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Our final loop is:
cycle       instruction
1.          ld    [%o1], %g2 !N 0

   1.          add   %o1, 4, %o1 !N 0

3.          add   %g3, %g2, %g4 !N 0

3.          ld    [%o1], %g2 !N 1

   3.          add   %o1, 4, %o1 !N 1

   3.          add   %g3, 1, %g3 !N 0

   4.      L:  st    %g4, [%o0] !N 0

   4.          add   %o0, 4, %o0 !N 0

   4.          cmp   %g3, 999 !N 0

5.          add   %g3, %g2, %g4 !N 1

5.          ld    [%o1], %g2 !N 2

   5.          add   %o1, 4, %o1 !N 2

   5.          ble   L !N 0

   5.          add   %g3, 1, %g3 !N 1

This is very efficient code—we use the
full parallelism of the processor,
executing 5 instructions in cycle 5
and 8 instructions in just 2 cycles. All
resource limitations are respected.
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False Dependencies & Loop
Unrolling

A limiting factor in how “tightly” we
can software pipeline a loop is reuse
of registers and the false
dependencies reuse induces.
Consider the following simple
function that copies array elements:
void f (int a[],int b[], int lim) {
  for (i=0;i<lim;i++)
     a[i]=b[i];
}

The loop that is generated takes 3
cycles:
cycle       instruction
1.     L:    ld    [%g3+%o1], %g2

   1.           addcc %o2, -1, %o2
3.           st    %g2, [%g3+%o0]
3.           bne   L

   3.           add   %g3, 4, %g3
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We’d like to tighten the iteration
interval to 2 or less. One cycle is
unlikely, since doing a load and a
store in the same cycle is problematic
(due to a possible dependence
through memory).
If we try to use modulo scheduling,
we can’t put a second copy of the
load in cycle 2 because it would
overwrite the contents of the first
load. A load in cycle 3 will clash with
the store.
The solution is to unroll the loop into
two copies, using different registers
to hold the contents of the load and
the current offset into the arrays.
The use of a “count down” register to
test for loop termination is helpful,
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since it allows an easy exit from the
middle of the loop.
With the renaming of the registers
used in the two expanded iterations,
scheduling to “tighten” the loop is
effective.
After expansion we have:
cycle       instruction
1.     L:    ld    [%g3+%o1], %g2

   1.           addcc %o2, -1, %o2
3.           st    %g2, [%g3+%o0]
3.           beq   L2

   3.           add   %g3, 4, %g4
4.           ld    [%g4+%o1], %g5

   4.           addcc %o2, -1, %o2
6.           st    %g5, [%g4+%o0]
6.           bne   L

   6.           add   %g4, 4, %g3
          L2:

We still have 3 cycles per iteration,
because we haven’t scheduled yet.
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Now we can move the increment of
%g3 (into %g4) above other uses of
%g3. Moreover, we can move the load
into %g5 above the store from %g2 (if
the load and store are independent):
cycle       instruction
1.     L:    ld    [%g3+%o1], %g2

   1.           addcc %o2, -1, %o2
   1.           add   %g3, 4, %g4

2.           ld    [%g4+%o1], %g5
3.           st    %g2, [%g3+%o0]
3.           beq   L2
3.           addcc %o2, -1, %o2
4.           st    %g5, [%g4+%o0]
4.           bne   L

   4.           add   %g4, 4, %g3
         L2:

We can normally test whether
%g4+%o1 and %g3+%o0 can be equal
at compile-time, by looking at the
actual array parameters. (Can &a[0]
== &b[1] ?)

286CS 701  Fall 2003
©

Automatic Instruction
Selection

Besides register allocation and code
scheduling, a code generator must
also do Instruction Selection.

For CISC (Complex Instruction Set
Computer) Architectures, like the
Intel x86, DEC Vax, and many special
purpose processors (like Digital Signal
Processors), instruction selection is
often challenging because so many
choices exist.
In the Vax, for example, one, two and
three address instructions exist. Each
address may be a register, memory
location (with or without indexing),
or an immediate operand.
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For RISC (Reduced Instruction Set
Computer) Processors, instruction
formats and addressing modes are far
more limited.
Still, it is necessary to handle
immediate operands, commutative
operands and special case null
operands (add of 0 or multiply of 1).

Moreover, automatic instruction
selection supports automatic
retargeting of a compiler to a new or
extended instruction set.
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Tree-Structured Intermediate
Representations

For purposes of automatic code
generation, it is convenient to
translate a source program into a
Low-level, Tree-Structured IR.
This representation exposes
translation details (how locals are
accessed, how conditionals are
translated, etc.) without assuming a
particular instruction set.

In a low-level, tree-structured IR,
leaves are registers or bit-patterns
and internal nodes are machine-level
primitives, like load, store, add, etc.



289CS 701  Fall 2003
©

Example
Let’s look at how
a = b - 1 ;

is represented, where a is a global
integer variable and b is a local
(frame allocated) integer variable.

