
75CS 701 Fall 2003
©

Reading Assignment
• Read Section 15.3 (Register Allocation

and Temporary Management) from
Chapter 15

• Get Class Handout 3 from DOIT.

• Read Chaitin’s paper, “Register
Allocation via Coloring.”

76CS 701 Fall 2003
©

Optimal Translation for DAGs
is Much Harder

If variables or expression values may
be shared and reused, optimal code
generation becomes NP-Complete.

Example: a+b*(c+d)+a*(c+d)

We must decide how long to hold
each value in a register. Best
orderings may “skip” between
subexpressions

Reference: R. Sethi, “Complete
Register Allocation Problems,” SIAM
Journal of Computing, 1975.

77CS 701 Fall 2003
©

Scheduling Expression Trees
Reference: S. Kurlander, T. Proebsting
and C. Fischer, “Efficient Instruction
Scheduling for Delayed-Load
Architectures,” ACM Transactions on
Programming Languages and Systems,
1995. (Linked from class Web page)

The Sethi-Ullman Algorithm
minimizes register usage, without
regard to code scheduling.

On machines with Delayed Loads, we
also want to avoid stalls.

78CS 701 Fall 2003
©

What is a Delayed Load?
Most pipelined processors require a
delay of one or more instructions
between a load of register R and the
first use of R.

If a register is used “too soon,” the
processor may stall execution until
the register value becomes available.

ld [a],%r1

add %r1,1,%r1
← Stall!

We try to place an instruction that
doesn’t use register R immediately
after a load of R.
This allows useful work instead of a
wasteful stall.

79CS 701 Fall 2003
©

The Sethi-Ullman Algorithm
generates code that will stall:

In fact, if we use the fewest possible
registers, stalls are Unavoidable!

+2

+2

A1 B1

C1

ld [A], %l0

ld [B], %l1

add %l0,%l1,%l0

ld [C], %l1
add %l0,%l1,%l0

Stall!

Stall!

80CS 701 Fall 2003
©

Why?
Loads increase the number of
registers in use.
Binary operations decrease the
number of registers in use
(2 Operands, 1 Result).

The load that brings the number of
registers in use up to the minimum
number needed must be followed by
an operator that uses the just-loaded
value. This implies a stall.

We’ll need to allocate an extra
register to allow an independent
instruction to fill each delay slot
of a load.

81CS 701 Fall 2003
©

Extended Register Needs
Abbreviated as ERN
ERN(Identifier) = 2
ERN(Literal) = 1
ERN(Op) =
 If ERN(Left) = ERN(Right)
 Then ERN(Left) + 1
 Else Max(ERN(Left), ERN(Right))

Example

+3

+3

B2 C2

D2

+3

A2 +3

+2

B2 1231

C2

+3

A2

82CS 701 Fall 2003
©

Idea of the Algorithm
1. Generate instructions in the same

order as Sethi-Ullman, but use
Pseudo-Registers instead of actual
machine registers.

2. Put generated instructions into a
“Canonical Order” (as defined below).

3. Map pseudo-registers to actual
machine registers.

What are Pseudo-Registers?
They are unique temporary locations,
unlimited in number and generated as
needed, that are used to model
registers prior to register allocation.

83CS 701 Fall 2003
©

Canonical Form for Expression
Code

(Assume R registers will be used)
Desired instruction ordering:
1. R load instructions
2. Pairs of Operator/Load instructions
3. Remaining operators

This canonical form is obtained by
“sliding” load instructions upward
(earlier) in the original code ordering.
Note that:

• Moving loads upward is always safe,
since each pseudo-register is assigned
to only once.

• No more than R registers are ever live.

84CS 701 Fall 2003
©

Example

Let R = 3, the minimum needed for a
delay-free schedule.
Put into Canonical Form:

+3

+3

B2 C2

D2

+3

A2

ld [B], PR1
ld [C], PR2
add PR1,PR2,PR3
ld [D], PR4
add PR3,PR4,PR5
ld [A], PR6
add PR6,PR5,PR7

ld [B], PR1
ld [C], PR2
ld [D], PR4
add PR1,PR2,PR3
ld [A], PR6
add PR3,PR4,PR5
add PR6,PR5,PR7

(Before Register
Assignment)

ld [B], %l0
ld [C], %l1
ld [D], %l2
add %l0,%l1,%l0
ld [A], %l1
add %l0,%l2,%l0
add %l1,%l0,%l0

(After Register Assignment)

No Stalls!

85CS 701 Fall 2003
©

Does This Algorithm Always
Produce a Stall-Free, Minimum
Register Schedule?

