
169CS 701 Fall 2003
©

Reading Assignment
• Read Section 15.4 (Code Scheduling) of

Chapter 15.

• Read Gibbon’s and Muchnick’s paper,
“Efficient Instruction Scheduling for a
Pipelined Architecture.”

• Read Kerns and Eggers’ paper,
“Balanced Scheduling: Instruction
Scheduling When Memory Latency is
Uncertain.” (Linked from the class Web
page.)

170CS 701 Fall 2003
©

Adding Saves & Restores
Wall designed his save-free
interprocedural allocator for a
machine with 52 registers.

Most computers have far fewer
registers, and hence saving and
restoring across calls, when profitable,
should be allowed.

Kurlander’s Technique can be
extended to include save/restore
costs. If the cost of saving and
restoring is less than the benefit of
allocating an extra register, saving is
done. Moreover, saving is done where
it is cheapest (not closest!).

171CS 701 Fall 2003
©

Example
main() { ... p(); ...}

p(){ ...
 for (i=0; i<1000000; i++){
 q():
 }
}

We first allocate registers in a save-
free mode. After all Registers have
been allocated, q may need additional
registers.
Most allocators would add save/
restore code at q’s call site (or q’s
prologue and epilogue).
An optimal allocator will place save/
restore code at p’s call site, freeing a
register that p doesn’t even want (but
that q does want!)

172CS 701 Fall 2003
©

Extending the Cost Model
• As before, we group register candidates

of different subprograms into registers.

• Now only candidates within the same
subprogram automatically interfere.

• Saves are placed on the edges of the call
graph.

• We aim to solve

where sm is the per/register save/
restore cost and Savedm is the number
of registers saved on edge em.

Maximize Σ wj

cj ∈ U Ri

k
sm

em∈
Σ- *Savedm

Edges
i=1

173CS 701 Fall 2003
©

• As registers are saved, they may be
reused in child subprograms.

• This optimization problem can be
solved as a Network Dual Flow
Problem.

• Again, the solution algorithm is
polynomial.

174CS 701 Fall 2003
©

Example (One Register)

P1 gets R1 save-free for m.
A save on P1→P4 costs 1 and gives a
register to n (net profit =2), so we do it.
A save on P1→P2 for z costs 2, and yields 1,
which isn’t profitable.
A save on P2→P3 for q costs 4, and yields
3, which isn’t profitable.
A save on P1→P2 for q costs 2, and yields
3, which is a net gain.

P1

Cand: m:7

Cand: z:1

P4
Cand: n:3

P3

Cand: q:3

s=2 s=1

s=4

P2

175CS 701 Fall 2003
©

Handling Global Variables
• Wall’s technique handled globals by

assuming they interfere with all
subprograms and all other globals.

• Kurlander’s approach is incremental (and
non-optimal):

First, an optimal allocation for r
registers is computed.
Next, one register is “stolen” and
assigned interprocedurally to the
most beneficial global.
(Subprograms that don’t use the
global can save and restore it locally,
allowing local reuse).
An optimal allocation using R-1
registers is computed. If this solution
plus the shared global is more
profitable than the R register

176CS 701 Fall 2003
©

solution, the global allocation is
“locked in.”
Next, another register is “stolen” for a
global, leaving R-2 for
interprocedural allocation.
This process continues until stealing
another register for a global isn’t
profitable.

177CS 701 Fall 2003
©

Why is Optimal
Interprocedural Register
Allocation Easier than Optimal
IntraProcedural Allocation?
This result seems counter-intuitive. How
can allocating a whole program be easier
(computationally) than allocating only
one subprogram.
Two observations provide the answer:
• Interprocedural allocation assumes some

form of local allocation has occurred (to
identify register candidates).

• Interprocedural interference is transitive
(if A interferes with B and B interferes
with C then A interferes with B). But
intraprocedural interference isn’t
transitive!

178CS 701 Fall 2003
©

Code Scheduling
Modern processors are pipelined.
They give the impression that all
instructions take unit time by
executing instructions in stages
(steps), as if on an assembly line.
Certain instructions though (loads,
floating point divides and square
roots, delayed branches) take more
than one cycle to execute.
These instructions may stall (halt the
processor) or require a nop (null
operation) to execute properly.
A Code Scheduling phase may be
needed in a compiler to avoid stalls or
eliminate nops.

179CS 701 Fall 2003
©

Scheduling Expression DAGs
After generating code for a DAG or
basic block, we may wish to schedule
(reorder) instructions to reduce or
eliminate stalls.

A Postpass Scheduler is run after code
selection and register allocation.

