
52CS 701 Fall 2003
©

Reading Assignment
S. Kurlander, T. Proebsting and C.
Fischer, “Efficient Instruction
Scheduling for Delayed-Load
Architectures,” ACM Transactions on
Programming Languages and Systems,
1995. (Linked from class Web page)

53CS 701 Fall 2003
©

“On the Fly” Local Register
Allocation

Allocate registers as needed during
code generation.
Partition registers into 3 classes.

• Allocatable
Explicitly allocated and freed; used to
hold a variable, literal or temporary.
On SPARC: Local registers & unused
In registers.

• Reserved
Reserved for specific purposes by OS or
software conventions.
On SPARC: %fp , %sp, return address
register, argument registers, return value
register.

54CS 701 Fall 2003
©

• Work
Volatile—used in short code sequences
that need to use a register.
On SPARC: %g1 to %g4, unused out
registers.

Register Targeting
Allow “end user” of a value to state a
register preference in AST or IR.

or
Use Peephole Optimization to
eliminate unnecessary register moves.

or
Use preferencing in a graph coloring
register allocator.

55CS 701 Fall 2003
©

Register Tracking
Improve upon standard getReg/
freeReg allocator by tracking
(remembering) register contents.

Remember the value(s) currently held
within a register; store information in
a Register Association List.

Mark each value as Saved (in
memory) or Unsaved (in memory).

Each value in a register has a Cost.
This is the cost (in instructions) to
restore the value to a register.

56CS 701 Fall 2003
©

The cost of allocating a register is the
sum of the costs of the values it
holds.

 Cost(register) = Σ cost(values)
values ∈ register

When we allocate a register, we will
choose the cheapest one.

If 2 registers have the same cost, we
choose that register whose values
have the most distant next use.
(Why most distant?)

57CS 701 Fall 2003
©

Costs for the SPARC
0 Dead Value
1 Saved Local Variable
1 Small Literal Value (13 bits)
2 Saved Global Variable
2 Large Literal Value (32 bits)
2 Unsaved Local Variable
4 Unsaved Global Variable

58CS 701 Fall 2003
©

Register Tracking Allocator
reg getReg() {
 if (∃ r ∈ regSet and cost(r) == 0)
 choose(r)
 else {
 c = 1;
 while(true) {

if (∃ r ∈ regSet and cost(r) == c){

 choose r with cost(r) == c and
 most distant next use of
 associated values;
 break;
 }
 c++;
 }
 Save contents of r as necessary;
 }
 return r;
}

59CS 701 Fall 2003
©

• Once a value becomes dead, it may be
purged from the register association list
without any saves.

• Values no longer used, but unsaved, can
be purged (and saved) at zero cost.

• Assignments of a register to a simple
variable may be delayed—just add the
variable to the Register’s Association List
entry as unsaved.

The assignment may be done later or
made unnecessary (by a later assignment
to the variable)

• At the end of a basic block all unsaved
values are stored into memory.

60CS 701 Fall 2003
©

Example
int a,b,c,d; // Globals
a = 5;
b = a + d;
c = b - 7;
b = 10;

Naive Code
mov 5,%l0
st %l0,[a]
ld [a],%l0
ld [d],%l1
add %l0,%l1,%l0
st %l0,[b]
ld [b],%l0
sub %l0,7,%l0
st %l0,[c]
mov 10,%l0
st %l0,[b]

18 instructions are needed (memory
references take 2 instructions)

61CS 701 Fall 2003
©

With Register Tracking

12 instructions (rather than 18)

Instruction Generated %l0 %l1

mov 5,%l0 5(S)

! Defer assignment to a 5(S), a(U)

ld [d], %l1 5(S), a(U) d(S)

!d unused after next inst

add %l0,%l1,%l1 5(S), a(U) b(U)

!b is dead after next inst

sub %l1,7,%l1 5(S), a(U) c(U)

! %l1 has lower cost

st %l1, [c] 5(S), a(U)

mov 10, %l1 5(S), a(U) b(U), 10(S)

! save unsaved values

st %l0, [a] b(U), 10(S)

st %l1,[b]

62CS 701 Fall 2003
©

Pointers, Arrays and Reference
Parameters

When an array, reference parameter
or pointed-to variable is read, all
unsaved register values that might be
aliased must be stored.

When an array, reference parameter
or pointed-to variable is written, all
unsaved register values that might be
aliased must be stored, then cleared
from the register association list.

Thus if a[3] is in a register and a[i]
is assigned to, a[3] must be stored (if
unsaved) and removed from the
association list.

