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Abstract 

This paper presents the results of our investigation of code 
positioning techniques using execution profile data as input 
into the compilation process. The primary objective of the 
positioning is to reduce the overhead of the instruction 
memory hierarchy. 
After initial investigation in the literature, we decided to 
implement two prototypes for the Hewlett-Packard Precision 
Architecture (PA-RISC). The first, built on top of the linker, 
positions code based on whole procedures. This prototype 
has the ability to move procedures into an order that is deter- 
mined by a “closest is best” strategy. 

The second prototype, built on top of an existing optimizer 
package, positions code based on basic blocks within pro- 
cedures. Groups of basic blocks that would be better as 
straight-line sequences are identified as chains. These chains 
are then ordered according to branch heuristics. Code that is 
never executed during the data collection runs can be physi- 
cally separated from the primary code of a procedure by a 
technique we devised called procedure splitting. 

The algorithms we implemented are described through exam- 
ples in this paper. The performance improvements from our 
work are also summarized in various tables and charts. 

1. Introduction 
Traditional optimization techniques attempt to improve pro- 
gram performance by eliminating instructions, both statically 
and dynamically. These traditional techniques fall short of 
achieving optimal performance for today’s architectures 
because they do not directly address improving the perfor- 
mance of the instruction memory hierarchy. The instruction 
memory hierarchy has increasingly become more of a perfor- 
mance bottleneck because: 
l Processor speeds continue to increase at a much faster 

rate than memory speeds. 

l For RISC type architectures, there is a two fold increase 
in instruction memory requirements as compared to CISC 
type architectures [DV87]. 
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Investigations by engineers within Hewlett-Packard have 
supplied evidence that the instruction memory hierarchy for 
PA-RISC is a potential performance bottleneck. For many 
applications, poor program locality may lead to: 

Higher instruction cache and TLB (Translation Lookaside 
Buffer) miss rates. The first implementations of PA-RISC 
showed a CPI (Cycles Per Instruction) of about 3 for the 
MPE/XLt operating system. Of this, 1 of the 3 cycles 
was due wholly to instruction cache misses. Subsequent 
hardware implementations have improved, but cache 
misses still account for a large portion of the CPI. 

Excessive page thrashing even under small workloads due 
to working sets being too large. 

There have also been earlier experiments within Hewlett- 
Packard attempting to improve program locality with very 
favorable results. Most notable are the following: 

A prototype Pascal compiler, built by moving frequently 
executed basic blocks to the top of procedures, had a 40 
percent reduction in the number of instruction cache 
misses and an overall performance improvement of 5 per- 
cent. 

A prototype Fortran compiler, built by hand arranging the 
object files to produce better procedure call locality, 
received a 20 percent system throughput improvement for 
an internal benchmark simulating a Fortran multi- 
user/application development environment. 

Given this, we set out to develop prototype compilers and 
linkers that would use execution profile information as feed- 
back to guide in the positioning of code in order to reduce the 
overhead of the instruction memory hierarchy. Specifically, 
we attempt to improve the performance of the instruction 
cache, although additional benefits are realized. 

Our approach to position code at the procedure level is pri- 
marily implemented in a modified linker, while the basic block 
positioning was added to a traditional optimizer in our com- 
pilers. We also implemented a technique ofprvcedure splitting 
that separates procedures into two parts, yielding additional 
benefits. This was also implemented in the optimizer. 

The specific implementation of these techniques was done for 
PA-RISC. Although there is some specific tuning in the basic 

t MPE/XL is a proprietsly commercial (OLTP) operating system for 
the PA-RISC architecture. 
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block positioning for the PA-RISC branch prediction algo- 
rithm, the techniques and ideas we developed are generally 
machine independent and applicable to many architectures. 

2. Related Work 

The problem of restructuring programs to improve memory 
performance has been studied by numerous researchers. 
Most of the earlier work concentrated on reducing page faults 
for virtual memory machines. Hatfield and Gerald [HG71] 
used a graph clustering algorithm to group routines that exe- 
cuted spatially together onto the same page. Ferrari [Fer74] 
[Fer76] defined a similar algorithm modeling how pages 
would be replaced based on the working set model of a pro- 
gram. Hartley [Har88] used duplication of code modules and 
inlining to extend the concepts of page locality. 

More recently, algorithms for positioning code at the basic 
block level have been presented. McFarling pcF89] uses 
simple profile data to guide in excluding some instructions 
from the cache to significantly increase the performance of a 
direct mapped cache. Hwu and Chang [HC89] also use pro- 
file data to guide in the positioning of basic blocks. 

Our approach with basic blocks is most similar to Hwu and 
Chang, although our algorithms are significantly different 
since the development was done independently. We also 
differ in implementation stratem. Hwu and Chang use a 
preprocessor to modify the source (C only) to do instrumenta- 
tion and then use the profile data to position code generated 
by their C compiler. Because we did our basic block instru- 
mentation and positioning work in an optimizer shared among 
many compilers, we are able to use our techniques on large 
multi-language and multi-source file applications. 

3. Prototype 1: Procedure Positioning 

The first prototype developed uses dynamic call graph infor- 
mation to guide in the positioning of procedures. We adopted 
a “closest is best” strategy. In other words, if a procedure 
calls another frequently, we want the two procedures to wind 
up close to one another in the final code image. Doing this 
for two procedures increases the chances that they will land 
on the same page, thus reducing the size of the page working 
set. Minimizing the page working set should result in fewer 
page and TLB misses. But more importantly, since the 
instruction cache for a single process on PA-RISC (as well as 
many other architectures) acts in a mod&o fashion, placing 
two procedures next to one another minimizes the overlap in 
cache lines between them. This should result in fewer cache 
collisions implying fewer cache misses. 

