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Goodman/Hsu Integrated Code
Scheduler

Prepass Schedulers:
   Schedule code prior to register

allocation.
   Can overuse registers—Always

using a “fresh” register maximizes
   freedom to rearrange Instructions.

Postpass Schedulers:
    Schedule code after register

allocation.
Can be limited by “false
dependencies” induced by register
reuse.

    Example is Gibbons/Muchnick
heuristic.
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Integrated Schedulers
Capture best of both approaches.

When registers are plentiful, use
additional registers to avoid stalls.
Goodman & Hsu call this CSP:
  Code Scheduling for Pipelines.

When registers are scarce, switch to a
policy that frees registers.
Goodman & Hsu call this CSR:
  Code Scheduling to free Registers.
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Assume code is generated in single
assignment form, with a unique
pseudo-register for each computed
value.

We schedule from a DAG where nodes
are operations (to be mapped to
instructions), and arcs represent data
dependencies.

Each node will have an associated
Cost, that measures the execution and
stall time of the instruction that the
node represents.

Nodes are labeled with a critical path
cost, used to select the “most critical”
instructions to schedule.

211CS 701  Fall 2003
©

Definitions
Leader Set:

Set of DAG nodes ready to be
scheduled, possibly with an
interlock.

Ready Set:
Subset of Leader Set; Nodes ready
to be scheduled without an
interlock.

AvailReg:
A count of currently unused
registers.

MinThreshold:
Threshold at which heuristic will
switch from avoiding interlocks to
reducing registers in use.
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Goodman/Hsu Heuristic:
while (DAG ≠ φ) {

    if ( AvailReg > MinThreshold)
        if (ReadySet ≠ φ)
              Select Ready node with Max cost
        else Select Leader node with Max cost
    else  //  Reduce Registers in Use
        if (∃ node ∈ ReadySet that frees registers){
           Select node that frees most registers
           If (selected node isn’t unique)
               Select node with Max cost   }
       elsif (∃ node ∈ LeaderSet that frees regs){
                Select node that frees most registers
               If (selected node isn’t unique)
                   Select node with fewest interlocks}
       else find a partially evaluated path and

select a leader from this path
       else Select any node in ReadySet
       else Select any node in LeaderSet
Schedule Selected node
Update AvailReg count  }//end while
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Example
We’ll again consider
a = ((a+b) + (c*d)) + ((c+d) * d);

Again, assume a 1 cycle stall between
a load and use of its value and a 2
cycle stall between a multiplication
and first use of the product.
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We’ll try 4 registers (the minimum),
then 5 registers.
Should   MinThreshold be 0 or 1?

At MinThreshold = 1, we always
have a register to hold a result, but
we may force a register to be spilled
too soon!

At MinThreshold = 0, we may be
forced to spill a register to free a
result register.
But, we’ll also be able to schedule
more aggressively.
Is a spill or stall worse?
Note that we may be able to “hide”
a spill in a delay slot!

We’ll be aggressive and use
MinThreshold = 0.
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4 Registers Used (1 Stall)

Instruction Comment Regs
Used

ld   [c], %r1 Choose ready, cost=8 1
ld   [d], %r2 Choose ready, cost=8 2
ld   [a], %r3 Choose ready, cost=6 3
smul %r1,%r2,%r4 Choose ready, cost=6 4
add  %r1,%r2,%r1 Free a register 4
smul %r1,%r2,%r1 Free a register 3
ld   [b], %r2 Choose ready, cost=6 4
add %r3,%r2,%r3 ← Choose a leader 3
add  %r3,%r4,%r3 No choice 2
add  %r3,%r1,%r3 No choice 1
st   %r3,[a] No choice 0
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5 Registers Used (No Stalls)

Instruction Comment Regs
Used

ld   [c], %r1 Choose ready, cost=8 1
ld   [d], %r2 Choose ready, cost=8 2
ld   [a], %r3 Choose ready, cost=6 3
smul %r1,%r2,%r4 Choose ready, cost=6 4
add  %r1,%r2,%r1 Choose ready, cost=6 4
ld   [b], %r5 Choose ready, cost=6 5
smul %r1,%r2,%r1 Free a register 4
add  %r3,%r5,%r3 Choose ready, cost=4 3
add  %r3,%r4,%r3 No choice 2
add  %r3,%r1,%r3 No choice 1
st   %r3,[a] No choice 0
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Scheduling for Superscalar &
Multiple Issue Machines

A number of computers have the
ability to issue more than one
instruction per cycle if the
instructions are independent and
satisfy constraints on available
functional units.

Thus the instructions
  add %r1,1,%r2
  sub %r1,2,%r3

can issue and execute in parallel,
but

add %r1,1,%r2
  sub %r2,2,%r3

    must execute sequentially.
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Instructions that are linked by true or
output dependencies must execute
sequentially, but instructions that are
linked by an anti dependence may
execute concurrently.
For example,
  add %r1,1,%r2
  sub %r3,2,%r1

can issue and execute in parallel.

