
352CS 701 Fall 2003
©

Bit Vectoring Data Flow
Problems

The four data flow problems we have
just reviewed all fit within a single
framework.
Their solution values are Booleans
(bits).
The meet operation is And or OR.
The transfer function is of the general
form
 Out(b) = (In(b) - Killb) U Genb

or
 In(b) = (Out(b) - Killb) U Genb

where Killb is true if a value is “killed”
within b and Genb is true if a value is
“generated” within b.

353CS 701 Fall 2003
©

In Boolean terms:
Out(b) = (In(b) AND Not Killb) OR Genb

or
In(b) = (Out(b) AND Not Killb) OR Genb

An advantage of a bit vectoring data
flow problem is that we can do a series
of data flow problems “in parallel” using
a bit vector.

Hence using ordinary word-level ANDs,
ORs, and NOTs, we can solve 32 (or 64)
problems simultaneously.

354CS 701 Fall 2003
©

Example
 Do live variable analysis for u and v,
using a 2 bit vector:

We expect no variable to be live at
the start of b0. (Why?)

v=1

u=0

a=u v=2

print(u,v)

Gen=0,0
Kill=0,1

Gen=0,0

Gen=1,0 Gen=0,0

Gen=1,1

Kill=1,0

Kill=0,0 Kill=0,1

Kill=0,1

Live=0,0

Live=0,1

Live=1,1 Live=1,0

Live=1,1

355CS 701 Fall 2003
©

Depth-First Spanning Trees
Sometimes we want to “cover” the
nodes of a control flow graph with an
acyclic structure.
This allows us to visit nodes once,
without worrying about cycles or
infinite loops.
Also, a careful visitation order can
approximate forward control flow
(very useful in solving forward data
flow problems).
A Depth-First Spanning Tree (DFST) is
a tree structure that covers the nodes
of a control flow graph, with the start
node serving as root of the DFST.

356CS 701 Fall 2003
©

Building a DFST
We will visit CFG nodes in depth-first
order, keeping arcs if the visited node
hasn’t be reached before.
To create a DFST, T, from a CFG, G:

1. T ← empty tree
2. Mark all nodes in G as “unvisited.”
3. Call DF(start node)

DF (node) {
1. Mark node as visited.
2. For each successor, s, of node in G:

If s is unvisited
 (a) Add node → s to T
 (b) Call DF(s)

357CS 701 Fall 2003
©

Example
A

B

C

D

E F

G

H

I J

Visit order is A, B, C, D, E, G, H, I, J, F

358CS 701 Fall 2003
©

The DFST is

A

B

C

D

E F

G

H

I J

359CS 701 Fall 2003
©

Categorizing Arcs using a
DFST

Arcs in a CFG can be categorized by
examining the corresponding DFST.
An arc A→B in a CFG is
(a) An Advancing Edge if B is a proper
 descendent of A in the DFST.
(b) A Retreating Edge if B is an
 ancestor of A in the DFST.
 (This includes the A→A case.)
(c) A Cross Edge if B is neither a
 descendent nor an ancestor of A
 in the DFST.

360CS 701 Fall 2003
©

Example
A

B

C

D

E F

G

H

I J

a
a

a

a

a a

a

a

a a

r

r

r

r

c

361CS 701 Fall 2003
©

Depth-First Order
Once we have a DFST, we can label
nodes with a Depth-First Ordering
(DFO).
Let i = the number of nodes in a CFG
(= the number of nodes in its DFST).
DFO(node) {
 For (each successor s of node) do
 DFO(s);
 Mark node with i;
 i--;
}

362CS 701 Fall 2003
©

Example
The number of nodes = 10.

A

B

C

D

E F

G

H

I J

1

2

3

4

6 5

7

8

10 9

363CS 701 Fall 2003
©

Application of Depth-First
Ordering
• Retreating edges (a necessary component

of loops) are easy to identify:
 a→b is a retreating edge if and only if
 dfo(b) ≤ dfo(a)

• A depth-first ordering in an excellent
visit order for solving forward data flow
problems. We want to visit nodes in
essentially topological order, so that all
predecessors of a node are visited (and
evaluated) before the node itself is.

364CS 701 Fall 2003
©

Dominators
A CFG node M dominates N
(M dom N) if and only if all paths
from the start node to N must pass
through M.
A node trivially dominates itself.
Thus (N dom N) is always true.

A CFG node M strictly dominates N
(M sdom N) if and only if
(M dom N) and M ≠ N.
A node can’t strictly dominates itself.
Thus (N sdom N) is never true.

365CS 701 Fall 2003
©

A CFG node may have many
dominators.

Node F is dominated by F, E, D and A.

A

B C

D

E

F

366CS 701 Fall 2003
©

Immediate Dominators
If a CFG node has more than one
dominator (which is common), there
is always a unique “closest”
dominator called its immediate
dominator.
(M idom N) if and only if

(M sdom N) and
(P sdom N) ⇒ (P dom M)

To see that an immediate dominator
always exists (except for the start
node) and is unique, assume that
node N is strictly dominated by M1,
M2, ..., Mp, P ≥ 2.