63CS 701 Fall 2003
©

Optimal Expression Tree
Translation—Sethi-Ullman
Algorithm

Reference: R. Sethi & J. D. Ullman,
“The generation of optimal code for
arithmetic expressions,” Journal of
the ACM, 1970.
Goal: Translate an expression tree
using the fewest possible registers.

Approach: Mark each tree node, N,
with an Estimate of the minimum
number of registers needed to
translate the tree rooted by N.

Let RN(N) denote the Register Needs
of node N.

64CS 701 Fall 2003
©

In a Load/Store architecture (ignoring
immediate operands):

RN(leaf) = 1

RN(Op) =
 If RN(Left) = RN(Right)
 Then RN(Left) + 1
 Else Max(RN(Left), RN(Right)
Example:

+3

-2 +3

A1 B1 +2 *2

C1 D1 E1 F1

65CS 701 Fall 2003
©

Key Insight of SU Algorithm
Translate subtree that needs more
registers first.
Why?
After translating one subtree, we’ll
need a register to hold its value.
If we translate the more complex
subtree first, we’ll still have enough
registers to translate the less complex
expression (without spilling register
values into memory).

66CS 701 Fall 2003
©

Specification of SU Algorithm

TreeCG(tree *T, regList RL);

Operation:
• Translate expression tree T using only

registers in RL.
• RL must contain at least 2 registers.
• Result of T will be computed into

head(RL).

67CS 701 Fall 2003
©

Summary of SU Algorithm
if T is a node (variable or literal)
 load T into R1 = head(RL)
else (T is a binary operator)
 Let R1 = head(RL)
 Let R2 = second(RL)
 if RN(T.left) >= Size(RL) and
 RN(T.right) >= Size(RL)
 (A spill is unavoidable)
 TreeCG(T.left, RL)
 Store R1 into a memory temp
 TreeCG(T.right, RL)
 Load memory temp into R2
 Generate (OP R2,R1,R1)
 elsif RN(T.left) >= RN(T.right)
 TreeCG(T.left, RL)
 TreeCG(T.right, tail(RL))
 Generate (OP R1,R2,R1)
 else
 TreeCG(T.right, RL)
 TreeCG(T.left, tail(RL))
 Generate (OP R2,R1,R1)

68CS 701 Fall 2003
©

Example (with Spilling)

Assume only 2 Registers;
 RL = [%l0 ,%l1]
We Translate the left subtree first
(using 2 registers), store its result
into memory, translate the right
subtree, reload the left subtree’s
value, then do the final operation.

+3

-2

A1 B1

+2

C1 D1

69CS 701 Fall 2003
©

ld [A], %l0

ld [B], %l1

sub %l0,%l1,%l0

st %l0, [temp]

ld [C], %l0

ld [D], %l1

add %l0,%l1,%l0

ld [temp], %l1

add %l1,%l0,%l0

+3

-2

A1 B1

+2

C1 D1

70CS 701 Fall 2003
©

Larger Example

Assume 3 Registers;
 RL = [%l0 ,%l1 ,%l2]
Since right subtree is more complex,
it is translated first.

+3

-2 +3

A1 B1 +2 *2

C1 D1 E1 F1

71CS 701 Fall 2003
©

ld [C], %l0

ld [D], %l1

add %l0,%l1,%l0

ld [E], %l1

ld [F], %l2

mul %l1,%l2,%l1

add %l0,%l1,%l0

ld [A], %l1

ld [B], %l2

sub %l1,%l2,%l1

add %l1,%l0,%l0

+3

-2 +3

A1 B1 +2 *2

C1 D1 E1 F1

72CS 701 Fall 2003
©

Refinements & Improvements
• Register needs rules can be modified to

model various architectural features.

For example, Immediate operands, that
need not be loaded into registers, can be
modeled by the following rule:

RN(literal) = 0 if literal may be used as
 an immediate operand

• Commutativity & Associativity of
operands may be exploited:

+3

+2

A1 B1

+2

C1 D1

+2

A1 B1 C1 D1

⇒

73CS 701 Fall 2003
©

Is Minimizing Register Use
Always Wise?

SU minimizes the number of registers
used but at the cost of reduced ILP.

Since only 2 registers are used, there
is little possibility of parallel
evaluation.

+2

+2

A1 B1

C1

D
1

+2

74CS 701 Fall 2003
©

When more registers are used, there is
often more potential for parallel
evaluation:

Here as many as four registers may be
used to increase parallelism.

+

+

A B

+

C D

