, an NFA is allowed to have a state that has two transitions (arrows) coming out of it,
labeled by the same symbol. As shown in Figure 11, an NFA may also have transitions labeled withλ.

Transitions are normally labeled with individual characters inV, and althoughλ is a string (the string
with no characters in it), it is definitelynot a character. In the last example, when the automaton is in the
state at the left and the next input character isa, it may choose to use the transition labeleda or first fol-
low theλ transition (you can always findλ wherever you look for it) andthen follow an a transition.
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FAs that contain noλ transitions and that always have unique successor states for any symbol are deter-
ministic.

FIGURE  10 An NFA with Two a Transitions

FIGURE  11 An NFA with a λ Transition

The algorithm to make an FA from a regular expression proceeds in two steps: First, it transforms the
regular expression into an NFA, and then it transforms the NFA into a deterministic one. This first step
is easy.

Regular expressions are all built out of the atomic regular expressionsa (wherea is a character inV)
andλ by using the three operationsA B andA | B andA* . Other operations (likeA+) are just abbrevia-
tions for combinations of these. As shown in Figure 12, NFAs fora andλ are trivial.

FIGURE  12 NFAs for a and λ

Now suppose we have NFAs forA andB and want one forA |B. We construct the NFA shown in Figure
13. The states labeledA andB were the accepting states of the automata forA andB; we create a new
accepting state for the combined automaton.

As shown in Figure 14, the construction forA B is even easier. The accepting state of the combined
automaton is the same state that was the accepting state ofB. We could also just merge the accepting
state ofA with the initial state of B. We chose not to only because the picture would be more difficult to
draw.

Finally, the NFA forA*  is shown in Figure 15. The start state is an accepting state, soλ is accepted.
Alternatively, we can follow a path through the FA forA one or more times, so zero or more strings that
belong toA are matched.
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a
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λ
a

a

λ



Translating Regular Expressions and Finite Automata

CRAFTING A COMPILER, 2ND EDITION 27

FIGURE  13 An NFA for A | B

FIGURE  14 An NFA for A B

FIGURE  15 An NFA for A*

3.6.1 Creating Deterministic Automata

The transformation from an NFAN to an equivalent DFAD works by what is sometimes called the sub-
set construction. Each state ofD corresponds to aset of states ofN. The idea is thatD will be in state
{x, y, z} after reading a given input string if and only ifN could be inany of the statesx, y, orz, depend-
ing on the transitions it chooses. ThusD keeps track of all the possible routesN might take and runs
them simultaneously. BecauseN is a finite automaton, it has only a finite number of states. The number
of subsets ofN’s states is also finite, which makes tracking various sets of states feasible.

A

B

Finite
Automaton

for A

Finite
Automaton

for B

λ

λ

λ

λ

A
Finite

Automaton
for A

Finite
Automaton

for B

λ

A
Finite

Automaton
for A

λ

λ

λ



Scanning—Theory and Practice

28 CRAFTING A COMPILER, 2ND EDITION

An accepting state ofD will be any set containing an accepting state ofN, reflecting the convention that
N accepts if there isany way it could get to its accepting state by choosing the “right” transitions.

The start state ofD is the set of all states thatN could be in without reading any input characters—that
is, the set of states reachable from the start state ofN following only λ transitions. Algorithm CLOSE

computes those states that can be reached following only λ transitions. Once the start state ofD is built,
we begin to create successor states. To do this, we take each stateS of D, and each characterc, and
computeS’s successor underc. S is identified with some set ofN’s states, {n1, n2, …}. We find all the
possible successor states to {n1, n2, …} underc, obtaining a set {m1, m2, …}. Finally, we compute
T = CLOSE({ m1, m2, …}). T is included as a state inD, and a transition fromS to T labeled withc is
added toD. We continue adding states and transitions toD until all possible successors to existing states
are added. Because each state corresponds to a (finite) subset ofN’s states, the process of adding new
states toD must eventually terminate.