=

aadr -

* IntLiteral1

+

%fp boffset
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Representation of Instructions
Individual instructions can be
represented as trees, rooted by the
operation they implement.
For example:

*

Adr
Reg →

This is an
instruction that
loads a register with
the value at an
absolute address.

Reg →
+

Reg Reg
This is an instruction that adds the
contents of two registers and stores the
sum into a third register.
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Using the above pair of instruction
definitions, we can repeatedly match
instructions in the following program
IR:

+

+ *

* *
aadr badr

cadr

+

+ *

*

badr

cadr

⇒

Reg

+ *
cadrReg

+

Reg

*
cadr

+

Reg

+

Reg Reg
Reg

⇒

⇒ ⇒

⇒
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Each match of an instruction pattern
can have the side-effect of
generating an instruction:
  ld   [a],%R1
  ld   [b],%R2
  add  %R1,%R2,%R3
  ld   [c],%R4
  add  %R3,%R4,%R5

Registers can be allocated on-the-fly
as Instructions are generated or
instructions can be generated using
pseudo-registers, with a subsequent
register allocation phase.

Using this view of instruction
selection, choosing instructions
involves finding a cover for an IR tree
using Instruction Patterns.
Any cover is a valid translation.
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Tree Parsing vs.
String Parsing

This process of selecting instructions
by matching instruction patterns is
very similar to how strings are parsed
using Context-free Grammars.
We repeatedly identify a sub-tree
that corresponds to an instruction,
and simplify the IR-tree by replacing
the instruction sub-tree with a
nonterminal symbol. The process is
repeated until the IR-tree is reduced
to a single nonterminal.
The theory of reducing an IR-tree
using rewrite rules has been studied
as part of BURS (Bottom-Up Rewrite
Systems) Theory by Pelegri-Llopart
and Graham.
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Automatic Instruction
Selection Tools

Just as tools like Yacc and Bison
automatically generate a string parser
from a specification of a Context-free
Grammar, there exist tools that will
automatically generate a tree-parser
from a specification of tree
productions.

Two such tools are BURG (Bottom Up
Rewrite Generator) and IBURG
(Interpreted BURG). Both
automatically generate parsers for
tree grammars using BURS theory.
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Least-Cost Tree Parsing
BURG (and IBURG) guarantee to find
a cover for an input tree (if one
exists).
But tree grammars are usually very
ambiguous.
Why?—Because there is usually more
than one code sequence that can
correctly implement a given IR-tree.
To deal with ambiguity, BURG and
IBURG allow each instruction pattern
(tree production) to have a cost.
This cost is typically the size or
execution time for the corresponding
target-machine instructions.
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Using costs, BURG (and IBURG) not
only guarantee to find a cover, but
also a least-cost cover.

This means that when a generated
tree-parser is used to cover (and
thereby translate) an IR-Tree, the best
possible code sequence is guaranteed.

If more than one least-cost cover
exists, an arbitrary choice is made.
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Using BURG to Specify
Instruction Selection

We’ll need a tree grammar to specify
possible partial covers of a tree.
For simplicity, BURG requires that all
tree productions be of the form

A → b
 (where b is a single terminal symbol)
            or
A → Op(B,C, ...)
  (where Op is a terminal that is a

subtree root and B,C, ... are non-
terminals)

A → Op(B,C, ...)
denotes

Op

B C   ...
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All tree grammars can be put into this
form by adding new nonterminals and
productions as needed.

We must specify terminal symbols
(leaves and operators in the IR-Tree)
and nonterminals that are used in
tree productions.
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Example
A subset of a SPARC instruction
selector.

Terminals
Leaf Nodes

int32 (32 bit integer)
s13 (13 bit signed integer)
r (0-31, a register name)

Operator Nodes
* (unary indirection)
- (binary minus)
+ (binary addition)
= (binary assignment)
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Nonterminals
UInt (32 bit unsigned integer)
Reg (Loaded register value)
Imm (Immediate operand)
Adr (Address expression)
Void (Null value)
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Productions

Rule
# Production Cost SPARC Code

R0 UInt → Int32 0

R1 Reg → r 0

R2 Adr → r 0

R3 0

R4 Imm → s13 0

R5 Reg → s13 1 mov s13,Reg

R6 Reg → int32 2 sethi
%hi(int32),%g1

or %g1,
%lo(int32),Reg

R7 1 sub Reg,Reg,Reg

Adr →
+

Reg Imm

Reg →
−

Reg Reg
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R8 1 sub Reg,Imm,Reg

R9 1 ld [Adr],Reg

R10 2 sethi
%hi(UInt),%g1

st Reg,
[%g1+%lo(Uint)]

Rule
# Production Cost SPARC Code

Reg →
−

Reg Imm

Reg →
∗

Adr

Void →
=

UInt Reg


