
147CS 701 Fall 2003
©

Reading Assignment
• Read “Minimum Cost Interprocedural

Register Allocation,” by S. Kurlander et
al. (linked from class Web page).

• Get Handout #4 from DoIt.

148CS 701 Fall 2003
©

Call Graphs
A Call Graph represents the calling
structure of a program.

• Nodes are subprograms (procedures and
functions).

• Arcs represent calls between
subprograms. An arc from A to B denotes
that a call to B appears within A.

• For an indirect call (a function
parameter or a function pointer) an arc
is added to all potential callees.

149CS 701 Fall 2003
©

Example

main() {
 if (pred(a,b))
 subr1(a)
 else subr2(b);}

bool pred(int a, int b){
 return a==b; }

subr1(int a){ print(a);}

subr2(int x){ print(2*x);}

main

pred subr1 subr2

print

150CS 701 Fall 2003
©

Wall’s Interprocedural
Register Allocator
Operates in two phases:
1. Register candidates are identified at

the subprogram level.
Each candidate (a single variable or a
set of non-interfering live ranges) is
compiled as if it won’t get a register.
At link-time unnecessary loads and
stores are edited away if the
candidate is allocated a register.

2. At link-time, when all subprograms
are known and available, register
candidates are allocated registers.

151CS 701 Fall 2003
©

Identifying Interprocedural
Register Sharing

If two subprograms are not connected
in the call graph, a register candidate
in each can share the same register
without any saving or restoring across
calls.

A register candidate from pred ,
subr1 and subr2 can all share one
register.

main

pred subr1 subr2

print

152CS 701 Fall 2003
©

At the interprocedural level we must
answer 2 questions:
1. A local candidate of one subprogram

can share a register with candidates
of what other subprograms?

2. Which local register candidates will
yield the greatest benefit if given a
register?

Wall designed his allocator for a machine
with 52 registers. This is enough to
divide all the registers among the
subprograms without any saves or
restores at call sites.
With fewer registers, spills, saves and
restores will often be needed (if registers
are used aggressively within a
subprogram).

153CS 701 Fall 2003
©

Restrictions on the Call
Graph

Wall limited calls graphs to DAGs
since cycles in a call graph imply
recursion, which will force saves and
restores (why?)

Cost Computations
Each register candidate is given a
per-call cost, based on the number of
saves and restores that can be
removed, scaled by 10loop_depth.
This benefit is then multiplied by the
expected number of calls, obtained by
summing the total number of call
sites, scaled by loop nesting depth.

154CS 701 Fall 2003
©

Grouping Register Candidates
We now have an estimate of the
benefit of allocating a register to a
candidate. Call this estimate

 cost(candidate)
We estimate potential interprocedural
sharing of register candidates by
assigning each candidate to a Group.
All candidates within a group can
share a register. No two candidates in
any subprogram are in the same
group.

155CS 701 Fall 2003
©

Groups are assigned during a reverse
depth-first traversal of the call graph.
 AsgGroup(node n) {
 if (n is a leaf node)
 grp = 0
 else { for (each c ∈ children(n)) {
 AsgGroup(c) }
 grp =
 1+ Max (Max group used in c)

 c ∈ children(n)

}

 for (each r ∈ registerCandidates(n)){
 assign r to grp
 grp++ }
 }
Global variables are assigned to a
singleton group.

156CS 701 Fall 2003
©

Example

At Print: grp(i)=0, grp(j)=1
At subr1: Max grp used in print is 1

grp(x)=2, grp(y)=3
At subr2: Max grp used in print is 1

grp(t)=2
At main: Max grp used in children is 3

grp(a)=4, grp(b)=5, grp(c)=6

main
Cand: a, b, c

subr1
Cand: x, y

subr2
Cand: t

Print
Cand: i, j

157CS 701 Fall 2003
©

If A calls B (directly or indirectly),
then none of A’s register candidates
are in the same group as any of B’s
register candidates.

