
129CS 701 Fall 2003
©

Reading Assignment
• Read David Wall’s paper, “Global Register

Allocation at Link Time.”

130CS 701 Fall 2003
©

Priority-Based Register
Allocation

Alternatives to Chaitin-style register
allocation are presented in:

• Hennessy and Chow, “The priority-
based coloring approach to register
allocation,” ACM TOPLAS, October
1990.

• Larus and Hilfinger, “Register
allocation in the SPUR Lisp compiler,”
SIGPLAN symposium on Compiler
Construction, 1986.

131CS 701 Fall 2003
©

These papers suggest two innovations:
1. Use of a Priority Value to choose nodes

to color in an Interference Graph.
A Priority measures
 (Spill cost)/(Size of Live Range)
The idea is that small live ranges with
a high spill cost are ideal candidates
for register allocation.
As the size of a live range grows, it
becomes less attractive for register
allocation (since it “ties up” a register
for a larger portion of a program).

2. Live Range Splitting
Rather than spill an entire live range
that can’t be colored, the live range is
split into two or more smaller live
ranges that may be colorable.

132CS 701 Fall 2003
©

Large vs. Small Live Ranges
• A large live range has less spill code.

Values are directly read from and written
to a register.
But, a large live range is harder to
allocate, since it may conflict with many
other register candidates.

• A small live range is easier to allocate
since it competes with fewer register
candidates.
But, more spill code is needed to load
and save register values across live
ranges.

• In the limit a live range can shrink to a
single definition or use of a register.
But, then we really don’t have an
effective register allocation at all!

133CS 701 Fall 2003
©

Terminology
In an Interference Graph:
• A node with fewer neighbors than colors

is termed unconstrained. It is trivial to
color.

• A node that is not unconstrained is
termed constrained. It may need to be
split or spilled.

134CS 701 Fall 2003
©

PriorityRegAlloc(proc, regCount) {
 ig ← buildInterferenceGraph(proc)
 unconstrained ←

{ n ∈ nodes(ig)  neighborCount(n) < regCount }
 constrained ←

{ n ∈ nodes(ig)  neighborCount(n) ≥ regCount }

 while(constrained ≠ φ) {
for (c ∈ constrained such that not colorable(c)

and canSplit(c)) {
c1, c2 ← split(c)
constrained ← constrained - {c}
if (neighborCount(c1) < regCount)

unconstrained ← unconstrained U { c1}

else constrained ← constrained U {c1}
 if (neighborCount(c2) < regCount)

unconstrained ← unconstrained U { c2}

else constrained ← constrained U {c2}
for (d ∈ neighbors(c) such that

 d ∈ unconstrained and
 neighborCount(d) ≥ regCount){
 unconstrained ← unconstrained - {d}

constrained ← constrained U {d}
 } } // End of both for loops

135CS 701 Fall 2003
©

/* At this point all nodes in constrained are
 colorable or can’t be split */

 Select p ∈ constrained such that
 priority(p) is maximized
 if (colorable(p))
 color(p)
 else spill(p)
 } // End of While
 color all nodes ∈ unconstrained
}

136CS 701 Fall 2003
©

How to Split a Constrained
Node
• There are many possible partitions of a

live range; too many to fully explore.

• Heuristics are used instead. One simple
heuristic is:

1. Remove the first basic block
 (or instruction) of the live range.

Put it into a new live range, NR.
2. Move successor blocks
 (or instructions) from the original
 live range into NR, as long as NR
 remains colorable.
3. Single Basic Blocks
 (or instructions) that can’t be
 colored are spilled.

137CS 701 Fall 2003
©

Example
int sum(int a[], int b[]) {
 int sum = 0;
 for (int i=0; i<1000; i++)
 sum += a[i];
 for (int j=0; j<1000; j++)
 sum += b[j];
 return sum;
}

Assume we want a 3-coloring.

a b

sum

i j

138CS 701 Fall 2003
©

We first simplify the graph by
removing unconstrained nodes (those
with < 3 neighbors).
Node j is removed. We now have:

At this point, each node has 3
neighbors, so either spilling or
splitting is necessary.
A spill really isn’t attractive as each
of the 4 register candidates is used
within a loop, magnifying the costs of
accessing memory.

a b

sum

i

139CS 701 Fall 2003
©

Coloring by Priorities
We’ll color constrained nodes by
priority values, with preference given
to large priority values.

