
22CS 701 Fall 2003
©

12. Register Targeting
Compute values directly into the intended
target register.

13. Interprocedural Code Motion
Move instructions across subprogram
boundaries.

14. Call Inlining
At the site of a call, insert the body of a
subprogram, with actual parameters
initializing formal parameters.

15. Code Hoisting and Sinking
If the same code sequence appears in two
or more alternative execution paths, the
code may be hoisted to a common
ancestor or sunk to a common successor.
(This reduces code size, but does not reduce
instruction count.)

23CS 701 Fall 2003
©

16. Loop Unrolling
Replace a loop body executed N times with
an expanded loop body consisting of M
copies of the loop body. This expanded loop
body is executed N/M times, reducing loop
overhead and increasing optimization
possibilities within the expanded loop body.

17. Software Pipelining
A value needed in iteration i of a loop is
computed during iteration i-1 (or i-2, ...).
This allows long latency operations
(floating point divides and square roots,
low hit-ratio loads) to execute in parallel
with other operations. Software pipelining
is sometimes called symbolic loop unrolling.

24CS 701 Fall 2003
©

18. Strength Reduction
Replace an expensive instruction with an
equivalent but cheaper alternative. For
example a division may be replaced by
multiplication of a reciprocal, or a list
append may be replaced by cons
operations.

19. Data Cache Optimizations
• Locality Optimizations

Cluster accesses of data values both
spacially (within a cache line) and
temporally (for repeated use).
Loop interchange and loop tiling improve
temporal locality.

• Conflict Optimizations
Adjust data locations so that data used
consecutively and repeatedly don’t share
the same cache location.

25CS 701 Fall 2003
©

20. Instruction Cache Optimizations
Instructions that are repeatedly re-
executed should be accessed from the
instruction cache rather than the
secondary cache or memory. Loops and
“hot” instruction sequences should fit
within the cache.
Temporally close instruction sequences
should not map to conflicting cache
locations.

26CS 701 Fall 2003
©

Reading Assignment
• Read “Modern Microprocessors—A 90

Minute Guide!,” by Jason Patterson.

27CS 701 Fall 2003
©

SPARC Overview
• SPARC is an acronym for
 Scalable Processor ARChitecture

• SPARCs are load/store RISC processors
Load/store means only loads and
stores access memory directly.
RISC (Reduced Instruction Set
Computer) means the architecture is
simplified with a limited number of
instruction formats and addressing
modes.

28CS 701 Fall 2003
©

• Instruction format:
add %r1,%r2,%r3

Registers are prefixed with a %

Result is stored into last operand.

ld [adr],%r1

Memory addresses (used only in loads
and stores) are enclosed in brackets

• Distinctive features include Register
Windows and Delayed Branches

29CS 701 Fall 2003
©

Register Windows
The SPARC provides 32 general-purpose
integer registers, denoted as %r0 through
%r31.
These 32 registers are subdivided into 4
groups:
 Globals: %g0 to %g7

 In registers: %i0 to %i7

 Locals: %l0 to %l7

 Out registers: %o0 to %o7

There are also 32 floating-point registers,
%f0 to %f31 .

A SPARC processor has an implementation-
dependent number of register windows,
each consisting of 16 distinct registers.
The "in", "local" and "out" registers that
are accessed in a procedure depend on the
current register window. The "global"

30CS 701 Fall 2003
©

registers are independent of the register
windows (as are the floating-point
registers).
A register window may be pushed or
popped using SPARC save and restore
instructions.
After a register window push, the “out”
registers become “in” registers and a fresh
set of “local” and “out” registers is created:

In Local Out

In Local OutIn Local

Before save :

After save

(old) (old) (new) (new)

31CS 701 Fall 2003
©

Why the overlap between “in” and “out”
registers? It’s a convenient way to pass
parameters—the caller puts parameter
values in his “out” registers. After a call
(and a save) these values are
automatically available as “in” registers in
the newly created register window.

SPARC procedure calls normally advance
the register window. The "in" and "local"
registers become hidden, and the "out"
registers become the "in" registers of the
called procedure, and new "local" and
"out" registers become available.

