Optimal Spilling for CISC Machines
with Few Registers

Andrew Appel Lal George

Princeton University Bell Labs

June 20, 2001

The Problem

Few Registers = Spilling!

Total Instructions

Static number of
Spill instructions
K=32 K=8

163,355

34 22,123
14%

CISC Machines

Allow memory operands

Can free the register t in the instruction:
{<—1Ps
by generating:
mem; <— memy @ S
Traditional register allocators:

r — memy
r — rds
mem; < r

Register allocation using integer linear
programming
Ken Wilkens, T. Kong, D.Goodwin ['96, '98]
Solve the allocation problem in its entirety!
e Can exhibit long solve times for small programs.

e Published literature is difficult and complex.

e “The performance results are all in the details”

Our Approach
Phase I: Optimal Spilling

At a program point, should each variable be in a
register or memory?

e At most K live variables at any point

Phase Il: Register Assignment

Which register?

e Guaranteed not to insert spills.

Phase |
Optimal Spilling

Register or memory?

e 0O-1 integer linear program.
e Solved optimally and quickly .

e Modelled in AMPL

> [Extremely simple]

> ﬁzo special tuning _ﬂmnc:m&

e At most K live variables at any program point.

Phase | — In more detall

Pseudo registers and input flowgraph
Set V of Pseudo registers = { vy vg : -+ }

Set P of Program points = {p1 p2 + - - }

*p1 opq
V] < v1 D ve jec L1
P2 op2

Linear programming variables

Just 4 kinds of LP variables

For all live variables v at each program point p:

Variable | Description

Homaw at p, v must be loaded from memory

storey | at p, v must be stored to memory

mmemw at p, v continues in a register

EZ@EW at p, v continues in memory

Liveness constraint: _omo._w + mﬁou.ow + mbwmmw + EZmEW =1

Using Linear Programming Results

Program LP Results Final Program
op; _omaw.ﬂ =1 ®pj V< memy
opy EZ@EWW =1 opy
V< VEPw V < VP memy
o] op)
V& W memy < W
® Pm storeY =1 ® Pm

Compiler Organization

m\£:ﬁ<wmww

W

Model

lm AMPL QH CPLEX _

mmms::mww

ﬂ:mmm___

10

Constraints

op:
: v \ A
— eeV EWmmE + _omQE =1
o2
®pP: . v v
Vi oeo EW@@E + store;, = 1
op2
3 W W
_bmmmg + ﬂomQE =1
®p: . < <
vV < mem([w + x * 4 + 128] EWmmE -+ ﬂoma_ﬁ =1
op2
3 A% vV __
EWmmw , T store; = 1
®p;
pushl v
P2

11

Splits
op1

VW

W : W A" : A%
_omaw .t EWmmE = store, + Emew X

12

inMem?Y

_ommwm

13

Coloring constraint

M storey + M_:_u@@m <=K

> inReg’ + D load¥ <= K
\' P \' P

14

ODbjective cost function

Minimize the weighted cost of:

e inserted loads and stores from Homaw and m&ou.mw_

e Penalty for using memory operands

where
t<+— tPs
IS rewritten to
memt <— memt P s

15

Phase Il: In more detail

Which register?

Should be done without further spilling!

However - - -
no more than K live variables at any point!

16

Register Assignment

Aggregate register pressure Is insufficient!!

Suppose K =2
Live variables Interference graph
Point Live @ @
pi {X Y}
p; {Y.Z}
P {Z X}

17

Optimistic coalescing

e Insert parallel copies before every instruction.
e Resulting interference graph guaranteed to be colorable.
e Paper defines the Optimal Coalescing Problem.

e Our solution based on the Park and Moon optimistic coalescing.

> Details in the paper

18

6T

SUOIIONJISU| ZEV | JO JoquinN

Optimal Solution Time (secs)

o =
¢ o [)
) ¢ [) o)
= [[) S S

[T 1

—0000T
1]

- o)
i o 8
] %35 o
|—‘E o o © o
(@) © o & o
o o)
e o
o)
E o) 1) o
- - - - - - - O—=—=—=——-—
' o
=
(@
S o
o
[
(@)
(@F
o
o
o

(¢]

Alrewndo aAjos 01 awl

| aseyd

10000+,
1000-
100-

10

o.ulln

0.01

10

~ 100 1000

10000

" 100000

20

Static spill statistics

Spills
Base Opt | Base Opt | Base Opt
Total | 3040 4310 | 6771 3804 | 12312 5009

40

] = Memory instructions
30] =Reloads
] =Spills

percent spill-related instructions
|
|

21

Execution Speed

Benchmark Base Opt | Speedup %
barnes-hut 2.92s 2.92s 0.0
boyer 12.57 12.49 0.0
mlyacc 9.14 9.11 0.0
tsp 6.92 6.77 2.2
lexgen 9.08 8.84 2.7
count-graphs 24.07 22.15 8.7
icfp00 109.29 99.72 9.6
fft 8.58 7.80 10.0
logic 5.10 4.61 10.6
knuth-bendix 8.08 7.22 11.9
mandelbrot 27.92 23.21 20.3
life 19.03 15.24 24.9
simple 31.53 25.12 25.5

22

Contributions

e A two phase approach

e An integer linear program that is:

> Extremely simple
> Requires no fine tunning

> Solved quickly
e Effective!

> Production quality compilers.

> Highly dependent on good integer IL solvers.

23

