
208CS 701 Fall 2003
©

Goodman/Hsu Integrated Code
Scheduler

Prepass Schedulers:
 Schedule code prior to register

allocation.
 Can overuse registers—Always

using a “fresh” register maximizes
 freedom to rearrange Instructions.

Postpass Schedulers:
 Schedule code after register

allocation.
Can be limited by “false
dependencies” induced by register
reuse.

 Example is Gibbons/Muchnick
heuristic.

209CS 701 Fall 2003
©

Integrated Schedulers
Capture best of both approaches.

When registers are plentiful, use
additional registers to avoid stalls.
Goodman & Hsu call this CSP:
 Code Scheduling for Pipelines.

When registers are scarce, switch to a
policy that frees registers.
Goodman & Hsu call this CSR:
 Code Scheduling to free Registers.

210CS 701 Fall 2003
©

Assume code is generated in single
assignment form, with a unique
pseudo-register for each computed
value.

We schedule from a DAG where nodes
are operations (to be mapped to
instructions), and arcs represent data
dependencies.

Each node will have an associated
Cost, that measures the execution and
stall time of the instruction that the
node represents.

Nodes are labeled with a critical path
cost, used to select the “most critical”
instructions to schedule.

211CS 701 Fall 2003
©

Definitions
Leader Set:

Set of DAG nodes ready to be
scheduled, possibly with an
interlock.

Ready Set:
Subset of Leader Set; Nodes ready
to be scheduled without an
interlock.

AvailReg:
A count of currently unused
registers.

MinThreshold:
Threshold at which heuristic will
switch from avoiding interlocks to
reducing registers in use.

212CS 701 Fall 2003
©

Goodman/Hsu Heuristic:
while (DAG ≠ φ) {

 if (AvailReg > MinThreshold)
 if (ReadySet ≠ φ)
 Select Ready node with Max cost
 else Select Leader node with Max cost
 else // Reduce Registers in Use
 if (∃ node ∈ ReadySet that frees registers){
 Select node that frees most registers
 If (selected node isn’t unique)
 Select node with Max cost }
 elsif (∃ node ∈ LeaderSet that frees regs){
 Select node that frees most registers
 If (selected node isn’t unique)
 Select node with fewest interlocks}
 else find a partially evaluated path and

select a leader from this path
 else Select any node in ReadySet
 else Select any node in LeaderSet
Schedule Selected node
Update AvailReg count }//end while

213CS 701 Fall 2003
©

Example
We’ll again consider
a = ((a+b) + (c*d)) + ((c+d) * d);

Again, assume a 1 cycle stall between
a load and use of its value and a 2
cycle stall between a multiplication
and first use of the product.

a b c d

+ * +

+ *

=

+

1

2

3 5

4 6 6

6 6 8 8

214CS 701 Fall 2003
©

We’ll try 4 registers (the minimum),
then 5 registers.
Should MinThreshold be 0 or 1?

At MinThreshold = 1, we always
have a register to hold a result, but
we may force a register to be spilled
too soon!

At MinThreshold = 0, we may be
forced to spill a register to free a
result register.
But, we’ll also be able to schedule
more aggressively.
Is a spill or stall worse?
Note that we may be able to “hide”
a spill in a delay slot!

We’ll be aggressive and use
MinThreshold = 0.

215CS 701 Fall 2003
©

4 Registers Used (1 Stall)

Instruction Comment Regs
Used

ld [c], %r1 Choose ready, cost=8 1
ld [d], %r2 Choose ready, cost=8 2
ld [a], %r3 Choose ready, cost=6 3
smul %r1,%r2,%r4 Choose ready, cost=6 4
add %r1,%r2,%r1 Free a register 4
smul %r1,%r2,%r1 Free a register 3
ld [b], %r2 Choose ready, cost=6 4
add %r3,%r2,%r3 ← Choose a leader 3
add %r3,%r4,%r3 No choice 2
add %r3,%r1,%r3 No choice 1
st %r3,[a] No choice 0

a b c d

+ * +

+ *

=

+

1

2

3 5

4 6 6

6 6 8 8

216CS 701 Fall 2003
©

5 Registers Used (No Stalls)

Instruction Comment Regs
Used

ld [c], %r1 Choose ready, cost=8 1
ld [d], %r2 Choose ready, cost=8 2
ld [a], %r3 Choose ready, cost=6 3
smul %r1,%r2,%r4 Choose ready, cost=6 4
add %r1,%r2,%r1 Choose ready, cost=6 4
ld [b], %r5 Choose ready, cost=6 5
smul %r1,%r2,%r1 Free a register 4
add %r3,%r5,%r3 Choose ready, cost=4 3
add %r3,%r4,%r3 No choice 2
add %r3,%r1,%r3 No choice 1
st %r3,[a] No choice 0

a b c d

+ * +

+ *

=

+

1

2

3 5

4 6 6

6 6 8 8

217CS 701 Fall 2003
©

Scheduling for Superscalar &
Multiple Issue Machines

A number of computers have the
ability to issue more than one
instruction per cycle if the
instructions are independent and
satisfy constraints on available
functional units.

Thus the instructions
 add %r1,1,%r2
 sub %r1,2,%r3

can issue and execute in parallel,
but

add %r1,1,%r2
 sub %r2,2,%r3

 must execute sequentially.