140CS 701 Fall 2003
©

a b sum i

Cost 11 11 42 41

Cost/Size 11/3 11/6 42/7 41/3

i < 1000

1

2 3

4

a = parm1
b = parm2
sum = 0
i = 0

sum += a[i]
i++

j = 0

j < 1000
5 6

7

sum += b[j]
j++

return sum

141CS 701 Fall 2003
©

Variables i , sum and a are assigned
colors R1, R2 and R3.
Variable b can’t be colored, so we will
try to split it. b’s live range is blocks 1
to 6, with 1 as b’s entry point.
Blocks 1 to 3 can’t be colored, so b is
spilled in block 1. However, blocks 4
to 6 form a split live range that can
be colored (using R3).
We will reload b into R3 in block 4,
and it will be register-allocated
throughout the second loop. The
added cost due to the split is minor—
a store in block 1 and a reload in
block 4.

142CS 701 Fall 2003
©

Choice of Spill Heuristics
We have seen a number of heuristics
used to choose the live ranges to be
spilled (or colored).
These heuristics are typically chosen
using one’s intuition of what register
candidates are most (or least)
important. Then a heuristic is tested
and “fine tuned” using a variety of
test programs.
Recently, researchers have suggested
using machine learning techniques to
automatically determine effective
heuristics.
In “Meta Optimization: Improving
Compiler Heuristics with Machine
Learning,” Stephenson, Amarasinghe,
et al, suggest using genetic
programming techniques in which

143CS 701 Fall 2003
©

priority functions (like choice of spill
candidates) are mutated and allowed
to “evolve.”
Although the approach seems rather
random and unfocused, it can be
effective. Priority functions better
than those used in real compilers have
been reported, with research still
ongoing.

144CS 701 Fall 2003
©

Interprocedural Register
Allocation

The goal of register allocation is to
keep frequently used values in
registers.

Ideally, we’d like to go to memory
only to access values that may be
aliased or pointed to.

For example, array elements and heap
objects are routinely loaded from and
stored to memory each time they are
accessed.

145CS 701 Fall 2003
©

With alias analysis, optimizations like
Scalarization are possible.

for (i=0; i<1000; i++)
 for (j=0; j<1000; j++)
 a[i] += i * b[j];

is optimized to

for (i=0; i<1000; i++){
 int Ai = a[i];
 for (j=0; j<1000; j++)
 Ai += i * b[j];
 a[i] = Ai;
}

146CS 701 Fall 2003
©

Attacking Call Overhead
• Even with good global register allocation

calls are still a problem.

• In general, the caller and callee may use
the same registers, requiring saves and
restores across calls.

• Register windows help, but they are
inflexible, forcing all subprograms to use
the same number of registers.

• We’d prefer a register allocator that is
sensitive to the calling structure of a
program.

147CS 701 Fall 2003
©

Call Graphs
A Call Graph represents the calling
structure of a program.

• Nodes are subprograms (procedures and
functions).

• Arcs represent calls between
subprograms. An arc from A to B denotes
that a call to B appears within A.

• For an indirect call (a function
parameter or a function pointer) an arc
is added to all potential callees.

148CS 701 Fall 2003
©

Example

main() {
 if (pred(a,b))
 subr1(a)
 else subr2(b);}

bool pred(int a, int b){
 return a==b; }

subr1(int a) { print(a);}

subr2(int x) { print(2*x);}

main

pred subr1 subr2

print

149CS 701 Fall 2003
©

Wall’s Interprocedural
Register Allocator
Operates in two phases:
1. Register candidates are identified at

the subprogram level.
Each candidate (a single variable or a
set of non-interfering live ranges) is
compiled as if it won’t get a register.
At link-time unnecessary loads and
stores are edited away if the
candidate is allocated a register.

2. At link-time, when all subprograms
are known and available, register
candidates are allocated registers.

