Reading Assignment

- Read “Optimal Spilling for CISC
Machines with Few Registers,” by Appel
and George. (Linked from the class Web

page.)

€S 70! Fall 2003° 303

We match tree nodes bottom-up.
Each node is labeled with the
nonterminals it can be reduced to, the
production used to produce the
nonterminal, and the cost to generate
the node (and its children) from the
nonterminal.

We match leaves first:

RbaR6L2 INt32 -
/ \ Imm:R4:0

* S13 Reg:R5:1

+

Reg:R1:0 / \ Imm:R4:0

AdrR2:0 T $13 Reg:R5:1

€S 70! Fall 2003° 305

Example
Let’s look at instruction selection for
a=b-1;

where a is a global int, accessed with
a 32 bit address and b is a local int,
accessed as an offset from the frame

N\

* 513

+

7N\

I s13

€S 70! Fall 2003° 304

We now work upward, considering
operators whose children have been
labeled. Again, if an operator can be
generated by a nonterminal, we mark
the operator with the nonterminal,
the production used to generate the
operator, and the total cost (including
the cost to generate all children).

If a nonterminal can generate the
operator using more than one
production, the least-cost derivation
Is chosen.

When we reach the root, the
nonterminal with the lowest overall
cost is used to generate the tree.

€S 701 Fall 2003° 306

— Void:R10:4

UINt:R0:0 / \ R8:2
Re?; re:2 INt32 - JeoRe2
/ \ Imm:R4:0

x RegR9:1 S13Reg:R5:1

+

— /\ Imm:R4:0

AdrR2:0 I S13RegR5:1

€S 70! Fall 2003° 307

We generate code by doing a depth-
first traversal, generating code for a
production after all the production’s
children have been processed.

We need to do register allocation too;
for our example, a simple on-the-fly
generator will suffice.

— Void:R10:4

UInt:RO:0 . tS{ \D _ Reg:R8:2
/ \ Imm:R4:0

O * Reg:Ro:1 513

Adr R3:0

Reg:R1:0 r/ \ Imm:R4:0

0 Id [%fp+b],%I0
O sub %I0,1,%I0
O sethi %hi(a),%g1l
st %I0,[%g1+%lo(a)]

€S 70! Fall 2003° 300

Note that once we know the
production used to generate the root
of the tree, we know the productions

used to generate each subtree too:
— Void:R10:4

UInt:RO:0 . t3{ \ _ Reg:R8:2
/ \ Imm:R4:0

% RegRO:1 513

+ Adr:R3:0

.p1- Imm:R4:0
Reg:R1:0 r/ \13

€S 70! Fall 2003° 308

Had we translated a slightly
difference expression,

a =b -1000000;

we would automatically get a
different code sequence (because
1000000 is an int32 rather than an
s13):

Id [%fp+b],%I0

sethi %hi(1000000),%g1

or %g1,%I0(1000000),%I1

sub %I0,%I1,%I0

sethi %hi(a),%g1l

st %I0,[%g1+%lo(a)]

€S 701 Fall 2003° 310

Adding New Rules

Since instruction selectors can be
automatically generated, it’s easy to
add “extra” rules that handle
optimizations or special cases.

For example, we might add the
following to handle addition of a left
immediate operand or subtraction of
0 from a register:

Rile Production Cost SPARC Code
R11 + 1 | add Reg,Imm,Reg
RAN
Imm Reg
R12 - 0
AN
Reg Zero

€S 70! Fall 2003° au

Adding States to BURG

We can precompute a set of states
that represent possible labelings on IR
tree nodes. A table of node names
and subtree states then is used to
select a node’s state. Thus labeling
becomes nothing more than repeated
table lookup.

For example, we might create a state
sO that corresponds to the labeling
{Reg:R1:0, Adr:R2:0}.

A state selection function, label,
defines label(r) = sO. That is,
whenever r is matched as a leaf, it is
to be labeled with sO.

If a node is an operator, label uses the
name of the operator and the labeling

€S 70! Fall 2003° 313

Improving the Speed of
Instruction Selection

As we have presented it, instruction
selection looks rather slow—for each
node in the IR tree, we must match
productions, compare costs, and
select least-cost productions.

Since compilers routinely generate
program with tens or hundreds of
thousands of instructions, doing a lot
of computation to select one
instruction (even if it's the best
instruction) could be too slow.

Fortunately, this need not be the case.

Instruction selection using BURS can
be made very fast.

€S 70! Fall 2003°

312

assigned to its children to choose the

operator’s label. For example,
label(+,50,51)=s2

says that a + with children labeled as

sO and sl is to be labeled as s2.

In theory, that’s all there is to
building a fast instruction selector.

We generate possible labelings,
encode them as states, and table all
combinations of labelings.

But,

how do we know the set of possible
labelings is even finite?

In fact, it isn't!

€S 701 Fall 20037

314

Normalizing Costs

It is possible to generate states that
are identical except for their costs.

For example, we might have
s1 = {Reg:R1:0, Adr:R2:0},

s2 = {Reg:R1:1, Adr:R2:1},
s3 = {Reg:R1:2, Adr:R2:2}, etc.

Here an important insight is needed—
the absolute costs included in states
aren’t really essential. Rather relative
costs are what is important. In s1, s2,
and s3, Reg and Adr have the same
cost. Hence the same decision in
choosing between Reg and Adr will be
made in all three states.

€S 70! Fall 2003°

We can limit the number of states
needed by normalizing costs within
states so that the lowest cost choice
is always 0, and other costs are
differences (deltas) from the lowest
cost choice.

This observation keeps costs bounded
within states (except for pathologic
cases).