An algorithms forλ-closure follows. We utilize standard set operations and set notation.

• This algorithm adds to set S all states reachable from it using only λ transitions
CLOSE( SetofFaStates S )
1. while there exists a statex ∈ S and there exists a statey ∉ S such that
2. do S ← S ∪ {y}

Using CLOSE, we can define the construction of a DFA,D, from an NFA,N:

DeterministicFa MAKEDETERMINISTIC( NonDeterministicFa N )
1. DeterministicFa D
2. SetofFaStates T
3. D.StartState ← { N.StartState }
4. CLOSE(D.StartState)
5. D. States ← { D.StartState }
6. while states or transitions can be added toD
7. do choose any stateS ∈ D. States and any characterc ∈ Alphabet
8. T ← { y ∈ N.States | for somex ∈ S}
9. CLOSE(T );

10. if T ∉ D. States
11. then D. States ← D. States ∪ {T}
12. D.Transitions ← D.Transitions ∪ {the transition }
13. D.AcceptingStates ← { S ∈ D. States | an accepting state of N ∈ S}

To see how the subset construction operates, consider the following NFA:
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x y
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We start with state1, the start state ofN, and add state2 its λ-successor. HenceD’s start state is{1,2}.
Undera, {1,2}’s successor is{3,4,5}. State1 has itself as a successor underb. When state1’s λ-succes-
sor,2, is included, {1,2}’s successor is{1,2}. {3,4,5}’s successors undera andb are{5} and{4,5}.
{4,5}’s successor underb is {5}. Accepting states ofD are those state sets that containN’s accepting
state (5). The resulting DFA is:

It is not too difficult to establish that the DFA constructed by MAKEDETERMINISTIC is equivalent to the
original NFA (see  Exercise 20). What is less obvious is the fact that the DFA that is built can sometimes
be much larger than the original NFA. States of the DFA are identified with sets of NFA states. If the
NFA hasn states, there are2n distinct sets of NFA states, and hence the DFA may have as many as2n

states.  Exercise 16 discusses an NFA that actually exhibits this exponential blowup in size when it is
made deterministic. Fortunately, the NFAs built from the kind of regular expressions used to specify
programming language tokens do not exhibit this problem when they are made deterministic. As a rule,
DFAs used for scanning are simple and compact.

In the case that creating a DFA is impractical (either because of size or speed-of-generation concerns),
an alternative is to scan using an NFA (see  Exercise 17). Each possible path through an NFA can be
tracked, and reachable accepting states can be identified. Scanning is slower using this approach, so it is
usually used only when construction of a DFA is not cost-effective.

3.6.2 Optimizing Finite Automata

We do not have to stop with the DFA created by MAKEDETERMINISTIC. Sometimes this DFA will have
more states than necessary. For every DFA there is aunique smallest (in terms of number of states)
equivalent DFA. In other words, suppose a DFA (D) has 75 states and there is a DFA D′ with 50 states
that accepts exactly the same set of strings. Suppose further that no DFA with fewer than 50 states is
equivalent toD. ThenD′ is the only DFA with 50 states equivalent toD. Using the techniques discussed
below, it is possible to optimizeD by replacing it withD′.

Some DFA’s contain unreachable states that cannot be reached from the start state. Other DFA’s may
contain dead states that cannot reach any accepting state. It is clear that neither unreachable states nor
dead states can participate in scanning any valid token. We will therefore eliminate all such states as part
of our optimization process.

We optimize the resulting DFA by merging together states we know to be equivalent. For example, two
accepting states that have no transitions at all out of them are equivalent. Why? Because they behave
exactly the same way—they accept the string read so far, but will accept no additional characters. If two
states,s1 ands2 are equivalent, then all transitions tos2 can be replaced with transitions tos1. In effect,
the two states are merged together into one common state.