Another benefit of “closest is best” is reducing the number of 
executed lojzg bmncltes. On PA-RISC, the simple short 
branch instruction used for procedure calls has a range of 
r64K instructions. By software convention, the compilers 
normally assume that the simple branch instruction is suffi- 
cient. It is the linker’s responsibility to insert a long brawl1 
stub if the source and target of a procedure call are separated 
by a greater distance. This stub nominally takes three cycles 
to execute; however, there often will be an additional cache 
miss for the stub plus an extra penalty associated with branch 
prediction. 

From our “closest is best” strategy, we dramatically reduce 
the number of these long branches executed dynamically, even 
though we often saw an increase in the static count for the 
number of stubs required. Refer to the Results section for 
additional detail. 

3.1. Measurement Method 

In our first effort for procedure positioning, we chose to use 
@rof [GKM82] profiling data as input to the positioning algo- 
rithm. This was done since gprof was a supported measure- 
ment method that we could use very quickly. In particular, 
we built a call graph weighted by the procedure call counts 
using the profile information obtained from gpro& We then 
wrote a separate utility to manipulate the graph to determine 
a link order for the procedures. 

We found that using gprof had some drawbacks that caused us 
to change to measurement done by a modified linker: 

Gprof requires recompilation to add measurement sup- 
port. 

We wanted to be able to measure library routines. 
Without access to source code for library routines, we 
could not compile with gprof support. 

Assembly routines are not handled by gmfi 

The linker provides a notion of subspaces within the code 
area. It was deemed impractical for the first prototype to 
move code in anything less than subspace size chunks. At 
the time we did the prototype, all procedures within a 
relocatable file were included into a single subspace. But 
gprof measures based on individual procedures, not sub- 
spaces. Therefore, if two or more procedures within the 
same relocatable file needed to be placed in different posi- 
tions according to our algorithm, we had to make an arbi- 
trary choice. 

This problem has been eliminated by new procedure-per- 
subspace compilers (each procedure within a relocatable 
file is contained in a separate subspace), but we did not 
receive such compilers until quite late in our development 
of the first prototype. 

Looking for a replacement for gv-of to solve the above prob- 
lems, we modified the linker to insert measurement code. 

The linker sees all direct calls between the various code sub- 
spaces. For each such call from one subspace to another, the 
linker was modified to drop down a stub between the caller 
and callee to count the number of control transfers. 

The counters are maintained in a data space of the applica- 
tion. The linker initializes the counter area to zeroes and 
makes it big enough to handle all of the counters needed. 
During execution of the application, the individual counters in 
the data area are updated as calls pass through the linker 
added stubs. At the end of execution, the values of the 
counters are written to a file. 

For this prototype, indirect calls using procedure pointers 
were not measured. 

3.2. Procedure Ordering 

The procedure ordering algorithm is implemented in a 
separate tool from the linker. The first step in its ordering of 
procedures is to construct an undirected weighted call graph 
using the collected profiling data. Initially, each node of the 
graph is a single procedure and the edges correspond to calls 
behveen the procedures with the edges weighted by the 
number of times the calls were actually made. 

If a procedure calls another from several different places, or if 
two procedures are mutually recursive, those weights are first 
merged together in a single edge in the graph. The next step 
is to begin building the link order for the procedures in a 
bottom-up method using our “closest is best” algorithm, 
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The algorithm first chooses the edge with the heaviest weight. 
If multiple edges in the graph have identical weights, one is 
arbitrarily chosen. The two nodes connected by the chosen 
edge will be placed next to each other in the final link order. 
Then in the graph, the two nodes corresponding to this edge 
are merged into one and the remaining edges leaving each 
node are coalesced. This process continues until the whole 
graph consists of one or more individual nodes with no edges. 

Figure 1: Original Graph 

For example, consider the call graph in Figure 1. The heavi- 
est edge (weight 10) is the one connecting procedures A and 
D. 

So we decide that procedures A and D will be next to one 
another in the final link order, although which will actually be 
first is not decided at this point. We merge their two nodes in 
the graph and then repeat the process. The next edge chosen 
is the one between procedures C and F (weight 8). Again, 
although we have determined that these will be next to one 
another in the final link, we do not yet know which will be 
first. After merging nodes C and F, we have the situation 
shown in Figure 2. 

The next heaviest edge (weight 7) is the edge that connects 
the two nodes that we have just built by our previous mergers. 
Consider the four procedures making up these nodes. Since 
we have already decided that A and D should be together and 
that C and F should be together, there are four distinct 
choices available for the ordering of the next merger (since at 
this point we consider an ordering to be interchangeable with 
its reverse ordering). The four choices are: 

A-D-C-F or F-C-D-A 
A-D-F-C or C-F-D-A 
D-A-C-F or F-C-A-D 
D-A-F-C or C-F-A-D 

To determine which of these to choose by our “closest is 
best” strategy, we look at the wi@al connections between 
the procedures. We find that procedure F is not connected to 
either A or D and procedure C is more strongly connected to 

n AD 

Figure 2: After Second Merger 

A (original weight 4) than D (original weight 3). So we prefer 
that procedures C and A be adjacent in the final order, as 
long as the already determined groupings can be satisfied. 
Therefore, the order we choose for the four procedures is D- 
A-C-F (or the reverse ordering, F-C-A-D). 

This process continues until the graph has no edges left. If 
the graph was originally a connected graph, then the final step 
will lead to a single node. If it was a disjoint graph, then 
there will be several independent nodes. This can happen if 
some procedures were not called at all (caller/callee arcs 
never taken are not added to the graph), or if the mechanism 
for calling a procedure is not known to the prototype. For 
example, neither invocations through signal handlers nor 
dynamic calls are measured by the prototype. For the proto- 
type, we decided that the effort required to fix these minor 
anomalies was not worth it. 