Using additional techniques to
further reduce the number of states
needed, and the time needed to
generate them, fast and compact
BURS instruction selectors are
achievable. See

“Simple and Efficient BURS Table
Generation,” T. Proebsting, 1992 PLDI
Conference.

Example

State | Meaning

sO {Reg:R1:0, Adr:R2:0}
s1 {Imm:R4:0, Reg:R5:1}
s2 {adr:R3:0}

s3 {Reg:R9:0}

s4 {UInt:RO:0}

s5 {Reg:R8:0}

s6 {Void:R10:0}

s7 {Reg:R7:0}

Node Left Child | Right Child | Result
r sO
s13 sl
int32 s4
+ sO sl s2
* s2 s3
- s3 sl s5
- sl s3 s7
= s4 s5 S6

€S 70! Fall 2003° 316

€S 701 Fall 20037

We start by looking up the state
assigned to each leaf. We then work
upward, choosing the state of a
parent based on the parent’s kind and
the states assigned to the children.
These are all table lookups, and hence
very fast.

At the root, we select the
nonterminal and production based on
the state assigned to the root (any
entry with O cost). Knowing the
production used at the root tells us
the nonterminal used at each child.
Each state has only one entry per
nonterminal, so knowing a node’s
state and the nonterminal used to
generate it immediately tells us the
production used. Hence identifying
the production used for each node is
again very fast.

€S 701 Fall 2003° 318

Step 1 (Label leaves with states):

A
AN

30/\

Step 2 (Propagate states upward):

/.

132
|n . / \

S24

0 r/ \13 .

Step 3 (Choose production used at
root): R10.

Step 4 (Propagate productions used
downward to children):
= R10

té\ °
"in Rg/\

R3+

RL r/ ‘\313 "

€S 70! Fall 2003°

€S 70! Fall 2003°

320

Code Generation for x86
Machines

The x86 presents several special
difficulties when generating code.

. There are only 8 architecturally
visible registers, and only 6 of these
are allocatable. Deciding what values
to keep in registers, and for how long,
is a difficult, but crucial, decision.

. Operands may be addressed directly
from memory in some instructions.
Such instructions avoid using a
register, but are longer and add to I-
cache pressure.

In “Optimal Spilling for CISC
Machines with Few Registers,” Appel
and George address both of these
difficulties.

They use Integer Programming
techniques to directly and optimally
solve the crucial problem of deciding
which live ranges are to be register-
resident at each program point.
Stores and loads are automatically
added to split long live ranges.

Then a variant of Chaitin-style
register allocation is used to assign
registers to live ranges chosen to be
register-resident.

The presentation of this paper, at the
2001 PLDI Conference, is at

www.cs.wisc.edu/~fischer/
cs701/cisc.spilling.pdf

€S 701 Fall 20037

€S 701 Fall 20037

Optimistic Coalescing

Given R allocatable registers, Appel
and George guarantee that no more
than R live ranges are marked as
register resident.

This doesn’t always guarantee that an
R coloring is possible.

Consider the following program
fragment:
x=0;
while (...) {
y = x+1;
print(x);
Z = y+1;
print(y);
X = z+1;
print(z);

€S 70! Fall 2003°

323

Appel and George suggest allowing
changes in register assignments
between program points. This is done
by creating multiple variable names
for a live range (x4, x5, X3, ...), one for
each program point. Variables are
connected by assignments between
points. Using coalescing, it is
expected that most of the
assignments will be optimized away.

Using our earlier example, we have
the following code with each variable
expanded into 3 segments (one for
each assignment). Copies of dead
variables are removed to simplify the
example:

€S 701 Fall 20037

325

At any given point in the loop body
only 2 variables are live, but 3
registers are needed (x interferes with
y, y interferes with z and z interferes
with x).

We know that we have enough
registers to handle all live ranges
marked as register-resident, but we
may need to “shuffle” register
allocations at certain points.

Thus at one point x might be
allocated R1 and at some other point
it might be placed in R2. Such
shuffling implies register to register
copies, so we’d like to minimize their
added cost.

€S 70! Fall 2003°

324

X3=0;
while (...) {

X 15X 35

y 1=x 1+1;
print(x 1)
Yy 2=Y 1

z 2=y ot
printy — »);
Z 352 3
X 3=z 3+l;
print(z 3);
}

Now a 2 coloring is possible:

x1:R1,y.: R2
z,:R1, y,: R2
z3: R1, x3: R2
(and only x4 = x5 is retained).

€S 701 Fall 20037

326

Appel and George found that iterated
coalescing wasn’t effective (too many
copies, most of which are useless).

Instead they recommend Optimistic
Coalescing. The idea is to first do
Chaitin-style reckless coalescing of all

copies, even if colorability is impaired.

Then we do graph coloring register
allocation, using the cost of copies as
the “spill cost.” As we select colors, a
coalesced node that can’t be colored
is simply split back to the original
source and target variables. Since we
always limit the number of live ranges
to the number of colors, we know the
live ranges must be colorable (with
register to register copies sometimes
needed).

€S 70! Fall 2003°

Using our earlier example, we initially
merge x, and x3, y; and y,, z, and
z3. We already know this can’t be
colored with two registers. All three
pairs have the same costs, so we
arbitrarily stack x;-xs, then y;-y,
and finally z,-zs.

When we unstack, z,-z5 gets R1, and
y1-Y2 gets R2. x;-x5 must be split
back into x; and xs. x; interferes
with y;-y, so it gets R1. x5 interferes
with z,-z5 S0 it gets R2, and coloring
is done.

x1: R1,yq: R2
ZZ: Rl, y2: R2
23: Rl, X3: R2

€S 70! Fall 2003°

328

