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Coloring Heuristic
To R-Color a Graph (where R is the
number of registers available)
1. While any node, n, has < R neighbors:

     Remove n from the Graph.
     Push n onto a Stack.

2. If the remaining Graph is non-empty:
     Compute the Cost of each node.
     The Cost of a Node (a Live Range)

is the number of extra instructions
     needed if the Node isn’t assigned a
     register, scaled by 10loop_depth.
     Let NB(n) =
            Number of Neighbors of n.
     Remove that node n that has the
     smallest Cost(n)/NB(n) value.
     Push n onto a Stack.
     Return to Step 1.
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3. While Stack is non-empty:
     Pop n from the Stack.

   If n’s neighbors are assigned fewer
      than R colors
   Then assign n any unassigned color
   Else leave n uncolored.
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Example
  int p(int lim1, int lim2) {
  int *T1 = &A[0];
  for (i=0; i<lim1 && *(T1+i)>0;i++){}
  int *T2 = &B[0];
  for (j=0; j<lim2 && *(T2+j)>0;j++){}
  return i+j;
}

Do a 3 coloring

lim1 lim2 T1 T2 i j

Cost 11 11 11 11 42 42

Cost/
Neighbors

11/3 11/5 11/3 11/3 42/5 42/3

lim1 lim2

T1 T2

i j
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Since no node has fewer than 3
neighbors, we remove a node based
on the minimum Cost/Neighbors
value.

lim2  is chosen.
We now have:

Remove (say) lim1 , then T1, T2, j
and i  (order is arbitrary).

lim1

T1 T2

i j
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The Stack is:

Assuming the colors we have are R1,
R2 and R3, the register assignment
we choose is
i :R1, j :R2, T2:R3, T1:R2, lim1 :R3,
lim2 :spill

lim2
lim1

T1
T2
j
i

lim1 lim2

T1 T2

i j
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Color Preferences
Sometimes we wish to assign a
particular register (color) to a
selected Live Range (e.g., a parameter
or return value) if possible.

We can mark a node in the
Interference Graph with a Color
Preference.

When we unstack nodes and assign
colors, we will avoid choosing color c
if an uncolored neighbor has indicted
a preference for it. If only color c is
left, we take it (and ignore the
preference).
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Example
Assume in our previous example that
lim1 has requested register R1 and
lim2 has requested register R2
(because these are the registers the
parameters are passed in).
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Now when i , j and T1 are unstacked,
they respect lim1 ’s and lim2 ’s
preferences:
i :R3, j :R1, T2:R2, T1:R2, lim1 :R1,
lim2 :spill

lim1(R1) lim2(R2)

T1 T2

i j

lim2
lim1

T1
T2
j
i
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Using Coloring to Optimize
Register Moves

A nice “fringe benefit” of allocating
registers via coloring is that we can
often optimize away register to
register moves by giving the source
and target the same color.
Consider

We’d like x , t1 and q to get the same
color. How do we “force” this?

a b

x t1

y q

Live in: a,b

t1 = a + b

x = t1

y = x + 1

q = t1

Live out: y,q
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We can “merge” x , t1 and q together:

Now a 2-coloring that optimizes
away both register to register moves
is trivial.

a b

y x,t1,q

Live in: a,b

t1 = a + b

x = t1

y = x + 1

q = t1

Live out: y,q
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Reckless Coalescing
Originally, Chaitin suggested merging
all move-related nodes that don’t
interfere.

This is reckless—the merged node may
not be colorable!

(Is it worth a spill to save a move??)

This Graph is 2-colorable before the
reckless merge, but not after.

e fc

a

b

d
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Conservative Coalescing
In response to Chaitin’s reckless
coalescing approach, Briggs suggested
a more conservative approach.

See “Improvement to Graph Coloring
Register Allocation,” P. Briggs et. al.,
ACM Toplas, May 1994.
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Briggs suggested that two move-
related nodes should be merged only
if the combined source and target
node has fewer than R neighbors.

This guarantees that the combined
node will be colorable, but may miss
some optimization opportunities.

After a merge of nodes a and d, there
will be four neighbors, but a
2-coloring is still possible.

e fc

a

b

d
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Iterated Coalescing
This is an intermediate approach, that
seeks to be safer than reckless
coalescing and more effective than
conservative coalescing. It was
proposed by George and Appel.
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1. Build:
Create an Interference Graph, as
usual. Mark source-target pairs with
a special move-related arc (denoted
as a dashed line).

2. Simplify:
Remove and stack non-move-related
nodes with < R neighbors.

3. Coalesce:
Combine move-related pairs that will
have < R neighbors after coalescing.

Repeat steps 2 and 3 until only nodes
with R or more neighbors or move-
related nodes remain or the graph is
empty.

124CS 701  Fall 2003
©

4. Freeze:
If the Interference Graph is
    non-empty:
Then If there exists a move-related

 node with < R neighbors
        Then: “Freeze in” the move and
                 make the node
                 non-move-related.
                Return to Steps 2 and 3.
         Else: Use Chaitin’s
                Cost/Neighbors criterion
                 to remove and stack
                 a node.
                 Return to Steps 2 and 3.

5. Unstack:
Color nodes as they are unstacked as
per Chaitin and Briggs.
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Example

Assume we want a 4-coloring.
Note that neither j&b nor d&c can be
conservatively colored.

Live in: k,j

g = mem[j+12]

h = k-1

f = g*h

e = mem[j+8]

m = mem[j+16]

b = mem[f]

c = e+8

d = c

k = m+4

j = b

goto d

Live out: d,k,j

f

e

mj k b

d c

h g

126CS 701  Fall 2003
©

We simplify by removing nodes with
fewer than 4 neighbors.
We remove and stack: g, h, k , f , e, m

f

e

mj k b

d c

h g
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The remaining Interference Graph is

We can now conservatively coalesce
the move-related pairs to obtain

These remaining nodes can now be
removed and stacked.

j b

d c

j&b d&c
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We can now unstack and color:
d&c:R1, j&b :R2, m:R3, e:R4, f :R1,
k:R3, h:R1, g:R4

No spills were required and both
moves were optimized away.

d&c
j&b

m
e
f
k
g
h