Yes—if one exists!

For very simple expressions (one or
two operands) no stall-free schedule
exists.
For example: a=b;

ld [b], %l0

st %l0, [a]

86CS 701 Fall 2003
©

Why Does the Algorithm Avoid
Stalls?

Previously, certain “critical” loads had
to appear just before an operation
that used their value.

Now, we have an “extra” register. This
allows critical loads to move up one
or more places, avoiding any stalls.

87CS 701 Fall 2003
©

How Do We Schedule Small
Expressions?

Small expressions (one or two
operands) are common. We’d like to
avoid stalls when scheduling them.

Idea—Blend small expressions
together into larger expression trees,
using “,” and “;” like binary operators.

88CS 701 Fall 2003
©

Example
a=b+c; d=e;

+3

b2 c2

=3

a0
e2

=2

d0

; 3

ld [b], PR1
ld [c], PR2
add PR1,PR2,PR3
st PR3, [a]
ld [e], PR4
st PR4, [d]

Orginal Code

ld [b], PR1
ld [c], PR2
ld [e], PR4
add PR1,PR2,PR3
st PR3, [a]
st PR4, [d]

In Canonical Form

ld [b], %l0
ld [c], %l1
ld [e], %l2
add %l0,%l1,%l0
st %l0, [a]
st %l2, [d]

After Register Assignment

89CS 701 Fall 2003
©

Global Register Allocation
Allocate registers across an entire
subprogram.
A Global Register Allocator must decide:
• What values are to be placed in

registers?

• Which registers are to be used?

• For how long is each Register Candidate
held in a register?

90CS 701 Fall 2003
©

Live Ranges
Rather than simply allocate a value to
a fixed register throughout an entire
subprogram, we prefer to split
variables into Live Ranges.

What is a Live Range?
It is the span of instructions (or basic
blocks) from a definition of a variable
to all its uses.

Different assignments to the same
variable may reach distinct & disjoint
instructions or basic blocks.
If so, the live ranges are Independent,
and may be assigned Different
registers.

91CS 701 Fall 2003
©

Example
a = init();
for (int i = a+1; i < 1000; i++){
 b[i] = 0; }
a = f(i);
print(a);

The two uses of variable a comprise
Independent live ranges.
Each can be allocated separately.

If we insisted on allocating variable a
to a fixed register for the whole
subprogram, it would conflict with
the loop body, greatly reducing its
chances of successful allocation.

92CS 701 Fall 2003
©

Granulatity of Live Ranges
Live ranges can be measured in terms
of individual instructions or basic
blocks.

Individual instructions are more
precise but basic blocks are less
numerous (reducing the size of sets
that need to be computed).

We’ll use basic blocks to keep
examples concise.

You can define basic blocks that hold
only one instruction, so computation
in terms of basic blocks is still fully
general.

93CS 701 Fall 2003
©

Computation of Live Ranges
First construct the Control Flow
Graph (CFG) of the subprogram.

For a Basic Block b:
Let Preds(b) = the set of basic blocks
that are Immediate Predecessors of b
in the CFG.
Let Succ(b) = the set of basic blocks
that are Immediate Successors to b in
the CFG.

94CS 701 Fall 2003
©

Control Flow Graphs
A Control Flow Graph (CFG) models
possible execution paths through a
program.
Nodes are basic blocks and arcs are
potential transfers of control.

For example,
if (a > 0)

b = 1;
 else b = 2;
 a = c + b;

a > 0

b = 1 b = 2

a = c + b

95CS 701 Fall 2003
©

For a Basic Block b and Variable V:
Let DefsIn(b) = the set of basic blocks
that contain definitions of V that
reach (may be used in) the beginning
of Basic Block b.

Let DefsOut(b) = the set of basic
blocks that contain definitions of V
that reach (may be used in) the end
of Basic Block b.

If a definition of V reaches b, then the
register that holds the value of that
definition must be allocated to V in
block b.
Otherwise, the register that holds the
value of that definition may be used
for other purposes in b.

96CS 701 Fall 2003
©

The sets Preds and Succ are derived from
the structure of the CFG.
They are given as part of the definition
of the CFG.

DefsIn and DefsOut must be computed,
using the following rules:
1. If Basic Block b contains a definition

of V then
 DefsOut(b) = {b}

2. If there is no definition to V in b then
 DefsOut(b) = DefsIn(b)

3. For the First Basic Block, b0:
 DefsIn(b0) = φ

4. For all Other Basic Blocks
DefsIn(b) = DefsOut p()

p Preds b()∈
∪