The final step in the ordering process is to print the ordered 
list of procedures to a file to be used by the linker. 

3.3. Procedure Piacement 

The linker already knew how to sort subspaces based on vari- 
ous attributes including SOI~ ke)?r and access rights. By relying 
on the procennrr-per-nrbspace compilers to separate pro- 
cedures into distinct subspaces, we found that we could place 
procedures in a specific order just by modifying the linker’s 
sorting algorithm. The output of the graph ordering algo- 
rithm described in the previous section is a list of procedures 
in a linear order. We supply the linker with that list, which it 
uses in its sort of subspaces. 

By using the existing linker machinery in this way, we found 
that we had to modify very little code. 

The benefits that were achieved using the procedure position- 
ing prototype are described in our Results section. 
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4. Prototype 2: Basic Block Positioning 

The second prototype we developed uses profiling information 
to guide the positioning of basic blocks. 
Within most applications there are control flow paths and 
basic blocks that are seldomly executed during typical runs. 
Given the way that traditional compilers generate code, these 
seldomly used sections of code are interspersed with fre 
quently used sections. For example, consider the code for an 
error check: 

if (test for error) then 
handle unusual case 

more code 

When this code is compiled, you typically have the code for 
the error test terminating a basic block with a conditional 
branch around the code to handle the unusual situation. In 
the normal case where there is no error, the branch will usu- 
ally be taken. 

This often means that not all of the instructions in the cache 
line containing the branch instruction, or the cache line con- 
taining the target, will be executed. Incompletely using some 
cache lines implies that the total number of cache lines used 
is higher than one might expect from the number of instruc- 
tions actually executed. 

In addition, most implementations of PA-RISC predict that 
forward conditional branches will not be taken and that back- 
ward conditional branches will be taken. For the code gen- 
erated in the above example, the prediction for the forward 
branch is usually incorrect. This leads to wasted cycles due to 
processor stalls, a penalty which varies with different imple 
mentations of the architecture. Higher-end machines with a 
deeper pipeline have a larger penalty associated with an 
incorrect prediction. 

What we want to do is to identify such cases and move the 
infrequently executed code away so that the normal flow of 
control is in a straight-line sequence. The target and sense of 
the conditional branch will be changed to reflect the new ord- 
ering of code. The benefits we expect from doing this are: 

Longer sequences of code are executed before taking a 
branch. 
On average, the number of instructions executed per cache 
line increases. 

There are fewer cache misses due to a denser instruction 
stream. 

Since the hardware prediction matches the normal execu- 
tion, branch penalties are reduced. 

Better use of branch delay slots. 

In some cases (e.g. an if-then-else with a seldomly executed 
else clause), moving the infrequently executed code away 
results in the elimination of an unconditional branch. 

Currently, the support for basic block profiling and the actual 
positioning are implemented within the early phases of the 
optimizer component of our compilers. This results in a hvo- 
pass approach for the user. The user first compiles with 
measurement support and then after collecting profiling data, 
recompiles for positioning. 

4.1. Measurement Method 
The first consideration we had in measurement was deciding 
what exactly to measure. Typical path coverage tools (e.g. 

PFAt) measure the number of times each basic block is exe- 
cuted without regard as to how you reached the basic block. 
An alternative approach is to count the number of times con- 
trol transfers from one basic block to another. Using a basic 
block control graph, the difference is that PFA measures the 
number of times each node of the graph is executed, while the 
second method measures the number of times each arc is 
traversed. 

The measurement of the arcs provides more data than the 
measurement of nodes. It is easy to derive node measure- 
ments from arc measurements but the converse derivation is 
not generally possible. 

I 1 

I A 
I 

Figure 3: Arc vs. Node Measurement 

Figure 3 shows a basic block structure with the arcs labeled 
with their execution counts. The PFA measurement for basic 
block C is 2001, while for basic block B it is only 1000. 
Therefore, an algorithm based only on PFA counts would be 
inclined to position basic block C after A, rather than basic 
block B. An algorithm based on arc measurements would be 
inclined to the reverse decision, since the arc from A to C is 
only executed once while the arc from A to B is executed 
1000 times. Because of these considerations, we chose to 
implement measurement of arcs, 

It was our original belief that implementing measurement of 
arcs would be significantly more complex than PFA-like meas- 
urement. It turned out, however, that it was relatively easy 
given that we decided to insert measurement code just before 
final optimization. The measurement code is inserted into the 
procedure after the basic block control graph has been built. 
Methods exist to reduce the number of distinct counters used 
[Sar89], since in many cases the counter value of some arcs is 
derivable using the flow graph and the values of other arcs. 
For our prototype, we did not implement these techniques. 
Instead, we generate code to increment a counter in the data 
area for every arc of the basic block graph. 

In order to handle multiple compilation units during position- 
ing, there needs to be a way to associate a group of counters 
with a particular compilation unit. We did this by placing a 
descriptor containing the relocatable file name, fully qualified, 
just before the counters in the data area. When the counters 
are dumped to a file after each profiling run, the file names 

t PFA is a Patll Flow Analyzer for PA-RISC. 
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are also dumped. When a file is compiled for positioning, the 
counters are scanned using the file name to find the group of 
counters corresponding to the procedures in that file. 

4.2. Basic Block Ordering 
While analyzing the weighted basic block control graphs for 
various examples, we developed two straightforward algo- 
rithms, aZgol and a&2, to guide the basic block positioning. 
The principal difference between the two is that a@1 is a 
top-down, depth-first algorithm while algo is a bottom-up 
algorithm. Both methods showed significant improvements 
over traditional optimization techniques when applied by hand 
to small examples. For our prototype implementation, we 
chose to implement algo because it performed marginally 
better than ulgol in the examples we considered. 

