
483CS 701 Fall 2008©

Static Single Assignment Form
Many of the complexities of
optimization and code generation
arise from the fact that a given
variable may be assigned to in many
different places.
Thus reaching definition analysis
gives us the set of assignments that
may reach a given use of a variable.
Live range analysis must track all
assignments that may reach a use of
a variable and merge them into the
same live range.
Available expression analysis must
look at all places a variable may be
assigned to and decide if any kill an
already computed expression.

484CS 701 Fall 2008©

What If
each variable is assigned to in only
one place?
(Much like a named constant).
Then for a given use, we can find a
single unique definition point.
But this seems impossible for most
programs—or is it?
In Static Single Assignment (SSA)
Form each assignment to a variable, v,
is changed into a unique assignment
to new variable, vi.

If variable v has n assignments to it
throughout the program, then (at
least) n new variables, v1 to vn, are
created to replace v. All uses of v are
replaced by a use of some vi.

485CS 701 Fall 2008©

Phi Functions
Control flow can’t be predicted in
advance, so we can’t always know
which definition of a variable reached
a particular use.
To handle this uncertainty, we create
phi functions.
As illustrated below, if vi and vj both
reach the top of the same block, we
add the assignment
 vk ← φ(vi,vj)

to the top of the block.
Within the block, all uses of v become
uses of vk (until the next assignment
to v).

486CS 701 Fall 2008©

What does φ(vi,vj) Mean?

One way to read φ(vi,vj) is that if
control reaches the phi function via
the path on which vi is defined, φ
“selects” vi; otherwise it “selects” vj.

Phi functions may take more than 2
arguments if more than 2 definitions
might reach the same block.
Through phi functions we have simple
links to all the places where v receives
a value, directly or indirectly.

487CS 701 Fall 2008©

Example
x=1

a=x x=2

b=x

x=1

x==10

c=x
x++

print x

x1=1

a=x1 x2=2

b=x3

x4=1

x5==10

c=x5
x6=x5+1

print x5

x3=φ (x1,x2)

x5= (x4,x6)φ

Original CFG CFG in SSA Form

488CS 701 Fall 2008©

In SSA form computing live ranges is
almost trivial. For each xi include all
xj variables involved in phi functions
that define xi.

Initially, assume x1 to x6 (in our
example) are independent. We then
union into equivalence classes xi
values involved in the same phi
function or assignment.
Thus x1 to x3 are unioned together
(forming a live range). Similarly, x4 to
x6 are unioned to form a live range.

489CS 701 Fall 2008©

Constant Propagation in SSA
In SSA form, constant propagation is
simplified since values flow directly
from assignments to uses, and phi
functions represent natural “meet
points” where values are combined
(into a constant or ⊥).
Even conditional constant
propagation fits in. As long as a path
is considered unreachable, it variables
are set to T (and therefore ignored at
phi functions, which meet values
together).

490CS 701 Fall 2008©

Example

We have determined that i=6 everywhere.

i1 j1 k1 i2 j2 k2 k3 i3 i4 k4 i5 j3

Pass1 6 1 1 6∧T 1∧T 1∧T 0 T 6∧T 0 6 2

Pass2 6 1 1 6∧6 ⊥ ⊥ 0 T 6 0 6 ⊥

i=6
j=1
k=1
repeat
 if (i==6)
 k=0
 else
 i=i+1
 i=i+k
 j=j+1
until (i==j)

i1=6
j1=1
k1=1
repeat
 i2=φ(i1,i5)
 j2=φ(j1,j3)
 k2=φ(k1,k4)
 if (i2==6)
 k3=0
 else
 i3=i2+1
 i4=φ(i2,i3)
 k4=φ(k3,k2)
 i5=i4+k4
 j3=j2+1
until (i5==j3)

491CS 701 Fall 2008©

Putting Programs into SSA
Form

Assume we have the CFG for a
program, which we want to put into
SSA form. We must:
• Rename all definitions and uses of

variables

• Decide where to add phi functions
Renaming variable definitions is
trivial—each assignment is to a new,
unique variable.
After phi functions are added (at the
heads of selected basic blocks), only
one variable definition (the most
recent in the block) can reach any
use. Thus renaming uses of variables
is easy.

492CS 701 Fall 2008©

Placing Phi Functions
Let b be a block with a definition to
some variable, v. If b contains more
than one definition to v, the last (or
most recent) applies.
What is the first basic block following
b where some other definition to v as
well as b’s definition can reach?
In blocks dominated by b, b’s
definition must have been executed,
though other later definitions may
have overwritten b’s definition.

493CS 701 Fall 2008©

Domination Frontiers (Again)
Recall that the Domination Frontier
of a block b, is defined as
DF(N) =
 {Z | M→Z & (N dom M) &

¬(N sdom Z)}

The Dominance Frontier of a basic
block N, DF(N), is the set of all blocks
that are immediate successors to
blocks dominated by N, but which
aren’t themselves strictly dominated
by N.
Assume that an initial assignment to
all variables occurs in b0 (possibly of
some special “uninitialized value.”)

