# **Coloring Heuristic**

To R-Color a Graph (where R is the number of registers available)

- While any node, n, has < R neighbors: Remove n from the Graph. Push n onto a Stack.
- 2. If the remaining Graph is non-empty: Compute the Cost of each node. The Cost of a Node (a Live Range) is the number of extra instructions needed if the Node isn't assigned a register, scaled by 10<sup>loop\_depth</sup>. Let NB(n) =

Number of Neighbors of n. Remove that node n that has the smallest Cost(n)/NB(n) value. Push n onto a Stack. Return to Step 1. 3. While Stack is non-empty: Pop n from the Stack.

> If n's neighbors are assigned fewer than R colors

Then assign n any unassigned color Else leave n uncolored.

### Example



|                    | liml | lim2 | T1   | Т2   | i    | j    |
|--------------------|------|------|------|------|------|------|
| Cost               | 11   | 11   | 11   | 11   | 42   | 42   |
| Cost/<br>Neighbors | 11/3 | 11/5 | 11/3 | 11/3 | 42/5 | 42/3 |

#### Do a 3 coloring

Since no node has fewer than 3 neighbors, we remove a node based on the minimum Cost/Neighbors value.

lim2 is chosen.
We now have:



Remove (say) 1im1, then т1, т2, j and i (order is arbitrary).



Assuming the colors we have are R1, R2 and R3, the register assignment we choose is

i:R1, j:R2, т2:R3, т1:R2, lim1:R3, lim2:spill



## **Color Preferences**

Sometimes we wish to assign a particular register (color) to a selected Live Range (e.g., a parameter or return value) *if possible*.

We can mark a node in the Interference Graph with a *Color Preference*.

When we unstack nodes and assign colors, we will avoid choosing color c if an uncolored neighbor has indicted a preference for it. If only color c is left, we take it (and ignore the preference).

# Example

Assume in our previous example that lim1 has requested register R1 and lim2 has requested register R2 (because these are the registers the parameters are passed in).



| i         |
|-----------|
| j         |
| Т2        |
| <b>T1</b> |
| lim1      |
| lim2      |

Now when i, j and T1 are unstacked, they respect lim1's and lim2's preferences:

i:R3, j:R1, т2:R2, т1:R2, lim1:R1, lim2:spill

### Using Coloring to Optimize Register Moves

A nice "fringe benefit" of allocating registers via coloring is that we can often *optimize away* register to register moves by giving the source and target the *same color*.

Consider



We'd like **x**, **t1** and **q** to get the same color. How do we "force" this?



Now a 2-coloring that optimizes away both register to register moves is trivial.

# **Reckless Coalescing**

Originally, Chaitin suggested merging *all* move-related nodes that don't interfere.

This is *reckless*—the merged node may not be colorable!

(Is it worth a spill to save a move??)



This Graph is 2-colorable before the reckless merge, but *not* after.

## **Conservative Coalescing**

In response to Chaitin's reckless coalescing approach, Briggs suggested a *more conservative* approach.

See "Improvement to Graph Coloring Register Allocation," P. Briggs et. al., ACM Toplas, May 1994. Briggs suggested that two moverelated nodes should be merged *only if* the combined source and target node has fewer than R neighbors.

This *guarantees* that the combined node will be colorable, but may miss some optimization opportunities.



After a merge of nodes a and a, there will be four neighbors, but a 2-coloring is still possible.

## **Iterated Coalescing**

This is an intermediate approach, that seeks to be safer than reckless coalescing and more effective than conservative coalescing. It was proposed by George and Appel. 1. Build:

Create an Interference Graph, as usual. Mark source-target pairs with a special move-related arc (denoted as a dashed line).

2. Simplify:

Remove and stack non-move-related nodes with < R neighbors.

3. Coalesce:

Combine move-related pairs that will have < R neighbors after coalescing.

Repeat steps 2 and 3 until only nodes with R or more neighbors or moverelated nodes remain or the graph is empty. 4. Freeze:

If the Interference Graph is non-empty: Then If there exists a move-related node with < R neighbors Then: "Freeze in" the move and make the node non-move-related. Return to Steps 2 and 3. Else: Use Chaitin's Cost/Neighbors criterion to remove and stack a node. Return to Steps 2 and 3.

5. Unstack:

Color nodes as they are unstacked as per Chaitin and Briggs.

#### Example



Assume we want a 4-coloring.

Note that neither јър nor аъс can be conservatively colored.



We simplify by removing nodes with fewer than 4 neighbors.

We remove and stack: g, h, k, f, e, m

The remaining Interference Graph is



We can now conservatively coalesce the move-related pairs to obtain



These remaining nodes can now be removed and stacked.

| d&c<br>j&b |  |
|------------|--|
| m          |  |
| е          |  |
| f          |  |
| k          |  |
| g          |  |
| h          |  |

We can now unstack and color: d&c:R1, j&b:R2, m:R3, e:R4, f:R1, k:R3, h:R1, g:R4

No spills were required and both moves were optimized away.