How do we decide what states to merge together? We take a greedy approach and try the most optimistic
merger of states. By definition, accepting and non-accepting states are distinct, so we initially try to cre-
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ate only two states: one representing the merger of all accepting states and the other representing the
merger of all non-accepting states. This merger into only two states is almost certainly too optimistic. In
particular, all the constituents of a merged state must agree on the same transition for each possible
character. That is, for characterc all the merged states must have no successor underc or they must all
go to a single (possibly merged) state. If all constituents of a merged state do not agree on the transition
to follow for some character, the merged state is split into two or more smaller states that do agree.

As an example, assume we start with the following automaton:

Initially we have a merged non-accepting state{1,2,3,5,6} and a merged accepting state{4,7}. A
merger is legal if and only if all constituent states agree on the same successor state for all characters.
For example, states3 and6 would go to an accepting state given characterc; states1, 2, 5 would not,
so a split must occur. We will add an error state sE to the original DFA that will be the successor state
under any illegal character. (Thus reachingsE becomes equivalent to detecting an illegal token.) sE is
not a real state; rather it allows us to assume every state has a successor under every character. sE is
never merged with any real state.

AlgorithmSPLIT , shown in Figure 16, splits merged states whose constituents do not agree on a com-
mon successor state for all characters. WhenSPLIT  terminates, we know that the states that remain
merged are equivalent in that they always agree on common successors.

Returning to our example, we initially have states {1,2,3,5,6} and {4,7}. InvokingSPLIT , we first
observe that states3 and6 have a common successor underc, and states1, 2, and5 have no successor
under c (or, equivalently, have the error statesE). This forces a split, yielding {1,2,5}, {3,6} and {4,7}.
Now, for characterb states2 and 5 would go to the merged state {3,6}, but state1 would not, so another
split occurs. We now have: {1}, {2,5}, {3,6} and {4,7}. At this point we are done, as all constituents of
merged states agree on the same successor for each input symbol.

OnceSPLIT  is executed, we are essentially done. Transitions between merged states are the same as the
transitions between states in the original DFA. That is, if there was a transition between statesi andsj
under characterc, there is now a transition underc from the merged state containingsi to the merged
state containingsj. The start state is that merged state containing the original start state; accepting states
are those merged states containing accepting states (recall that accepting and non-accepting states are
never merged).

Returning to our example, the minimum state automaton we obtain is

A proof of the correctness and optimality of this minimization algorithm may be found in most texts on
automata theory, such as [Hopcroft and Ullman 1979].

a

b

b c

c
d

1 2 3 4

5 6 7

a | d b c
1 2,5 3,6 4,7



Translating Regular Expressions and Finite Automata

CRAFTING A COMPILER, 2ND EDITION 31

SPLIT ( SetofFaStates StateSet )
1. repeat
2. for  each merged state S ∈StateSet
3. do
4. Assume S corresponds to {s1,..., sn}
5. for  each character c ∈Alphabet
6. do
7. Let t1,..., tn be the successor states tos1,...,sn underc
8. if t1,..., tn do not all belong to the same merged state
9. then Split S into two or more new states such that

si and sj remain in the same merged state if
and only if ti and tj are in the same merged state

10. until  no more splits are possible

FIGURE  16 An Algorithm to Split FA States

FIGURE  17 An FA with New Start and Accepting States Added

3.6.3 Translating Finite Automata to Regular Expressions

So far we have concentrated on the process of converting a given regular expression into an equivalent
finite automaton. This is the key step in Lex’s construction of a scanner from a set of regular expression
token patterns.

Since regular expressions and deterministic and nondeterministic finite automata are interconvertible, it
is also possible to derive for any finite automaton a regular expression that describes the strings the
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automaton matches. In this section we’ll briefly study an algorithm that does this derivation. This algo-
rithm is sometimes useful when you already have a finite automaton you want to use, but need an regu-
lar expression to program Lex or to describe the automaton’s effect. This algorithm also helps you to see
that regular expressions and finite automata really are equivalent.

