
18CS 701 Fall 2003
©

Review of Compiler
Optimizations
1. Redundant Expression Elimination

(Common Subexpression Elimination)
Use an address or value that has been
previously computed. Consider control and
data dependencies.

2. Partially Redundant Expression (PRE)
Elimination
A variant of Redundant Expression
Elimination. If a value or address is
redundant along some execution paths, add
computations to other paths to create a
fully redundant expression (which is then
removed).
Example:
if (i > j)

a[i] = a[j];

a[i] = a[i] * 2;

19CS 701 Fall 2003
©

3. Constant Propagation
If a variable is known to contain a
particular constant value at a particular
point in the program, replace references to
the variable at that point with that
constant value.

4. Copy Propagation
After the assignment of one variable to
another, a reference to one variable may be
replaced with the value of the other
variable (until one or the other of the
variables is reassigned).
(This may also “set up” dead code
elimination. Why?)

5. Constant Folding
An expression involving constant (literal)
values may be evaluated and simplified to a
constant result value. Useful when
constant propagation is performed.

20CS 701 Fall 2003
©

6. Dead Code Elimination
Expressions or statements whose values or
effects are unused may be eliminated.

7. Loop Invariant Code Motion
An expression that is invariant in a loop
may be moved to the loop’s header,
evaluated once, and reused within the loop.
Safety and profitability issues may be
involved.

8. Scalarization (Scalar Replacement)
A field of a structure or an element of an
array that is repeatedly read or written may
be copied to a local variable, accessed using
the local, and later (if necessary) copied
back.
This optimization allows the local variable
(and in effect the field or array
component) to be allocated to a register.

21CS 701 Fall 2003
©

9. Local Register Allocation
Within a basic block (a straight line
sequence of code) track register contents
and reuse variables and constants from
registers.

10. Global Register Allocation
Within a subprogram, frequently accessed
variables and constants are allocated to
registers. Usually there are many more
register candidates than available registers.

11. Interprocedural Register Allocation
Variables and constants accessed by more
than one subprogram are allocated to
registers. This can greatly reduce call/return
overhead.