By definition, M1, ..., Mp must appear
on all paths to N, including acyclic
paths.

367CS 701 Fall 2003
©

Look at the relative ordering among
M1 to Mp on some arbitrary acyclic
path from the start node to N.
Assume that Mi is “last” on that path
(and hence “nearest” to N).

If, on some other acyclic path,
Mj ≠ Mi is last, then we can shorten
this second path by going directly
from Mi to N without touching any
more of the M1 to Mp nodes.

But, this totally removes Mj from the
path, contradicting the assumption
that (Mj sdom N).

368CS 701 Fall 2003
©

Dominator Trees
Using immediate dominators, we can
create a dominator tree in which A→B
in the dominator tree if and only if
(A idom B).

A

B C

D

E

F

Start

End

A

B C D

E

F

Start

End

Control Flow Graph

Dominator Tree

369CS 701 Fall 2003
©

Note that the Dominator Tree of a
CFG and its DFST are distinct trees
(though they have the same nodes).

A

B C

D

E

F

Start

End

A

B C D

E

F

Start

End

Dominator Tree

Depth-First Spanning Tree

370CS 701 Fall 2003
©

A Dominator Tree is a compact and
convenient representation of both the
dom and idom relations.
A node in a Dominator Tree
dominates all its descendents in the
tree, and immediately dominates all
its children.

371CS 701 Fall 2003
©

Computing Dominators
Dominators can be computed as a
Set-valued Forward Data Flow
Problem.
If a node N dominates all of node M’s
predecessors, then N appears on all
paths to M. Hence (N dom M).
Similarly, if M doesn’t dominate all of
M’s predecessors, then there is a path
to M that doesn’t include M. Hence
¬(N dom M).
These observations give us a “data
flow equation” for dominator sets:

dom(N) = {N} U ∩ dom(M)
M ∈ Pred(N)

372CS 701 Fall 2003
©

The analysis domain is the lattice of
all subsets of nodes. Top is the set of
all nodes; bottom is the empty set.
The ordering relation is subset.

The meet operation is intersection.

The Initial Condition is that
 DomIn(b0) = φ

DomOut(b) = DomIn(b) U {b}

DomIn(b) = ∩ DomOut(c)
c ∈ Pred(b)

373CS 701 Fall 2003
©

Loops Require Care
Loops in the Control Flow Graph
induce circularities in the Data Flow
equations for Dominators. In

we have the rule dom(B) =
DomOut(B) =

 DomIn(B) U {B} =
 {B} U (DomOut(B) ∩ DomOut(A))
If we choose DomOut(B) = φ initially,
we get DomOut(B) =
{B} U (φ ∩ DomOut(A)) = {B}
which is wrong.

A

B

C

374CS 701 Fall 2003
©

Instead, we should use the Universal
Set (of all nodes) which is the
identity for ∩.
Then we get DomOut(B) =
{B} U ({all nodes} ∩ DomOut(A)) =
{B} U DomOut(A)
 which is correct.

375CS 701 Fall 2003
©

A Worklist Algorithm for
Dominators

The data flow equations we have
developed for dominators can be
evaluated using a simple Worklist
Algorithm.
Initially, each node’s dominator set is
set to the set of all nodes. We add the
start node to our worklist.
For each node on the worklist, we
reevaluate its dominator set. If the set
changes, the updated dominator set is
used, and all the node’s successors are
added to the worklist (so that the
updated dominator set can be
propagated).

376CS 701 Fall 2003
©

The algorithm terminates when the
worklist becomes empty, indicating
that a stable solution has been found.

Compute Dominators(){
 For (each n ∈ NodeSet)
 Dom(n) = NodeSet
 WorkList = {StartNode}
 While (WorkList ≠ φ) {
 Remove any node Y from WorkList

 If New ≠ Dom(Y) {
 Dom(Y) = New
 For (each Z ∈ Succ(Y))
 WorkList = WorkList U {Z}
}}}

New = {Y} U ∩ Dom(X)
X ∈ Pred(Y)

377CS 701 Fall 2003
©

Example

Initially the WorkList = {Start}.
Be careful when Pred(Node) = φ.

A

B C

D

E

F

Start

End

ALL

ALL

ALL ALL

ALL

ALL

ALL

ALL

378CS 701 Fall 2003
©

A

B C

D

E

F

Start

End

A

B C D

E

F

Start

End

Control Flow Graph

Dominator Tree

{start}

{start,A}

{start,A,B} {start,A,C}

{start,A,D}

{start,A,D,E}

{start,A,D,E,F}

{start,A,D,E,F,End}

379CS 701 Fall 2003
©

Postdominance
A block Z postdominates a block Y
(Z pdom Y) if and only if all paths
from Y to an exit block must pass
through Z. Notions of immediate
postdominance and a postdominator
tree carry over.
Note that if a CFG has a single exit
node, then postdominance is
equivalent to dominance if flow is
reversed (going from the exit node to
the start node).

380CS 701 Fall 2003
©

A

B C

D

E

F

Start

End

D

B C A

F

E

End

Start

Control Flow Graph

Postdominator Tree