The algorithm we’ll use is adapted from [Brozozowski and McCluskey 1963]. The idea is simple and
elegant. We start with a finite automaton and simplify it by removing states, one by one. Simplified
automata are equivalent to the original except for the fact that transitions are now labeled with regular
expressions rather than individual characters. We continue removing states until we have an automaton
with a single transition from the start state to a single accepting state. The regular expression labeling
that single transition correctly describes the effect of the original automaton.

To start, we’ll assume our finite automaton has a start state with no transitions into it and a single
accepting state with no transitions out of it. If the automaton we start with doesn’t meet these require-
ments, we can easily transform it by adding a new start state and a new accepting state linked to the
original automaton withλ-transitions. This is illustrated in Figure 17 using the automaton we created
with MAKEDETERMINISTIC in Section 3.6.1.We will define three simple transformations,T1, T2 and
T3 that will allow us to progressively simplify finite automata. The first, illustrated in Figure 18(a),
notes that if we have two different transitions between the same pair of states, with one transition
labeled withR and the other labeled withS, then we can replace the two transitions with a new one,
labeled withR | S. T1 simply reflects that we can choose to use the first transition or the second.

TransformationT2, illustrated in Figure 18(b) allows us to “by-pass” a state. That is, if states has a
transition to stater labeled withX and stater has a transition to stateu labeled withY, then we can go
directly from states to stateu with a transition labeled withXY.

FIGURE  18 The T1, T2 and T3 Transformations

R

S

R | S

Original Transitions Combined Transition

(a) The T1 Transformation

YX YX

X Y

Original Transitions By-pass Transition Added
(b) The T2 Transformation

YX YX

X Z*Y

Original Transitions By-pass Transition Added
(c) The T3 Transformation

Z Z



Translating Regular Expressions and Finite Automata

CRAFTING A COMPILER, 2ND EDITION 33

TransformationT3, illustrated in Figure 18(c) is similar to transformationT2. It again allows us to by-
pass a state. If states has a transition to stater labeled withX, and stater has a transition to itself labeled
with Z, and stater also has a transition to stateu labeled withY, then we can go directly from states to
stateu with a transition labeled with XZ*Y. TheZ*  term reflects that once we reach stater we can cycle
back intor zero or more times before finally proceeding tou.

We will use transformationsT2 andT3 as follows. If we consider, in turn, each pair of predecessors and
successors a states has, and useT2 or T3 to link a predecessor state directly to a successor state, thens
is no longer needed—all paths through the finite automaton can by-pass it! Sinces isn’t needed, we will
remove it. The finite automaton is now simpler because it has one fewer states. If we remove all states
other than the start state and the accepting state (using transformationT1 when necessary), we will
reach our goal. We will have an automaton with only one transition, and the label on this transition will
be the regular expression we want. FINDRE, shown in Figure 19, implements this algorithm.

RegularExpr FINDRE ( NonDeterministicFa Fa  )
1. if Fa’s start state has a transition into it
2. then Create a new start state; link it to the original start state with aλ-transition
3. if Fa has > 1 accepting stateor Fa has an accepting state with out transitions
4. then Create a new and unique accepting state and link it to the original accepting states

with λ-transitions
5. while Fa has > 1 transition
6. do while any pair of states have more than 1 transition between them
7. do Use aT1 transform to obtain a single transition
8. LetS be any state≠ the start or accepting state
9. for each predecessorP of S whereP ≠ ¹S

10. do for each successorU of S whereU ≠ ¹S
11. do if S has no transition to itself
12. then Create a transition fromP to U using a

T2 transformation
13. else Create a transition fromP to U using a

T3 transformation
14. RemoveS from Fa
15. return  the regular expression labeling the last remaining transition

FIGURE  19 An Algorithm to Generate a Regular Expression from a Finite Automaton

As an example, we will determine the regular expression corresponding to the FA we used in Section
3.6.1. The original automaton, with a new start state and accepting state added, is shown in Figure 20(a).
State1 has a single predecessor, state0 and a single successor,2. Using aT3 transformation, an arc
directly from state0 to state2 is added, and state1 is removed. This is shown in Figure 20(b). State2
has a single predecessor, state0 and three successors,2, 4 and5. Using threeT2 transformations, arcs
directly from state0 to states3, 4 and5 are added. State2 is removed. This is shown in Figure 20(c).