A register window is advanced using the
save instruction, and rolled back using
the restore instruction. These
instructions are separate from the
procedure call and return instructions,
and can sometimes be optimized away.

32CS 701 Fall 2003
©

For example, a leaf procedure—one that
contains no calls—can be compiled without
use of save and restore if it doesn’t
need too many registers. The leaf procedure
must then make do with the caller’s
registers, modifying only those the caller
treats as volatile.

33CS 701 Fall 2003
©

Register Conventions
Global Registers

%g0 is unique: It always contains 0 and
can never be changed.
%g1to %g7have global scope (they are
unaffected by save and restore
instructions)
%g1 to %g4 are volatile across calls;
they may be used between calls.
%g5to %g7are reserved for special use
by the SPARC ABI (application binary
interface)

Local Registers
%l0 to %l7

May be freely used; they are unaffected
by deeper calls.

34CS 701 Fall 2003
©

In Registers
These are also the caller’s out registers;
they are unaffected by deeper calls.

%i0

 Contains incoming parameter 1.
 Also used to return function value to
caller.

%i1 to %i5

 Contain incoming parameters 2 to 6
(if needed); freely usable otherwise.

%i6 (also denoted as %fp)
 Contains frame pointer (stack pointer
of caller); it must be preserved.

%i7

Contains return address -8 (offset due
to delay slot); it must be preserved.

35CS 701 Fall 2003
©

Out Registers
Become the in registers for procedures
called from the current procedure.

%o0

 Contains outgoing parameter 1.
 It also contains the value returned by
the called procedure.
 It is volatile across calls; otherwise it
is freely usable.

%o1 to %o5

Contain outgoing parameters 2 to 6 as
needed.
 These are volatile across calls;
otherwise they are freely usable.

36CS 701 Fall 2003
©

%o6 (also denoted as %sp)
 Holds the stack pointer (and becomes
frame pointer of called routines)
 It is reserved; it must always be valid
(since TRAPs may modify the stack at
any time).

%o7

 Is volatile across calls.
It is loaded with address of caller on a

procedure call.

37CS 701 Fall 2003
©

Special SPARC Instructions
save %r1,%r2,%r3

save %r1,const,%r3

This instruction pushes a register
window and does an add instruction
(%r3 = %r1+%r2). Moreover, the
operands (%r1 and %r2) are from the
old register window, while the result
(%r3) is in the new window.
Why such an odd definition?
It’s ideal to allocate a new register
window and push a new frame.
In particular,

save %sp,-frameSize,%sp

pushes a new register window. It also
adds -frameSize (the stack grows
downward) to the old stack pointer,
initializing the new stack pointer. (The
old stack pointer becomes the current
frame pointer)

38CS 701 Fall 2003
©

restore %r1,%r2,%r3

restore %r1,const,%r3

This instruction pops a register window
and does an add instruction
(%r3 = %r1+%r2). Moreover, the
operands (%r1 and %r2) are from the
current register window, while the result
(%r3) is in the old window.
Again, why such an odd definition?
It’s ideal to release a register window
and place a result in the return register
(%o0).
In particular,

restore %r1,0,%o0

pops a register window. It also moves
the contents of %r1 to %o0 (in the
caller’s register window).

39CS 701 Fall 2003
©

call label

This instruction branches to label and
puts the address of the call into register
%o7 (which will become %i7 after a
save is done).

ret

This instruction returns from a
subprogram by branching to %i7+8 .
Why 8 bytes after the address of the
call? SPARC processors have delayed
branch instructions, so the instruction
immediately after a branch (or a call)
is executed before the branch occurs!
Thus two instructions after the call is
the normal return point.

40CS 701 Fall 2003
©

mov const,%r1

You can load a small constant (13 bits
or less) into a register using a mov.
(mov is actually implemented as an or
of const with %g0).

But how do you load a 32 bit constant?
One instruction (32 bits long) isn’t
enough. Instead you use:
sethi %hi(const),%r1

or %r1,%lo(const),%r1

That is, you extract the high order 22
bits of const (using %hi , an assembler
operation). sethi fills in these 22 bits
into %r1, clearing the lowest 10 bits.
Then %lo extracts the 10 low order bits
of const, which are or-ed into %r1.