494CS 701 Fall 2008©

We will need to place a phi function
at the start of all blocks in b’s
Domination Frontier.
The phi functions will join the
definition to v that occurred in b (or
in a block dominated by b) with
definitions occurring on paths that
don’t include b.
After phi functions are added to
blocks in DF(b), the domination
frontier of blocks with newly added
phi’s will need to be computed (since
phi functions imply assignment to a
new vi variable).

495CS 701 Fall 2008©

Examples of How Domination
Frontiers Guide Phi Placement

DF(N) =
 {Z | M→Z & (N dom M) &

¬(N sdom Z)}
Simple Case:

Here, (N dom M) but ¬(N sdom Z),
so a phi function is needed in Z.

v=1

v=2

N

M

Z

v1=1

v2=2

N

M

Z
v3= φ (v1,v2)

⇒

496CS 701 Fall 2008©

Loop:

Here, let M = Z = N. M→Z,
(N dom M) but ¬(N sdom Z),
so a phi function is needed in Z.
DF(N) =
 {Z | M→Z & (N dom M) &

¬(N sdom Z)}

v=init

v=v+1 v2 =φ(v1,v3)
⇒

Z

v1=init

v3=v2+1

Z

497CS 701 Fall 2008©

Sometimes Phi’s must be Placed
Iteratively

Now, DF(b1) = {b3}, so we add a phi
function in b3. This adds an
assignment into b3. We then look at
DF(b3) = {b5}, so another phi
function must be added to b5.

v=1

v=3

1

3

5

v1=1

v4=3

1

v5= φ (v3,v4)

⇒
v=2

2

4

v2=2
2

v3= φ (v1,v2)
3 4

498CS 701 Fall 2008©

Phi Placement Algorithm
To decide what blocks require a phi
function to join a definition to a variable
v in block b:
1. Compute D1 = DF(b).

 Place Phi functions at the head of all
members of D1.

2. Compute D2 = DF(D1).
 Place Phi functions at the head of all
members of D2-D1.

3. Compute D3 = DF(D2).
 Place Phi functions at the head of all
members of D3-D2-D1.

4. Repeat until no additional Phi
functions can be added.

499CS 701 Fall 2008©

PlacePhi{
 For (each variable v ∈ program) {

 For (each block b ∈ CFG){
 PhiInserted(b) = false
 Added(b) = false }
 List = φ
 For (each b ∈ CFG that assigns to V){
 Added(b) = true
 List = List U {b} }
 While (List ≠ φ) {
 Remove any b from List
 For (each d ∈ DF(b)){
 If (! PhiInserted(d)) {
 Add a Phi Function to d
 PhiInserted(d) = true
 If (! Added(d)) {
 Added(d) = true
 List = List U {d}
 }
 }
 }
 }
 }
}

500CS 701 Fall 2008©

Example

We will add Phi’s into blocks 4 and 5.
The arity of each phi is the number of
in-arcs to its block. To find the args
to a phi, follow each arc “backwards”
to the sole reaching def on that path.

x1=1

x2=2

x3=3

x4=4

1

2 3

4

5

6

7

Initially, List={1,3,5,6}

Process 1: DF(1) = φ

Process 3: DF(3) = 4,
 so add 4 to List and
 add phi fct to 4.

Process 5: DF(5)={4,5}
 so add phi fct to 5.

Process 5: DF(6) = {5}

Process 4: DF(4) = {4}

501CS 701 Fall 2008©

x1=1

x2=2

x3=3

x5=φ (x1,x2,x3)

x6= (x4,x5)φ

x4=4

502CS 701 Fall 2008©

SSA and Value Numbering
We already know how to do available
expression analysis to determine if a
previous computation of an
expression can be reused.
A limitation of this analysis is that it
can’t recognize that two expressions
that aren’t syntactically identical may
actually still be equivalent.
For example, given
t1 = a + b

c = a

t2 = c + b

Available expression analysis won’t
recognize that t1 and t2 must be
equivalent, since it doesn’t track the
fact that a = c at t2.

503CS 701 Fall 2008©

Value Numbering
An early expression analysis
technique called value numbering
worked only at the level of basic
blocks. The analysis was in terms of
“values” rather than variable or
temporary names.
Each non-trivial (non-copy)
computation is given a number, called
its value number.
Two expressions, using the same
operators and operands with the same
value numbers, must be equivalent.

504CS 701 Fall 2008©

For example,
t1 = a + b

c = a

t2 = c + b

is analyzed as
v1 = a

v2 = b

t1 = v1 + v2

c = v1

 t2 = v1 + v2

Clearly t2 is equivalent to t1 (and
hence need not be computed).

505CS 701 Fall 2008©

In contrast, given
t1 = a + b

a = 2

t2 = a + b

the analysis creates
v1 = a

v2 = b

t1 = v1 + v2

v3 = 2

 t2 = v3 + v2

Clearly t2 is not equivalent to t1
(and hence will need to be
recomputed).