State4 has two predecessors, states0 and3. It has one successor, state5. Using twoT2 transforma-
tions, arcs directly from states0 and3 to state5 are added. State4 is removed. This is shown in Figure
20(d). Two pairs of transitions are merged usingT1 transformations, producing the finite automaton in
Figure 20(e). Finally, state3 is by-passed with aT2 transformation and a pair of transitions are merged
with aT1 transformation, as shown in Figure 20(f). The regular expression we obtain is
b* a b (a | b | λ ) |  b* a a | b* a. By expanding the parenthesized subterm and then factoring a com-
mon term, we obtain b* a b a | b*  a b b | b* a b |  b* a a | b* a ≡ b* a (ba | bb | b | a | λ ).

Careful examination of the original automaton will verify that this expression correctly describes it.
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FIGURE  20 An Example of FINDRE

Summary

We have seen three equivalent and interchangeable mechanisms for defining tokens: regular expres-
sions, deterministic finite automata and non-deterministic finite automata. Regular expressions are con-
venient for programmers because they allow the specification of token structure without regard for
implementation considerations. Deterministic finite automata are useful in implementing scanners
because they define token recognition simply and cleanly, on a character by character basis. Non-deter-
ministic finite automata form a middle ground. Sometimes they are used for definitional purposes, when
it is convenient to just draw a simple automaton as a “flow diagram” of characters are to be matched.
Sometimes non-deterministic finite automata are directly executed (see  Exercise 17) when translation
to deterministic finite automata is too costly or inconvenient. Familiarity with all three of these mecha-
nisms will allow you to use the one best suited to your needs.
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Exercises

1. Assume the following text is presented to a C scanner:

main(){

    const float payment = 384.00;

    float bal;

    int month = 0;

    bal=15000;

    while (bal>0){

        printf("Month: %2d  Balance: %10.2f\n", month, bal);

        bal=bal-payment+0.015*bal;

        month=month+1;

} }

What token sequence is produced? For which tokens must extra information be returned in addition
to the token code?

2. How many lexical errors (if any) appear in the following C program? How should each error be han-
dled by the scanner?

main(){

    if(1<2.)a=1.0else a=1.0e-n;

    subr('aa',"aaaaaa

               aaaaaa");

    /* That’s all

}

3. Write regular expressions that define the strings recognized by the following FAs:

a a

b b

b

a
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4. Write DFAs that recognize the tokens defined by the following regular expressions:

( a | ( bc )* d)+

((0 | 1)* (2 | 3)+ ) | 0011

(a Not(a)) * aaa

5. Write a regular expression that defines a C-like fixed-decimal literal with no superfluous leading or
trailing zeros. That is,0.0 , 123.01 , and123005.0  are legal, but00.0 , 001.000 , and
002345.1000  are illegal.

6. Write a regular expression that defines a C-like comment delimited by/*  and*/ . Individual* ’s
and/ ’s may appear in the comment body, but the pair*/  may not.

7. Define a token classAlmostReserved to be those identifiers that are not reserved words but that
would be if a single character were changed. Why is it useful to know that an identifier is “almost” a
reserved word? How would you generalize a scanner to recognizeAlmostReserved tokens as well
as ordinary reserved words and identifiers?

8. When a compiler is first designed and implemented, it is wise to concentrate on correctness and sim-
plicity of design. After the compiler is fully implemented and tested, it may be necessary to increase
compilation speed. How would you determine whether the scanner component of a compiler is a
significant performance bottleneck? If it is, what might you do to improve performance (without
affecting compiler correctness)?