43.1. Algo2: Bottom-up Positioning 

The idea in this algorithm is to form chains of basic blocks 
that should be placed as a group as straight-line code. These 
chains are built in a bottom-up method by initially considering 
each basic block as the head and tail of a chain by itself. 
Looking at the arcs of the basic block graph from largest to 
smallest, two different chains are merged together if the arc 
connects the tail of one chain to the head of another. In this 
case, the target chain is appended to the source chain. 

If the source of the arc is not a tail or the target of the arc is 
not a head, then the chains cannot be merged. For example, 
if the more frequently executed arc out of a conditional 
branch results in the merger of chains (as it usually will), then 
when the less frequently executed arc is considered, no 
merger will be possible. The arc’s source (the conditional 
branch) will already be in the middle of a chain. 

Nevertheless, we do use these arcs to define a precedence 
relation among the chains to guide in the final positioning. 
Since the lesser arc will involve a branch, we want it to be a 
forward branch to match the hardware prediction that forward 
branches are less frequently taken. Therefore, the source of 
the arc should occur before the target. This implies that the 
chain containing the source is given precedence over the chain 
containing the target. 

After all arcs have been looked at, there are a set of chains 
and precedence relations that will be used to do final place- 
ment. The algorithm starts with the entry chain, then chooses 
the next chain based on how heavy the inter-chain connections 
are, subject to the precedence relations defined by the condi- 
tional branches. 

The precedence relation between any two chains is not neces- 
sarily transitive; it is possible for there to be loops in the pre- 
cedence relations. If there is a loop, a decision is made based 
on the highest execution counts between the chains in conflict. 

The principal idea behind this algorithm is to try to reduce 
the number of taken branches (conditional and unconditional). 

4.2.2. Algol: Top-down Positioning 
The first observation for this algorithm is that basic blocks, 
except for branch table basic blocks, either have one or two 
successors. The algorithm starts by first placing the entry 
basic block for the procedure. Thereafter, the successor that 
is connected to the last placed basic block by the largest count 
is selected, as long as it has not already been placed. If all 
successors have already been selected, you pick among the 
unselected basic blocks the one with the largest connection to 

the already selected blocks, This continues until all basic 
blocks are placed. 

The principal idea behind this algorithm is to try to make con- 
ditional branches become forward conditionals that are usually 
not taken. 

4.2.3. An Example 

Figure 4 shows the weighted basic block graph of a procedure 
with each arc labeled with its profile count. The C source 
code was a while loop. Within the body of the loop are 
several if-then-eke tests along with two alternate break state- 
ments (at basic blocks G and M). 

Figure 4: Basic Block Example 

We start algo by looking at the arc with the heaviest weight 
(6964) from basic block 6 to C and joining these two together 
into a chain. We then look at the next largest arc (6950) from 
basic block C to D. Since basic block C is at the end of a 
chain, we can extend the B-C chain to include D. The next 
three largest arcs (N-B, D-F, and E-N) also extend the existing 
chain. The next largest arc (D-E) can not be used to extend a 
chain, since basic block D is already in the middle of a chain. 
So we continue with the remainder of the arcs. The final 
result will be six chains (three are individual basic blocks): 

;j 
A G-O 
E-N-B-C-D-F-H !; K 

3) I-J-L 6) M 

After the chains have been formed, we then establish a pre 
cedence relation between them based on our desire to have 
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non-taken conditional branches be forward. There are 6 con- 
ditional branches in this procedure. By our criteria, the one 
at B indicates that chain 2 containing B-C should occur before 
chain 4 containing 0. If these two chains are placed in this 
order, then the less frequently executed path out of B is the 
forward branch as desired. 
The other conditional branches at C, F, I and J imply that you 
would like the following order among the chains: 

chain 2 (C) before chain 4 (G) 
chain 2 (F) before chain 3 (I) 
chain 3 (I) before chain 6 (M) 
chain 3 (J) befotz chain 5 (K) 

The only conditional branch left at D shows that it is some 
times impossible to do a perfect job. By our criteria we want 
the branch from D to E to be forward (since that link is not 
taken as often as the path from D to F). But since E and D 
are part of the same chain, and E occurs before D in the 
chain, that branch is necessarily backwards. In other exam- 
ples, it sometimes happens that the precedence relation 
between chains is not transitive. We resolve such conflicts by 
looking at the weights of the arcs and choosing an order that 
will satisfy the precedence of the larger arcs. 

After we determine the precedence criteria between chains, 
we arrange them so that the order we want is satisfied as best 
as possible. If there is some freedom in choosing the next 
chain, we try to choose the chain connected to existing chains 
by the heaviest count. In this example, the final order of the 
basic blocks that we determine is: 

A, E-N-B-C-D-F-H, I-J-L, G-O, K, M 

Note that this ordering has altered the layout of the loop. In 
particular, the main test for the loop (basic block B) is now in 
the middle of the loop. 
Algol (which we did not actually implement in the prototype) 
starts with the entry point basic block. At each point, we try 
to place a successor of the last placed basic block. If there is 
more than one available, we choose the one with the higher 
arc count. In this example, we would start with basic block A. 
It only has one successor, B, so that would be placed next. B 
has two successors, but C is connected with the higher arc 
count so it would be chosen next. Continuing in this way, we 
would place D, F, H and N. 

After N is chosen, its only successor has already been 
selected, so we choose a new place to start from the remain- 
ing unselected basic blocks. We pick up with E since it is 
connected to the already chosen blocks by a weight of 3117. 
Note that its only successor has also already been chosen, so 
we start again with another unselected block, I. The final 
order after the algorithm completes is A, 8, C, D, F, H, N, E, 
I, J, L, 0, K, G, and M. 
Both algo and algo2 do a good job of making conditional 
branches into forward branches that are usually not taken. 
Algo2’s advantage seems to be that it does a better job at get- 
ting rid of unconditional branches. 