506CS 701 Fall 2008©

Extending Value Numbering to
Entire CFGs

The problem with a global version of
value numbering is how to reconcile
values produced on different flow
paths. But this is exactly what SSA is
designed to do!
In particular, we know that an
ordinary assignment
x = y

does not imply that all references to x
can be replaced by y after the
assignment. That is, an assignment is
not an assertion of value equivalence.

507CS 701 Fall 2008©

But,
 in SSA form
xi = yj

does mean the two values are always
equivalent after the assignment. If yj
reaches a use of xi, that use of xi can
be replaced with yj.
Thus in SSA form, an assignment is
an assertion of value equivalence.

508CS 701 Fall 2008©

We will assume that simple variable
to variable copies are removed by
substituting equivalent SSA names.
This alone is enough to recognize
some simple value equivalences.
As we saw,
t1 = a1 + b1
c1 = a1
t2 = c1 + b1

becomes
t1 = a1 + b1
t2 = a1 + b1

509CS 701 Fall 2008©

Partitioning SSA Variables
Initially, all SSA variables will be
partitioned by the form of the
expression assigned to them.
Expressions involving different
constants or operators won’t (in
general) be equivalent, even if their
operands happen to be equivalent.
Thus
v1 = 2 and w1 = a2 + 1

are always considered inequivalent.
But,
v3 = a1 + b2 and w1 = d1 + e2

may possibly be equivalent since both
involve the same operator.

510CS 701 Fall 2008©

Phi functions are potentially
equivalent only if they are in the
same basic block.
All variables are initially considered
equivalent (since they all initially are
considered uninitialized until explicit
initialization).
After SSA variables are grouped by
assignment form, groups are split.
If ai op by and ck op dl
are in the same group (because they
both have the same operator, op)
and ai /≡ ck or bj /≡ dl
then we split the two expressions
apart into different groups.
We continue splitting based on
operand inequivalence, until no more
splits are possible. Values still
grouped are equivalent.

511CS 701 Fall 2008©

Example

Now b4 isn’t equivalent to anything,
so split a5 and b5. In G7 split
operands b3, a5 and b5. We now have

if (...) {
 a1=0
 if (...)

b1=0
 else {

a2=x0
b2=x0 }

 a3=φ(a1,a2)
 b3=φ(b1,b2)
 c2=*a3
 d2=*b3 }
else {
 b4=10 }
a5=φ(a0,a3)
b5=φ(b3,b4)
c3=*a5
d3=*b5
e3=*a5

Initial Groupings:

G1=[a0,b0,c0,d0,e0,x0]
G2=[a1=0, b1=0]
G3=[a2=x0, b2=x0]
G4=[b4=10]
G5=[a3=φ(a1,a2),

b3=φ(b1,b2)]
G6=[a5=φ(a0,a3),

b5=φ(b3,b4)]
G7=[c2=*a3,

d2=*b3,
d3=*b5,
c3=*a5,
e3=*a5]

512CS 701 Fall 2008©

Variable e3 can use c3’s value and d2
can use c2’s value.

if (...) {
 a1=0
 if (...)

b1=0
 else {

a2=x0
b2=x0 }

 a3=φ(a1,a2)
 b3=φ(b1,b2)
 c2=*a3
 d2=*b3 }
else {
 b4=10 }
a5=φ(a0,a3)
b5=φ(b3,b4)
c3=*a5
d3=*b5
e3=*a5

Final Groupings:

G1=[a0,b0,c0,d0,e0,x0]
G2=[a1=0, b1=0]
G3=[a2=x0, b2=x0]
G4=[b4=10]
G5=[a3=φ(a1,a2),

b3=φ(b1,b2)]
G6a=[a5=φ(a0,a3)]
G6b=[b5=φ(b3,b4)]
G7a=[c2=*a3,

d2=*b3]
G7b=[d3=*b5]
G7c=[c3=*a5,

e3=*a5]

513CS 701 Fall 2008©

Limitations of Global Value
Numbering

As presented, our global value
numbering technique doesn’t
recognize (or handle) computations
of the same expression that produce
different values along different paths.
Thus in

variable a3 isn’t equivalent to either
a1 or a2.

a1=1
t1=a1+b0

a2=2
t2=a2+b0

a3=φ(a1,a2)
t3=a3+b0

514CS 701 Fall 2008©

But,
we can still remove a redundant
computation of a+b by moving the
computation of t3 to each of its
predecessors:

Now a redundant computation of a+b
is evident in each predecessor block.
Note too that this has a nice register
targeting effect—e1, e2 and e3 can be
readily mapped to the same live
range.

a1=1
t1=a1+b0

a2=2
t2=a2+b0

e3=φ(e1,e2)
t3=e3

e1=a1+b0 e2=a2+b0

515CS 701 Fall 2008©

The notion of moving expression
computations above phi functions
also meshes nicely with notion of
partial redundancy elimination. Given

moving a+b above the phi produces

Now a+b is computed only once on
each path, an improvement.

a1=1
t1=a1+b0

a2=2

a3=φ(a1,a2)
t3=a3+b0

a1=1
t1=a1+b0

a2=2
t2=a2+b0

t3=φ(t1,t2)