9. Most compilers can produce a source listing of the program being compiled. This listing is usually
just a copy of the source file, perhaps embellished with line numbers and page breaks. Assume we
wish to produce a prettyprinted listing (that is, a listing with text properly indented,if -else pairs
aligned, and so on). How would you modify a Lex scanner specification to produce a prettyprinted
listing?

How are compiler diagnostics and line numbering complicated when a prettyprinted listing is pro-
duced?

10. For most modern programming languages, scanners require little context information. That is, a
token can be recognized by examining its text and perhaps one or two lookahead characters. In Ada,
however, additional context is required to distinguish between a single tic (comprising an attribute
operator, as indata'size ) and a tic, character, tic sequence (comprising a quoted character, as in
'x ').

a b c

c

d

ca

b
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Assume that a boolean flagcan_parse_char is set by the parser when a quoted character can be
parsed. If the next input character is a tic,can_parse_char  can be used to control how the tic is
scanned.

Explain how thecan_parse_char  flag can be cleanly integrated into a Lex-created scanner. The
changes you suggest should not unnecessarily complicate or slow the scanning of ordinary tokens.

11. Unlike C, C++ and Java, FORTRAN generally ignores blanks and therefore may need extensive
lookahead to determine how to scan an input line. We noted earlier a famous example of this:
DO 10 I = 1 , 10 produces seven tokens, whereas DO 10 I = 1 . 10 produces three
tokens. How would you design a scanner to handle the extended lookahead that FORTRAN
requires?

Lex contains a mechanism for doing lookahead of this sort. How would you match the identifier
(DO10I ) in this example?

12. Because FORTRAN generally ignores blanks, a character sequence containingn blanks can be
scanned as many as2n different ways. Are each of these alternatives equally probable? If not, how
would you alter the design you proposed in  Exercise 11 to examine the most probable alternatives
first?

13. Assume we are designing the ultimate programming language, “Utopia 2000.” We have already
specified the language’s tokens using regular expressions and the language’s syntax using a context-
free grammar. Now we wish to determine those token pairs that require white space to separate them
(like else a ) and those that require extra lookahead while scanning (like10.0e-22 ). Explain
how we could use the regular expressions and context-free grammar to automatically find all token
pairs that need special handling.

14. Show that the set{ [k ]k | k ≥ 1 } is not regular.

Hint: Show that no fixed number of FA states is sufficient to exactly match left and right brackets.

15. Show the NFA that would be created for the following expression using the techniques of Section
3.6:

( a b*  c ) | ( a b c*  )

Using MAKEDETERMINISTIC, translate the NFA into a DFA. Using the techniques of Section 3.6.2,
optimize the DFA you created into a minimal state equivalent.

16. Consider the following regular expression:(0 | 1)* 0 (0 | 1) (0 | 1) (0 | 1) … (0 | 1)

Display the NFA corresponding to this expression. Show that the equivalent DFA isexponentially
bigger than the NFA you presented.

17. Translation of a regular expression into an NFA is fast and simple. Creation of an equivalent DFA is
slower and can lead to a much larger automaton. An interesting alternative is to scan using NFAs,
thus obviating the need to ever build a DFA. The idea is to mimic the operation of the CLOSE and
MAKEDETERMINISTIC routines (as defined in Section 3.6.1) while scanning. Rather than maintaining
a single current state, a set of possible states is maintained. As characters are read, transitions from
each state in the current set are followed, creating a new set of states. If any state in the current set is
final, the characters read comprise a valid token.

Define a suitable encoding for an NFA (perhaps a generalization of the transition table used for
DFAs) and write a scanner driver that can use this encoding, following the set-of-states approach
outlined above. This approach to scanning will surely be slower than the standard approach, which
uses DFAs. Under what circumstances is scanning using NFAs attractive?
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18. Assumee is any regular expression.e represents the set of all strings not in the regular set defined
by e. Show thate is a regular set.

Hint: If e is a regular expression, there is an FA that recognizes the set defined bye. Transform this
FA into one that will recognizee.