4.3. Basic Block Placement 
After determining the set of chains and their ordering, the 
final phase is to restructure the basic block graph before pass- 
ing into the actual optimizer. Because internally the basic 
block graph is built using a doubly linked list of instructions, 
what really must be done is to properly break and reconnect 

the instructions at the basic block boundaries. By and large, 
this process just involves pushing pointers around. 

We start by placing the chains down, reconnecting the basic 
blocks to each other by means of the double links. Then, a 
pass is made over the basic blocks to insert any necessary 
branches to ensure that the code executes correctly. These 
branches are inserted where the fall-through after a basic 
block is no longer correct. For example, if the then clause of 
an if-then-else statement was moved away, the else basic block 
would immediately follow the branch and it would be in the 
fall-through location; however, the correct fall-through for the 
branch is the then clause. For correctness, a new basic block 
with a branch to the original fall-through location is inserted 
to be the fall-through. 

This means that the conditional branch in the if clause is a 
branch around an unconditional branch. We could take the 
trouble to reverse the sense of the conditional branch and 
alter the target rather than just inserting a new basic block, 
but the optimizer already knows how to do this so we let it do 
the work later. 

At this point, the procedure is ready to be passed through the 
optimizer. 

5. Procedure Splitting 

After a new ordering of the basic blocks has been established 
for a given procedure, the frequently executed basic blocks 
@imay) are now found toward the top of the procedure 
while the infrequently executed blocks are found near the end. 
Basic blocks that were never executed according to the col- 
lected profiling data (/luffi end up at the very end of the pro- 
cedure. 

Procedure Splitting is the process of separating the fluff basic 
blocks of a procedure into a separate region in an attempt to 
minimize the size of the primary procedure. The benefits of 
procedure splitting magnify the concept of locality. By pro- 
ducing smaller and denser primary procedures, more pro- 
cedures can now be packed onto a single page. This should 
result in a further reduction of the page working set size and 
the number of page and TLB misses. 

The left half of Figure 5 shows a simple example of three pro- 
cedures that would normally require two pages of memory. 
By splitting the primary portions away from the fluff, the pri- 
mary code for the procedures can be contained within a single 
page as shown in the right half of Figure 5. 

When separating the fluff basic blocks from the primaty 
blocks for a given procedure, we define a new “procedure” to 
encompass the fluff blocks. This procedure is not a typical 
one in that it does not adhere to the standard procedure cal- 
ling convention: there is no defined entry or exit point and no 
register saves or restores. We do this to avoid the overhead 
associated with a standard procedure call whenever control 
transfers between a primary and fluff procedure. The new 
procedure is also given a lower sort key so that the linker will 
force all fluff procedures to the end of the code area. 
After we determine which basic blocks will be moved into the 
fluff procedure, any branch that goes from a primary basic 
block to a fluff basic block, or vice-versa, is redirected to a 
long branch stub. The target of the long branch stub will be 
the original target basic block. A long branch stub is used 
because the fluff procedure will most likely be located too far 
from its primaly counterpart for a short branch to reach. 
Since the paths between primary and fluff code were never 
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6. Results 

We have implemented the algorithms presented in this paper 
as prototypes in the PA-RISC optimizer and linker and have 
successfully restructured several applications written in C, 
Fortran and Pascal. Because most of the data presented is 
based on early measurements, at times it may appear to be 
lacking in a fine-grain analysis. The primary goal of this 
research was to determine whether code positioning can 
deliver a noticeable improvement to the end user. As this 
project evolves, a more detailed examination of what is hap- 
pening at the platform level is planned. 

Table 1 summarizes some important characteristics of the 
HP-UX Series 800 platforms used for benchmarking. For 
configurations that contain a split cache, the numbers show 
the sixes for the instruction cache followed by the sixes for the 
data cache. 
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Figure 5: Procedure Splitting Example 
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taken according to the profiling data, the long branch stubs 
should be infrequently executed and only for non-typical 
inputs. 

The transfer stubs are placed at the end of the procedure that 
is doing the interprocedural branch. Placing the stub at the 
end of the procedure instead of converting the original 
branches into long branches in-line was chosen for simplicity. 
If there are multiple branch sites that have the same branch 
target, a single long branch stub is shared to save space. 

An example of an if-then-else sequence where the then clause 
is considered to be fluff is shown in Figure 6. The left half 
shows the traditional ordering of basic blocks while the right 
shows the ordering after Procedure Splitting has been applied. 

After 

Before 

VMIPS 

Platform 
825 ! 835 ! 840 
9.8 1 14.8 1 8.7 

Main memory 
Cache: 

Unified or Split 
Size 
Associativity 
Line Size (bytes) 
Lines per Wav 

8Mb 40Mb 

Unified 
16Kb 

1 
32 
256 

Clean-Miss (cycles) 27 
Dirtv Miss (cycles) 27 

Unified split 
128Kb 64Kb/64Kb 

2 l/l 
32 16/16 
2K 4K/4K 
21 7/7 
27 14 

24Mb 

Table 1: Hardware Configurations 

The benchmarks analyzed are summarized in Table 2 and 3. 
Because of our implementation model, we are able to restruc- 
ture both multiple source file and multiple language applica- 
tions. In addition, we do not have to restructure an applica- 
tion for each configuration measured given that our position- 
ing algorithms are platform independent. 

Name 

Othello 

Language Source Code Size 
Lines (bvtes) 

Pascal 1133 82130 

Table 2: Benchmark Characteristics 

Figure 6: Insertion of Stubs 
Table 3: Benchmark Description and Inputs 
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In table 4, the percentage improvement in user time over full 
optimization is shown.7 

Table 4: Percentage Performance Improvement 

The restructured version of these applications had all three 
positioning methods applied: basic block positioning, pro- 
cedure splitting, and procedure positioning. Although pro- 
cedure positioning was applied to all procedures, including 
run-time library routines, basic block positioning was only 
done for the application source code. These numbers 
represent optimal throughputs in that the same inputs were 
used for both the collection of profiling data and final bench- 
marking. The data shows an improvement in user time rang- 
ing up to 26 percent. 