This guarantees that A and B will use
different registers.

Thus no saves or restores are needed
across a call from A to B.

158CS 701 Fall 2003
©

Assigning Registers to Groups

 Cost(group) = Σ cost(candidates)
candidates ∈group

We assign registers to groups based
on the cost of each group, using an
“auction.”

for (r=0; r < RegisterCount; r++) {
 Let G be the group with the
 greatest cost that has not yet
 been assigned a register.
 Assign r to G
}

159CS 701 Fall 2003
©

Example (3 Registers)

Group Members Cost
0 i 40
1 j 5
2 x, t 15
3 y 15
4 a 20
5 b 10
6 c 30

main
Cand: a:20, b:10, c:30

subr1
Cand: x:5, y:15

subr2
Cand: t:10

Print
Cand: i:40, j:5

160CS 701 Fall 2003
©

The 3 registers are given to the
groups with the highest weight,
i (40), c(30), a(20).
Is this optimal?
No! If y and t are grouped together, y
and t (cost=25) get the last register.

main
Cand: a:20, b:10, c:30

subr1
Cand: x:5, y:15

subr2
Cand: t:10

Print
Cand: i:40, j:5

161CS 701 Fall 2003
©

Recursion
To handle recursion, any call to a
subprogram “up” in the call graph
must save and restore all registers
possibly in use between the caller and
callee.

A call fromEtoB saves r3 to r5.

A:r1,r2

B:r3

C:r4 D:r4

E:r5

162CS 701 Fall 2003
©

Performance
Wall found interprocedural register
allocation to be very effective (given
52 Registers!).

Speedups of 10-28% were reported.
Even with only 8 registers, speedups
of 5-20% were observed.

163CS 701 Fall 2003
©

Optimal Interprocedural
Register Allocation

Wall’s approach to interprocedural
register allocation isn’t optimal
because register candidates aren’t
grouped to achieve maximum benefit.

Moreover, the placement of save and
restore code if needed isn’t
considered.

These limitations are addressed by
Kurlander in “Minimum Cost
Interprocedural Register Allocation.”

164CS 701 Fall 2003
©

Optimal Save-Free
Interprocedural Register
Allocation
• Allocation is done on a cycle-free call

graph.

• Each subprogram has one or more
register candidates, ci.

• Each register candidate, ci, has a cost (or
benefit), wi, that is the improvement in
performance if ci is given a register. (This
wi value is scaled to include nested loops
and expected call frequencies.)

165CS 701 Fall 2003
©

Interference Between Register
Candidates
The notion of interference is extended to
include interprocedural register
candidates:
• Two Candidates in the same subprogram

always interfere.
(Local non-interfering variables and
values have already been grouped into
interprocedural register candidates.)

• If subprogram P calls subprogram Q
(directly or indirectly) then register
candidates within P always interfere
with register candidates within Q.

166CS 701 Fall 2003
©

Example

The algorithm can group candidate p
with either t or u (since they don’t
interfere). It can also group candidate
q with either t or u.

If two registers are available, it must
“discover” that assigning R1 to q&t,
and R2 to m is optimal.

V
Cand: m:6

W
Cand: p:3, q:4

X
Cand: t:5, u:1

167CS 701 Fall 2003
©

Non-interfering register candidates are
grouped into registers so as to solve:

That is, we wish to group sets of non-
interfering register candidates into k
registers such that the overall benefit is
maximized.
But how do we solve this?
Certainly examining all possible
groupings will be prohibitively expensive!

Maximize Σ wj

cj ∈ U Ri

k

i=1

168CS 701 Fall 2003
©

Kurlander solved this problem by
mapping it to a known problem in
Integer Programming:
the Dual Network Flow Problem.

Solution techniques for this problem are
well known—libraries of standard
solution algorithms exist.

Moreover, this problem can be solved in
polynomial time.

That is, it is “easier” than optimal global
(intraprocedural) register allocation,
which is NP-complete!