Postpass schedulers are very general
and flexible, since they can be used
with code generated by any compiler
with any degree of optimization

But, since they can’t modify register
allocations, they can’t always avoid
stalls.

180CS 701 Fall 2003
©

Dependency DAGs
Obviously, not all reorderings of
generated instructions are acceptable.

Computation of a register value must
precede all uses of that value.
A store of a value must precede all
loads that might read that value.

A Dependency Dag reflects essential
ordering constraints among instructions:
• Nodes are Instructions to be scheduled.

• An arc from Instruction i to Instruction j
indicates that i must be executed before
j may be executed.

181CS 701 Fall 2003
©

Kinds of Dependencies
We can identify several kinds of
dependencies:
• True Dependence:

An operation that uses a value has a
true dependence (also called a flow
dependence) upon an earlier
operation that computes the value.
For example:

mov 1, %l2

add %l2, 1, %l2

• Anti Dependence:
An operation that writes a value has a
anti dependence upon an earlier
operation that reads the value. For
example:

add %l2, 1, %l0
mov 1, %l2

182CS 701 Fall 2003
©

• Output Dependence:
An operation that writes a value has a
output dependence upon an earlier
operation that writes the value. For
example:

mov 1, %l2

mov 2, %l2

Collectively, true, anti and output
dependencies are called data
dependencies. Data dependencies
constrain the order in which
instructions may be executed.

183CS 701 Fall 2003
©

Example
Consider the code that might be
generated for
a = ((a+b) + (c*d)) + ((c+d) * d);

We’ll assume 4 registers, the
minimum possible, and we’ll reuse
already loaded values.
Assume a 1 cycle stall between a load
and use of the loaded value and a 2
cycle stall between a multiplication
and first use of the product.

184CS 701 Fall 2003
©

1. ld [a], %r1
2. ld [b], %r2
3. add %r1,%r2,%r1
4. ld [c], %r2
5. ld [d], %r3
6. smul %r2,%r3,%r4
7. add %r1,%r4,%r1
8. add %r2,%r3,%r2
9. smul %r2,%r3,%r2
10. add %r1,%r2,%r1
11. st %r1,[a]

Stall

Stall
Stall*2

Stall*2

(6 Stalls Total)

1 2

3 4

5

6

7

8 9

10

11

185CS 701 Fall 2003
©

Scheduling Requires
Topological Traversal

Any valid code schedule is a
Topological Sort of the dependency
dag.

To create a code schedule you
(1) Pick any root of the Dag.
(2) Remove it from the Dag and

schedule it.
(3) Iterate!

Choosing a Minimum Delay schedule
is NP-Complete:
 “Computers and Intractability,”
M. Garey and D. Johnson,
W.H. Freeman, 1979.

186CS 701 Fall 2003
©

Dynamically Scheduled
(Out of Order) Processors

To avoid stalls, some processors can
execute instructions Out of Program
Order.
If an instruction can’t execute
because a previous instruction it
depends upon hasn’t completed yet,
the instruction can be “held” and a
successor instruction executed
instead.
When needed predecessors have
completed, the held instruction is
released for execution.

187CS 701 Fall 2003
©

Example
1. ld [a], %r1
2. ld [b], %r2

3. add %r1,%r2,%r1
4. ld [c], %r2

7. add %r1,%r4,%r1

8. add %r2,%r3,%r2
9. smul %r2,%r3,%r2

10. add %r1,%r2,%r1
11. st %r1,[a]

Stall

Stall

(2 Stalls Total)

5. ld [d], %r3

6. smul %r2,%r3,%r4

1 2

3 4

5

6

7

8 9

10

11

188CS 701 Fall 2003
©

Limitations of Dynamic
Scheduling
1. Extra processor complexity.
2. Register renaming (to avoid False

Dependencies) may be needed.
3. Identifying instructions to be delayed

 takes time.
4. Instructions “late” in the program

can’t be started earlier.

189CS 701 Fall 2003
©

Gibbons & Muchnick Postpass
Code Scheduler
1. If there is only one root, schedule it.
2. If there is more than one root,

 choose that root that won’t be
stalled by instructions already
scheduled.

3. If more than one root can be
scheduled without stalling,

 consider the following rules
 (in order);
 (a) Does this root stall any of its

successors?
(If so, schedule it immediately.)

(b) How many new roots are exposed
if this node is scheduled?
(More is better.)

190CS 701 Fall 2003
©

(c) Which root has the longest
weighted path to a leaf (using
instruction delays as the weight).
(The “critical path” in the DAG
gets priority.)