Table 5 gives a breakdown as to how specific steps in our pro- 
totypes improve program performance. Each column of data 
gives the percentage improvement in user time over full 
optimization. The third column (PP) shows the results for 
procedure positioning only. The results in the fourth column 
(BBP) show improvements for basic block positioning only. 
The fifth column (BBP-PS) is basic block positioning along 
with procedure splitting. Finally, columns six (l3BP-PP) and 
seven (BBP-PS-PP) are equivalent to columns four and five 
with procedure positioning additionally applied. 

BBP BBP BBP 
Benchmark H/W PP BBP ps pp PS 

PP 
825 7.2 7.9 8.7 ] 8.7 10.2 

1 Othello 1 83.5 11 0.0 1 1.6 1 1.6 1 2.1 1 2.1 1 

‘VW Hardware Platform I’P Procedure Positioning 
BBP Basic Block Positioning PS Procedure Splitting 

Table 5: Percentage Improvement by Prototype 

As expected, the largest performance benefit comes from 
basic block positioning alone. However, there are anomalies 
in the collected data. For example, the performance for Pas- 
cal and the Simulator running on the 840 was only slightly 
improved using basic block positioning alone whereas when 

t Most timing measurements were done wsing the UNIX$ time 
command 

f UNIX is R trademarlc of AT&T Bell L&oratories. 

applied along with procedure positioning, there was a much 
greater improvement. It is possible that basic block position- 
ing alone has created some new problem such as a collision in 
the cache that offsets the expected improvement. When pro- 
cedure positioning is additionally applied, the collision is then 
alleviated. 

When we first began our research, we did not expect to 
acquire any measurable performance improvements for appli- 
cations as small as Othello. We were surprised when, in fact, 
there was a significant performance benefit due to positioning. 
Table 6 shows a breakdown of where the performance gains 
were acquired for Othello. The second column is the percen- 
tage improvement in the specific individual measurement. 
The third column is the percentage of total improvement rela- 
tive to other improvements. This information was gathered 
using the PA-RISC Simulator simulating an 825 configuration. 
For the purpose of illustration, we assumed a 1 cycle branch 
penalty for conditional branches taken the wrong way. 

Table 6: Performance Breakdown for Othello 

A nice side effect, but not an original goal of this optimization 
technology, is the reduction in the number of executed 
instructions. This is due to two reasons. First, the straighten- 
ing out of if-tlten sequences reduces the number of nullified 
delay slots (which count as wasted instructions). Second, 
moving infrequently executed basic blocks (e.g. an else block) 
out of the mainstream removes the unconditional branches 
otherwise needed to branch around these infrequent basic 
blocks. This could mean that basic block positioning alone 
could achieve 2-3 percent in performance simply due to 
reducing the number of executed instructions. 

6.1. Specific Observations on Procedure Positioning 

One of the benefits gained from procedure positioning a large 
application is a reduction in the number of executed long 
branches. This section shows how we have reduced the 
number of executed long branches for procedure positioned 
Pascal and Fortran compilers. 

In addition to an original non-positioned compiler, a number 
of procedure positioned compilers were produced based on 
different sets of profiling data: 

d/t: The profiling data used was from compiling Othello 
without optimization. 

N/Z.-0: The profiling data used was from compiling 
othello with full optimization. 

multiple.-0: For Pascal, the profiling data used was from 
compiling null.p, othello.p, talias.p, and flatpm.p with full 
0ptimization.t For Fortran, the profiling data used was 
from compiling null.f, othello.f, cae.f, and spice.f witlt full 
optimization. 

t Ta1ias.p is a compiler front-end routine, flatpmp is a Process 
Management routine from MPE/XL 
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Table 7 shows the number of static long branches necessary to tions on the ordering of relocatable files to produce better 
link the compilers based on the collected profiling data. procedurelocality. 

Positioned 
ler Pascal Fortran 

Original 13383 2635 
0th 19347 12447 
oth.-0 20896 13570 
multiple.-0 22211 12986 _ 

Table 7: Static long branch stubs 

The number of static branches required has increased by up 
to 65 percent for Pascal and up to 400 percent for Fortran! 

Tables 8 and 9 show the effects on the number of executed 
long branches. 

Positioned 
Pascal 

Input and Options 

Compiler II no opts I -0 I -0 I -0 -0 
Original 11 101126 1 152092 1 824 I 2104156 I 6920411 
0th 1884 127534 241 1773933 442A816 
oth.-0 26489 lo443 740 1828036 3639081 
multiple.-0 34251 22802 500 139149 434156 

Table 8: Pascal dynamic long branches 

Input and Options 
othel1o.f othel1o.f nul1.f cae.f spice.f 
no opts -0 -0 -0 -0 

35611 37175 310 349383 1586339 
2618 60574 505 795580 3256855 

18753 6558 136 350337 9577’21 
26759 lS388 181 69830 226851 

Table 9: Fortran dynamic long branches 

The BOLD numbers represent oprirnnl runs in that the input 
files used for final analysis where the same as those used for 
profiling. For these cases, the decrease in the number of exe 
cuted long branches varies from 8.5 to 98 percent for Pascal 
(excluding compiling null.p) and from 80 to 92 percent for 
Fortran as compared to the non-positioned compilers. 