41CS 701 Fall 2003
©

Loading a 64 bit constant (in SPARC V9,
which is a 64 bit processor) is far
nastier:

sethi %uhi(const),%r tmp

or %r tmp,%ulo(const),%r tmp

sllx %r tmp,32,%r tmp

sethi %hi(const),%r
or %r,%lo(const),%r
or %r tmp,%r,%r

42CS 701 Fall 2003
©

Delayed Branches
In the SPARC, transfers of control
(branches, calls and returns) are delayed.
This means the instruction after the
branch (or call or return) is executed
before the transfer of control.

For example, in SPARC code you often
see

ret

 restore

The register window restore occurs first,
then a return to the caller occurs.

Another example is
call subr

 mov 3,%o0

The load of subr ’s parameter is placed
after the call to subr . But the mov is
done before subr is actually called.

43CS 701 Fall 2003
©

Why are Delayed Branches
Part of the SPARC
Architecture?

Because of pipelining, several instructions
are partially completed before a branch
instruction can take effect. Rather than
lose the computations already done, one
(or more!) partially completed instructions
can be allowed to complete before a branch
takes effect.

44CS 701 Fall 2003
©

How does a Compiler Exploit
Delayed Branches?

A peephole optimizer or code scheduler
looks for an instruction logically before the
branch that can be placed in the branch’s
delay slot. The instruction should not affect
a conditional branch’s branch decision.

mov 3,%o0 call subr
call subr mov 3,%o0
nop

(before) (after)

45CS 701 Fall 2003
©

Another possibility is to “hoist” the target
instruction of a branch into the branch’s
delay slot.

 call subr call subr+4
 nop mov 100,%l1

subr: subr:
 mov 100,%l1 mov 100,%l1

(before) (after)

Hoisting branch targets doesn’t work for
conditional branches—we don’t want to
move an instruction that is executed
sometimes (when the branch is taken) to a
position where it is always executed (the
delay slot).

46CS 701 Fall 2003
©

Annulled Branches
An annulled branch (denoted by a “,a ”
suffix) executes the instruction in the delay
slot if the branch is taken, but ignores the
instruction in the delay slot if the branch
isn’t taken.
With an annulled branch, a target of a
conditional branch can be hoisted into the
branch’s delay slot.

 bz else bz,a else+4
 nop mov 100,%l1
 ! then code ! then code

else: else:
 mov 100,%l1 mov 100,%l1

(before) (after)

47CS 701 Fall 2003
©

SPARC Frame Layout (on Run-
Time Stack)

The Stack Grows Downward

Minimum frame Size (in gcc) is 112
bytes! (16+1+6+4 words, double
aligned)

Caller’s Frame

Local Variables

alloca () space

Memory Temps &
Saved FP Registers
Parms past 6

Parms 1 to 6
(memory home)

Address of return value
Register Window
Overflow (16 words)

%fp (old %sp)

%sp

48CS 701 Fall 2003
©

Examples of SPARC Code
int incr(int i){

 return i+1; }

 Unoptimized:
incr:
 save %sp, -112, %sp
 st %i0, [%fp+68]
 ld [%fp+68], %o1
 add %o1, 1, %o0
 mov %o0, %i0
 b .LL2
 nop
.LL2:
 ret
 restore

49CS 701 Fall 2003
©

int main(){

 int a;

 return incr(a);}

 Unoptimized:
main:
 save %sp, -120, %sp
 ld [%fp-20], %o0
 call incr, 0
 nop
 mov %o0, %i0
 b .LL3
 nop
.LL3:
 ret
 restore

50CS 701 Fall 2003
©

int incr(int i){

 return i+1; }

 Optimized:
incr:
 retl
 add %o0, 1, %o0

int main(){

 int a;

 return incr(a);}

 Optimized:
main:
 save %sp, -112, %sp
! Where is a ????
 call incr, 0
 nop
 ret
 restore %g0, %o0, %o0

51CS 701 Fall 2003
©

With More Extensive Optimization
(including inlining) we get:

incr:
 retl
 add %o0, 1, %o0

main:
 retl
 add %o0, 1, %o0