The code scheduling techniques we’ve
studied can be used to schedule
machines that can issue 2 or more
independent instructions simultaneously.

We select pairs (or triples or n-tuples),
verifying (with the Dependence Dag)
that they are independent or anti
dependent.
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Example: 5 Registers
(2 Wide Issue)

We need only 8 cycles rather than 11.

1 ld   [c], %r1 ld   [d], %r2

2 ld   [a], %r3 ld   [b], %r4

3 smul %r1,%r2,%r5 add  %r1,%r2,%r1

4 add  %r3,%r4,%r3 smul %r1,%r2,%r1

5 nop nop

6 add %r3,%r5,%r3 nop

7 add  %r3,%r1,%r3 nop

8 st   %r3,[a] nop
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5 Registers (3 Wide Issue)

We still need 8 cycles!

1 ld   [c], %r1 ld   [d], %r2 ld [a],%r3

2 ld   [b], %r4 nop nop

3 smul %r1,%r2,%r5 add  %r1,%r2,%r1 nop

4 add  %r3,%r4,%r3 smul %r1,%r2,%r1 nop

5 nop nop nop

6 add  %r3,%r5,%r3 nop nop

7 add  %r3,%r1,%r3 nop nop

8 st   %r3,[a] nop nop

a b c d

+ * +

+ *

=

+

1

2

3 5

4 6 6

6 6 8 8

221CS 701  Fall 2003
©

Finding Additional Independent
Instructions for Parallel Issue
We can extend the capabilities of
processors:
• Out of order execution allows a

processor to “search ahead” for
independent instructions to launch.

• But, since basic blocks are often quite
small, the processor may need to
accurately predict branches, issuing
instructions before the execution path is
fully resolved.

• But, since branch predictions may be
wrong, it will be necessary to “undo”
instructions executed speculatively.
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Compiler Support for
Extended Scheduling
• Trace Scheduling

Gather sequences of basic blocks
together and schedule them as a unit.

• Global Scheduling
Analyze the control flow graph and
move instructions across basic block
boundaries to improve scheduling.

• Software Pipelining
Select instructions from several loop
iterations and schedule them
together.
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Trace Scheduling
Reference:
J. Fisher, “Trace Scheduling: A
Technique for Global Microcode
Compaction,” IEEE Transactions on
Computers, July 1981.

Idea:
Since basic blocks are often too small
to allow effective code scheduling, we
will profile a program’s execution and
identify the most frequently executed
paths in a program.

Sequences of contiguous basic blocks
on frequently executed paths will be
gathered together into traces.
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Trace
• A sequence of basic blocks (excluding

loops) executed together can form a
trace.

• A trace will be scheduled as a unit,
allowing a larger span of instructions for
scheduling.

• A loop can be unrolled or scheduled
individually.

• Compensation code may need to be
added when a branch into, or out of, a
trace occurs.
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Example

Assume profiling shows that
B1→B3→B4+→B5→B7
is the most common execution path.
The traces extracted from this path are
B1→B3, B4, and B5→B7.

B1

B2 B3

B4

B5 B6 B7
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Compensation Code
When we move instructions across
basic block boundaries within a trace,
we may need to add extra
instructions that preserve program
semantics on paths that enter or
leave the trace.
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Example
In the previous example, basic block
B1 had B2 and B3 as successors, and
B1→B3 formed a trace.

x = x+1
y = x-y
x<5

z=x*z
x=x+1

y=2*y
x=x-2
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x = x+1

z=x*z
x=x+1

y=2*y
x=x-2

1

2

3

Before Scheduling

y = x-y

x<5

y = x-y

After Scheduling
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Advantages & Disadvantages
• Trace scheduling allows scheduling to

span multiple basic blocks. This can
significantly increase the effectiveness
of scheduling, especially in the context
of superscalar processors (which need ILP
to be effective).

• Trace Scheduling can also increase code
size (because of compensation code).
It is also sensitive to the accuracy of
trace estimates.
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Global Code Scheduling
• Bernstein and Rodeh approach.

• A prepass scheduler
(does scheduling before register
allocation).

• Can move instructions across basic block
boundaries.

• Prefers to move instructions that must
eventually be executed.

• Can move Instructions speculatively,
possibly executing instructions
unnecessarily.
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Data & Control Dependencies
When moving instructions across
basic block boundaries, we must
respect both data dependencies and
control dependencies.

Data dependencies specify necessary
orderings among instructions that
produce a value and instructions that
use that value.

Control dependencies determine when
(and if) various instructions are
executed. Thus an instruction is
control dependent on expressions
that affect flow of control to that
instruction.