There are two additional pieces of informarion to gather from 
the data above. First, although there was an increase in the 
number of static long branch stubs, the number of executed 
long branch stubs was significantly reduced. This means that 
efforts directed only towards reducing the static count may 
give unexpected resulllts. Second, for Pascal there was a gen- 
eral decrease in the number of executed long branches using 
any input on any of the positioned compilers. While using the 
0th version of Pascal, which was positioned using profile data 
for compiling othel1o.p without optimization, there was a 
decrease varying from 16 to 75 percent while compiling other 
source files M&? optimization. In other words, it appears that 
we have not worsened the performance (in regard to pro- 
cedure locality) for non-typical inputs.? 

This was not true for all cases in Fortran. However, the non- 
positioned Fortran compiler already had some hand optimiza- 

All procedure positioned Pascal and Fortran compilers had a 
general run-time improvement ranging from 1 to 6 percent 
even for non-profiled inputs. For Fortran, this was true even 
though the number of executed long branches went up in 
some cases. For both Pascal and Fortran, the reduction in the 
number of executed long branches did not account for the 
total throughput improvement. These facts point to some- 
thing else contributing to a gain in performance. 

Although data is not presented, it appears that paging, TLB, 
or most likely, cache performance, have been improved by our 
“closest is best” procedure positioning strategy. 

63. Specific Observations on Basic Block Positioning 

The primary goal for the basic block positioning algorithm is 
to produce straight-line sequences of code that make more 
effective use of the cache. A secondary goal was to minimize 
the number of taken penalty branches. 

Using simulated data for measuring the performance of 
Othello running on an 825 configuration, the following results 
were observed: 

0 The number of executed penalty branches was reduced by 
42 percent. 

0 The average number of instructions executed before taking 
a branch increased form 6.19 to 8.09, a 31 percent 
improvement. 

By executing more instructions before taking a branch, there 
is a better chance that we are making more effective use of 
the cache. 

63. Specific Observations on Procedure Splitting 

The goal of procedure splitting is to minimize the size of the 
primary procedure by separating the unused code from the 
primary code. As previously discussed, some code must be 
added to both the primary and fluff procedures to properly 
handle transfer of control between the two procedures. 

The second and third columns in Table 10 give a breakdown 
on the number of instructions that were considered to be pri- 
mary and fluff code, respectively, based on the profiling data 
used. The fourth column is the number of long branch 
instructions that had to be added to the primary procedures to 
properly handle a transfer of control. The last column is the 
ratio of the number of long branch instructions added to the 
primary procedure versus the number of fluff instructions 
moved. The ratio shows that a large number of instructions 
have been moved with a very small overhead in the number of 
instructions added. 

Benchmark Primary Fluff STUB Ratio 
Fluff : STUB Instrs. a Ins&s. 

Othello 16072 $82 42 13.8 : 1 
Simulator 31129 47494 1382 34.4 : 1 
Pascal 189422 330312 11794 28.0 : 1 

Table 10: Fluff Statistics 
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6.4. Compile-time Costs 
Adding profiling code during compilation is expected to 
increase the time necessary for compilation. In addition, the 
added complexity of basic block positioning should also result 
in an increased compilation cost. Although it was not a pri- 
mary concern of our prototype effort, data is presented for 
compilation costs. 

The compilation costs required to do basic block positioning 
are shown in table 11.3 The second column is the time 
required to compile the application with optimization. The 
third column is the time required to add profiling code. Note 
that we still perform full optimization when adding profile 
support. The last column is the time required to perform 
basic block positioning along with optimization. 

File Full Adding Basic Block 
op 

othel1o.n 223 
Profilina Positionine 

37.0 24.4 
1 

A ta1ias.p 192.8 356.7 193.4 
1ex.c 124.8 409.9 148.1 
yaccc 103.6 243.2 121.9 

Table 11: Compilation Costs (seconds) 

J 

As can be seen, the additional time required to perform basic 
block positioning compared to full optimization alone is fairly 
small. However, there is a 2 to 3 factor slowdown in the time 
required to add profiling support. Compilation time is 
strongly related to the number of basic blocks and adding 
measurement code more than doubles the number of blocks 
for a procedure. There are methods that may be employed to 
minimize the number of counters needed to obtain accurate 
profiling data [Sar89]. These should help reduce the compila- 
tion costs by reducing the number of additional basic blocks 
needed. 

6.5. Run-time Costs 

In addition to compilation costs, there is an expected slow- 
down in the throughput of an application that has had profil- 
ing code added to it. Again, this was not a primary concern 
of our development, but data is presented. 

Using a control input, the second column of table 12 is the 
time required to run an application when it was compiled with 
full optimization only. The third column is the time required 
to run the application when it was compiled and linked with 
profiling code. 

FUU Benchmark t. . ati0 

Othello 9.9 

Profiling Code 
Added 

24.7 
lex 4.2 19.6 
yacc 6.1 18.5 
Pascal 154.7 321.6 

Table 12: Run-time Costs (seconds) 

$ The compilers used to collect this timing information were our t Adb is a low-level debugger on UNIX while Nmdebrrg is a low- 

prototype compilers and were not optimized. level debugger on MPE/XL. 

As with compilation costs, there is a significant overhead in 
the run-time performance of an application that has been 
instrumented with profiling support. The methods described 
to reduce compilation costs would also help reduce these 
run-time penalties. 

7. Positioning Expectations 

From our experiences, procedure positioning gives the most 
improvement when the original application has a large 
number of procedures with poor locality in its call graph. 
Applications that have already been structured to improve 
locality show far less improvement. 

Basic block positioning and procedure splitting give the most 
improvement when there are lots of conditional branches 
around relatively unused portions of code. When examining 
the code for the Simulator to determine why there was such a 
large performance improvement in the restructured version, 
we noticed that there are a large number of non-looping rou- 
tines that once entered, perform some simple operation, 
branch to near the end of the routine, perform some other 
operation, and then return. This type of behavior puts exces- 
sive pressure on the cache system and is common in many 
real applications. 