218CS 701 Fall 2003
©

Instructions that are linked by true or
output dependencies must execute
sequentially, but instructions that are
linked by an anti dependence may
execute concurrently.
For example,
 add %r1,1,%r2
 sub %r3,2,%r1

can issue and execute in parallel.

The code scheduling techniques we’ve
studied can be used to schedule
machines that can issue 2 or more
independent instructions simultaneously.

We select pairs (or triples or n-tuples),
verifying (with the Dependence Dag)
that they are independent or anti
dependent.

219CS 701 Fall 2003
©

Example: 5 Registers
(2 Wide Issue)

We need only 8 cycles rather than 11.

1 ld [c], %r1 ld [d], %r2

2 ld [a], %r3 ld [b], %r4

3 smul %r1,%r2,%r5 add %r1,%r2,%r1

4 add %r3,%r4,%r3 smul %r1,%r2,%r1

5 nop nop

6 add %r3,%r5,%r3 nop

7 add %r3,%r1,%r3 nop

8 st %r3,[a] nop

a b c d

+ * +

+ *

=

+

1

2

3 5

4 6 6

6 6 8 8

220CS 701 Fall 2003
©

5 Registers (3 Wide Issue)

We still need 8 cycles!

1 ld [c], %r1 ld [d], %r2 ld [a],%r3

2 ld [b], %r4 nop nop

3 smul %r1,%r2,%r5 add %r1,%r2,%r1 nop

4 add %r3,%r4,%r3 smul %r1,%r2,%r1 nop

5 nop nop nop

6 add %r3,%r5,%r3 nop nop

7 add %r3,%r1,%r3 nop nop

8 st %r3,[a] nop nop

a b c d

+ * +

+ *

=

+

1

2

3 5

4 6 6

6 6 8 8

221CS 701 Fall 2003
©

Finding Additional Independent
Instructions for Parallel Issue
We can extend the capabilities of
processors:
• Out of order execution allows a

processor to “search ahead” for
independent instructions to launch.

• But, since basic blocks are often quite
small, the processor may need to
accurately predict branches, issuing
instructions before the execution path is
fully resolved.

• But, since branch predictions may be
wrong, it will be necessary to “undo”
instructions executed speculatively.

222CS 701 Fall 2003
©

Compiler Support for
Extended Scheduling
• Trace Scheduling

Gather sequences of basic blocks
together and schedule them as a unit.

• Global Scheduling
Analyze the control flow graph and
move instructions across basic block
boundaries to improve scheduling.

• Software Pipelining
Select instructions from several loop
iterations and schedule them
together.

223CS 701 Fall 2003
©

Trace Scheduling
Reference:
J. Fisher, “Trace Scheduling: A
Technique for Global Microcode
Compaction,” IEEE Transactions on
Computers, July 1981.

Idea:
Since basic blocks are often too small
to allow effective code scheduling, we
will profile a program’s execution and
identify the most frequently executed
paths in a program.

Sequences of contiguous basic blocks
on frequently executed paths will be
gathered together into traces.

224CS 701 Fall 2003
©

Trace
• A sequence of basic blocks (excluding

loops) executed together can form a
trace.

• A trace will be scheduled as a unit,
allowing a larger span of instructions for
scheduling.

• A loop can be unrolled or scheduled
individually.

• Compensation code may need to be
added when a branch into, or out of, a
trace occurs.

225CS 701 Fall 2003
©

Example

Assume profiling shows that
B1→B3→B4+→B5→B7
is the most common execution path.
The traces extracted from this path are
B1→B3, B4, and B5→B7.

B1

B2 B3

B4

B5 B6 B7

226CS 701 Fall 2003
©

Compensation Code
When we move instructions across
basic block boundaries within a trace,
we may need to add extra
instructions that preserve program
semantics on paths that enter or
leave the trace.

227CS 701 Fall 2003
©

Example
In the previous example, basic block
B1 had B2 and B3 as successors, and
B1→B3 formed a trace.

x = x+1
y = x-y
x<5

z=x*z
x=x+1

y=2*y
x=x-2

1

2

3

x = x+1

z=x*z
x=x+1

y=2*y
x=x-2

1

2

3

Before Scheduling

y = x-y

x<5

y = x-y

After Scheduling

228CS 701 Fall 2003
©

Advantages & Disadvantages
• Trace scheduling allows scheduling to

span multiple basic blocks. This can
significantly increase the effectiveness
of scheduling, especially in the context
of superscalar processors (which need ILP
to be effective).

• Trace Scheduling can also increase code
size (because of compensation code).
It is also sensitive to the accuracy of
trace estimates.

229CS 701 Fall 2003
©

Global Code Scheduling
• Bernstein and Rodeh approach.

• A prepass scheduler
(does scheduling before register
allocation).

• Can move instructions across basic block
boundaries.

• Prefers to move instructions that must
eventually be executed.

• Can move Instructions speculatively,
possibly executing instructions
unnecessarily.

230CS 701 Fall 2003
©

Data & Control Dependencies
When moving instructions across
basic block boundaries, we must
respect both data dependencies and
control dependencies.

Data dependencies specify necessary
orderings among instructions that
produce a value and instructions that
use that value.

Control dependencies determine when
(and if) various instructions are
executed. Thus an instruction is
control dependent on expressions
that affect flow of control to that
instruction.

