
1CS 701 Fall 2003
©

CS 701

Charles N. Fischer

Fall 2003

http://www.cs.wisc.edu/~fischer/cs701.html

2CS 701 Fall 2003
©

Class Meets
Tuesdays & Thursdays, 11:00 — 12:15
2321 Engineering Hall

Instructor
Charles N. Fischer
5397 Computer Sciences
Telephone: 262-6635
E-mail: fischer@cs.wisc.edu
Office Hours:

10:30 - Noon, Mondays &
Wednesdays, or by appointment

3CS 701 Fall 2003
©

Teaching Assistant
Kent Hunter
1308 Computer Sciences
Telephone: 262-6602
E-mail: khunter@cs.wisc.edu
Office Hours:

10:00 - 11:00
 Tuesdays and Thursdays,
 or by appointment

4CS 701 Fall 2003
©

Key Dates
• September 23: Project 1 due

• October 21: Project 2 due (tentative)

• October 23: Midterm (tentative)

• November 18: Project 3 due (tentative)

• December 11: Project 4 due

• December ??: Final Exam, date to be
determined

5CS 701 Fall 2003
©

Class Text
There is no required text.
Handouts and Web-based reading will
be used.

Suggested reference:

Advanced Compiler Design &
Implementation,
 by Steven S. Muchnick,

 published by Morgan Kaufman.

6CS 701 Fall 2003
©

Instructional Computers
Departmental SPARC Processors
(nova1-nova60)
You may use your own workstation if
it is has a SPARC processor
 (test using dmesg|grep cpu)
Otherwise log onto a SPARC processor
to do SPARC-specific assignments

7CS 701 Fall 2003
©

CS701 Projects
1. SPARC Code Optimization
2. Global Register Allocation

 (using Graph Coloring)
3. Global Code Optimizations
4. Individual Research Topics

8CS 701 Fall 2003
©

Academic Misconduct Policy
• You must do your assignments—no

copying or sharing of solutions

• You may discuss general concepts and
Ideas

• All cases of Misconduct must be
reported.

• Penalties may be severe.

9CS 701 Fall 2003
©

Reading Assignment
• Get Handout #2 (Chapter 15, Code

Optimization) from DoIt.

• Read Chapters 0-6 and Appendices G&H
of the SPARC Architecture Manual. Also
skim Appendix A.

• Read section 15.2 of Chapter 15.

• Read Assignment #1

10CS 701 Fall 2003
©

Overview of Course Topics
1. Register Allocation

Local Allocation
Avoid unnecessary loads and stores
within a basic block. Remember and
reuse register contents.
Consider effects of aliasing.

Global Allocation
Allocate registers within a single
subprogram. Choose “most profitable”
values. Map several values to the same
register.

Interprocedural Allocation
Avoid saves and restores across calls.
Share globals in registers.

11CS 701 Fall 2003
©

2. Code Scheduling
We can reorder code to reduce latencies
and to maximize ILP (Instruction Level
Parallelism). We must respect data
dependencies and control dependencies.

ld [a],%r1 ld [a],%r1

add %r1,1,%r2 mov 3,%r3

mov 3,%r3 add %r1,1,%r2

(before) (after)

12CS 701 Fall 2003
©

3. Automatic Instruction Selection
How do we map an IR (Intermediate
Representation) into Machine Instructions?
Can we guarantee the best instruction
sequence?

Idea—Match instruction patterns
(represented as trees) against an IR that is
a low-level tree. Each match is a generated
instruction; the best overall match is the
best instruction sequence.

13CS 701 Fall 2003
©

Example:
a=b+c+1;

In IR tree form:

Generated code:
ld [%fp+b offset],%r1

ld [c adr],%r2

add %r1,%r2,%r3

add %r3,1,%r4

st %r4,[a adr]

Why use four different registers?

=

aadr

+

↑↑

+ 1

cadr

+

%fp boffset

14CS 701 Fall 2003
©

4. Peephole Optimization
Inspect generated code sequences and
replace pairs/triples/tuples with better
alternatives.

ld [a],%r1 ld [a],%r1
mov const,%r2 add %r1,const,%r3
add %r1,%r2,%r3

(before) (after)

mov 0,%r1 OP %g0,%r2,%r3
OP %r1,%r2,%r3

(before) (after)

But why not just generate the better code
sequence to begin with?

15CS 701 Fall 2003
©

5. Cache Improvements
We want to access data & instructions
from the L1 cache whenever possible;
misses into the L2 cache (or memory) are
expensive!

We will layout data and program code with
consideration of cache sizes and access
properties.

6. Local & Global Optimizations
Identify unneeded or redundant code.
Decide where to place code.
Worry about debugging issues (how
reliable are current values and source line
numbers after optimization?)

16CS 701 Fall 2003
©

7. Program representations
• Control Flow Graphs

• Program Dependency Graphs

• Static Single Assignment Form (SSA)
Each program variable is assigned to in
only one place.
After an assignment xi = y j , the
relation xi = y j always holds.

Example:

if (a) if (a)
 x = 1 x 1 =1

else x = 2; else x 2 =2;

print(x) x 3 = φ(x 1,x 2)

 print(x 3)

17CS 701 Fall 2003
©

8. Data Flow Analysis
Determine invariant properties of
subprograms; analysis can be extended to
entire programs.

Model abstract execution.

Prove correctness and efficiency properties
of analysis algorithms.