Because our methods are currently used for positioning code 
only, applications that spend much of their time in data lnten- 
sive loops do not show as much improvement. A large 
amount of data cache misses will shadow any benefits gained 
from code positioning. In particular, when we positioned the 
optimizer components of the compiler, we did not see much 
of an improvement because it spends much of its time travers- 
ing large data structures within tight loops. 

8. Issues 

This section describes issues that were not addressed because 
these were not necessary in order to implement the technol- 
0~7 in a prototype. However, these should be addressed for 
any product effort. 

0 TMJO-pass Compilation: For basic block positioning, the 
current prototype requires a compilation pass for measure- 
ment and a separate pass for positioning after profiling 
data has been collected. McFarling pcF89] discusses 
using profile information along with program structure 
obtained directly from standard object files to create posi- 
tioned object files. 

Conceivably, both basic block profiling and positioning 
could be done in the linker or a separate tool altogether. 
This would remove the need for multiple compiles, but an 
extensive amount of knowledge on program structure 
would have to be built into the tool. 

b Debqgitg Positioned Code: Most high level symbolic 
debuggers have difficulties dealing with optimized code. 
When programmers started using full optimization, they 
could no longer use the symbolic debuggers to debug their 
code. Over time, users learned how to find markers, such 
as procedure calls, in the assembly code while using low 
level debuggers such as ndb or nnldebcrgf. Using these 
markers, users are able to find the code of interest in 
order to solve the problem at hand. 
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Wirh basic block positioning, these markers may no longer 
be useful. For example, if the code of interest follows a 
procedure call in the source, users often look for the pro- 
cedure call in the assembly language to find the desired 
code. In the positioned code, the procedure call marker 
may now be located almost anywhere in the procedure 
with no relation to the point of interest. In fact, if pro- 
cedure splitting has been done, they may not be in the 
same procedure at all. 

The general problem of debugging optimized code has 
been addressed elsewhere [CMR88] and we feel that the 
same techniques could be used with positioned code to 
hide the underlying complexity from the end user. 

Reuse of Data: This is an important issue because users 
are not going to be willing to recollect profiling informa- 
tion and position after making minor changes. For pro- 
cedure positioning, the current scheme of producing an 
ASCII list for the ordering of the procedures may be ade- 
quate for small changes. If a user adds or deletes a small 
number of routines (or if the dynamic call graph changes 
slightly) the previously generated procedure order will still 
be useful, but maybe not the most optimal. 

For basic block positioning, the problem is much more 
complex when a user alters the structure of a procedure. 
If the profiling data no longer maps to the basic block 
structure, it would be very difficult to decide how to posi- 
tion the new structure. At a minimum, these altered pro- 
cedures could be skipped over during positioning with a 
warning issued, but procedures that have not been modi- 
fied could still be handled. 

Representative Inputs: We did not address the problem of 
using representative inputs to collect profiling data. There 
is some concern that program performance could be 
degraded for typical inputs if the wrong set of inputs is 
used to collect profiling data. From our analysis, it 
appears that many programs have a central trunk of execu- 
tion that is executed regardless of the inputs supplied. By 
positioning this trunk, a general improvement has been 
measured regardless of the inputs used. 

Additional Opportunities 

The following is a list of additional opportunities that may 
lead to an increase in application performance or other bene- 
fits. This list is by no means considered to be complete: 

l Altenlative Positionirzg Algorithms: Alternative positioning 
algorithms for determining the ordering of procedures and 
basic blocks. 

l Modeling the Cache: We did not take any machine depen- 
dent parameters into account when doing positioning. For 
procedure positioning, if we knew the total cache size for 
the target machine, we might use an algorithm that tries to 
minimize cache overlap instead of “closest is best”. 

For basic block positioning, if we knew the cache line size, 
we might try to cache align branch targets. 

l Conditional Branch percentage: Hwu and Chang [HC89] 
did some analysis on when the less dominant block of an 
if-then-else structure should be moved out of line. For 
example, you may not want to move any block if the less 
dominant block is entered 45 percent of the time relative 
to the dominant block, but you probably do if it is entered 
only 30 percent. 

In our prototype, the less dominant, no matter what the 
difference, was moved out of line, since that was always 
better in terms of simple ycle counts, not including cache 
misses. 

Fluff Block Size: Any basic block that was marked as a 
fluff basic block was moved into the fluff procedure, 
regardless of the size of the basic block. Given that a long 
branch stub consists of two instructions anyway, it may not 
be beneficial to move very small blocks. 

Infining Interprocedural Branches: When doing procedure 
splitting, instead of redirecting the simple branches to long 
branch stubs for interprocedural transfer, these branches 
could be turned into long branch sequences in-line. This 
would be a static and dynamic saving. 

Interprocedural Branch Distance: For smaller applications, 
there may not be a need for long branches to branch from 
primary to fluff regions. The original branch could be left 
unmodified, even if its target was in another region, if the 
branch distance was known to reach. 

User Directives: It may be beneficial to allow user direc- 
tives in the code specifying heavily executed or infre- 
quently executed basic blocks or procedures. This infor- 
mation could be used to do positioning without the need 
of profiling data. Of course, this depends on the user hav- 
ing accurate knowledge of his program. 

10. Conclusion 
In our work on code positioning, we developed algorithms and 
prototypes to position code based on execution profile gui- 
dance. The optimization techniques that we implemented in 
the prototypes vary widely in their effectiveness based on the 
application and the particular PA-RISC implementation. Per- 
formance improvements ranging from 2 to 26 percent over 
current optimizations have been measured with an average 
improvement of 8 to 10 percent. More of this gain is due to 
positioning code at the basic block level rather than at the 
procedure level. 
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