19. Let Rev be the operator that reverses the sequence of characters within a string. For example,
Rev(abc) = cba. LetR be any regular expression.Rev(R) is the set of strings denoted byR, with
each string reversed. IsRev(R) a regular set? Why?

20. Prove that the DFA constructed by MAKEDETERMINISTIC in Section 3.6.1 is equivalent to the origi-
nal NFA. To do so, you must show that an input string can lead to a final state in the NFA if and only
if that same string will lead to a final state in the corresponding DFA.

21. Assume we have scanned an integer literal into a character buffer (perhapsyytext ). We wish to
convert the string representation of the literal into numeric (int ) form. However, the string may
represent a value too large to be represented inint  form. Explain how to convert a string represen-
tation of an integer literal into numeric form with full overflow checking.

22. Write Lex regular expressions (using character sets if you wish) that match the following sets of
strings:

(a) The set of all unprintable ASCII characters (those before blank and the very last character).

(b) The string["""]  (a left bracket, three double quotes, and a right bracket).

(c) The stringx12345(your solution should be far less than 12345 characters in length).

23. Write a Lex program that examines the words in an ASCII file and lists the ten most frequent words.
Your program should ignore case and should ignore words that appear in a predefined “don’t care”
list.

What changes in your program are needed to make it recognize singular and plural nouns (e.g., cat
and cats) as the same word? How about different verb tenses (walk versus walked versus walking)?

24. Let Double be the set of strings defined as{ s | s = ww }. Double contains only strings composed of
two identical repeated pieces. For example, if we have a vocabulary of the ten digits0 to 9, then the
following strings (and many more!) are inDouble: 11, 1212, 123123, 767767, 98769876, ….

Assume we have a vocabulary consisting only of the single lettera. IsDouble a regular set? Why?

Assume we now have a vocabulary consisting of the two letters,a andb. IsDouble a regular set?
Why?

25. Let Seq(x,y) be the set of all strings (of length 1 or more) composed of alternatingx’s andy’s. For
example,Seq(a,b) containsa, b, ab, ba, aba, bab, abab, baba, ….

Write a regular expression that definesSeq(x,y).

Let S be the set of all strings (of length 1 or more) composed ofa’s, b’s, andc’s, that start with ana
and in which no two adjacent characters are equal. For example,S containsa, ab, abc, abca,
acab, acac, … but notc, aa, abb, abcc, aab, cac, …. Write a regular expression that definesS.
You may useSeq(x,y) within your regular expression if you wish.

26. Let AllButLast be a function that returns all of a string but its last character. For example,AllBut-
Last(abc) = ab. AllButLast(λ) is undefined. LetR be any regular expression that does not generate
λ. AllButLast(R) is the set of strings denoted byR, with AllButLast applied to each string. ThusAll-
ButLast(a+ b) = a+. Show thatAllButLast(R) is a regular set.

27. Let F be any non-deterministic finite automation that containsλ-transitions. Give an algorithm that
transformsF into an equivalent non-deterministic finite automatonF′ that contains noλ-transitions.
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Note: You need not use the “subset” construction since you’re creating a non-deterministic finite
automaton, not a deterministic finite automaton.

28. Let s be a string. DefineInsert(s) to be the function that inserts a# into each possible position ins.
If s isn characters long,Insert(s) returns a set ofn+1 strings (since there aren+1 places a# may be
inserted in a string of lengthn).

For example,Insert(abc) = { #abc, a#bc, ab#c, abc# }. Insert applied to a set of strings is the
union ofInsert applied to members of the set. ThusInsert(ab, de) = { #ab, a#b, ab#, #de, d#e,
de# }.

Let R be any regular set. Show thatInsert(R) is a regular set.

Hint—Given a finite automaton forR, construct one forInsert(R).

29. Let DFA be any deterministic finite automaton. Assume you knowDFA contains exactlyn states
and that it accepts at least one string of lengthn or greater. Show thatDFA must also accept at least
one string of length2n or greater.


