
371CS 701 Fall 2003
©

Computing Dominators
Dominators can be computed as a
Set-valued Forward Data Flow
Problem.
If a node N dominates all of node M’s
predecessors, then N appears on all
paths to M. Hence (N dom M).
Similarly, if M doesn’t dominate all of
M’s predecessors, then there is a path
to M that doesn’t include M. Hence
¬(N dom M).
These observations give us a “data
flow equation” for dominator sets:

dom(N) = {N} U ∩ dom(M)
M ∈ Pred(N)

372CS 701 Fall 2003
©

The analysis domain is the lattice of
all subsets of nodes. Top is the set of
all nodes; bottom is the empty set.
The ordering relation is subset.

The meet operation is intersection.

The Initial Condition is that
 DomIn(b0) = φ

DomOut(b) = DomIn(b) U {b}

DomIn(b) = ∩ DomOut(c)
c ∈ Pred(b)

373CS 701 Fall 2003
©

Loops Require Care
Loops in the Control Flow Graph
induce circularities in the Data Flow
equations for Dominators. In

we have the rule dom(B) =
DomOut(B) =

 DomIn(B) U {B} =
 {B} U (DomOut(B) ∩ DomOut(A))
If we choose DomOut(B) = φ initially,
we get DomOut(B) =
{B} U (φ ∩ DomOut(A)) = {B}
which is wrong.

A

B

C

374CS 701 Fall 2003
©

Instead, we should use the Universal
Set (of all nodes) which is the
identity for ∩.
Then we get DomOut(B) =
{B} U ({all nodes} ∩ DomOut(A)) =
{B} U DomOut(A)
 which is correct.

375CS 701 Fall 2003
©

A Worklist Algorithm for
Dominators

The data flow equations we have
developed for dominators can be
evaluated using a simple Worklist
Algorithm.
Initially, each node’s dominator set is
set to the set of all nodes. We add the
start node to our worklist.
For each node on the worklist, we
reevaluate its dominator set. If the set
changes, the updated dominator set is
used, and all the node’s successors are
added to the worklist (so that the
updated dominator set can be
propagated).

376CS 701 Fall 2003
©

The algorithm terminates when the
worklist becomes empty, indicating
that a stable solution has been found.

Compute Dominators(){
 For (each n ∈ NodeSet)
 Dom(n) = NodeSet
 WorkList = {StartNode}
 While (WorkList ≠ φ) {
 Remove any node Y from WorkList

 If New ≠ Dom(Y) {
 Dom(Y) = New
 For (each Z ∈ Succ(Y))
 WorkList = WorkList U {Z}
}}}

New = {Y} U ∩ Dom(X)
X ∈ Pred(Y)

377CS 701 Fall 2003
©

Example

Initially the WorkList = {Start}.
Be careful when Pred(Node) = φ.

A

B C

D

E

F

Start

End

ALL

ALL

ALL ALL

ALL

ALL

ALL

ALL

378CS 701 Fall 2003
©

A

B C

D

E

F

Start

End

A

B C D

E

F

Start

End

Control Flow Graph

Dominator Tree

{start}

{start,A}

{start,A,B} {start,A,C}

{start,A,D}

{start,A,D,E}

{start,A,D,E,F}

{start,A,D,E,F,End}

379CS 701 Fall 2003
©

Postdominance
A block Z postdominates a block Y
(Z pdom Y) if and only if all paths
from Y to an exit block must pass
through Z. Notions of immediate
postdominance and a postdominator
tree carry over.
Note that if a CFG has a single exit
node, then postdominance is
equivalent to dominance if flow is
reversed (going from the exit node to
the start node).

380CS 701 Fall 2003
©

A

B C

D

E

F

Start

End

D

B C A

F

E

End

Start

Control Flow Graph

Postdominator Tree

381CS 701 Fall 2003
©

Dominance Frontiers
Dominators and postdominators tell
us which basic block must be
executed prior to, of after, a block N.

It is interesting to consider blocks
“just before” or “just after” blocks
we’re dominated by, or blocks we
dominate.

The Dominance Frontier of a basic
block N, DF(N), is the set of all blocks
that are immediate successors to
blocks dominated by N, but which
aren’t themselves strictly dominated
by N.

382CS 701 Fall 2003
©

DF(N) =
 {Z | M→Z & (N dom M) &

¬(N sdom Z)}
The dominance frontier of N is the set
of blocks that are not dominated N
and which are “first reached” on
paths from N.

383CS 701 Fall 2003
©

Example

Block A B C D E F

Dominance
Frontier

φ {F} {E} {E} {F} φ

B

C D

E

F

A

B

C D E

A

Control Flow Graph

Dominator Tree

F

384CS 701 Fall 2003
©

A block can be in its own Dominance
Frontier:

Here, DF(A) = {A}
Why? Reconsider the definition:
DF(N) =
 {Z | M→Z & (N dom M) &

¬(N sdom Z)}
Now B is dominated by A and B→A.
Moreover, A does not strictly
dominate itself. So, it meets the
definition.

B

C

A

385CS 701 Fall 2003
©

Postdominance Frontiers
The Postdominance Frontier of a basic
block N, PDF(N), is the set of all
blocks that are immediate
predecessors to blocks postdominated
by N, but which aren’t themselves
postdominated by N.

PDF(N) =
 {Z | Z→M & (N pdom M) &

¬(N pdom Z)}
The postdominance frontier of N is
the set of blocks closest to N where a
choice was made of whether to reach
N or not.

386CS 701 Fall 2003
©

Example

Block A B C D E F

Postdominance
Frontier

φ {A} {B} {B} {A} φ

B

C D

E

F

A

E

B C D

F

Control Flow Graph

Postominator Tree

A

387CS 701 Fall 2003
©

Control Dependence
Since CFGs model flow of control, it
is useful to identify those basic blocks
whose execution is controlled by a
branch decision made by a
predecessor.
We say Y is control dependent on X if,
reaching X, choosing one out arc will
force Y to be reached, while choosing
another arc out of X allows Y to be
avoided.
Formally, Y is control dependent on X
if and only if,
(a) Y postdominates a successor of X.
 (b) Y does not postdominate all

successors of X.
X is the most recent block where a
choice was made to reach Y or not.

388CS 701 Fall 2003
©

Control Dependence Graph
We can build a Control Dependence
Graph that shows (in graphical form)
all Control Dependence relations.
(A Block can be Control Dependent on
itself.)

389CS 701 Fall 2003
©

What happened to H in the CD Graph?

C

D E

F

G

B

F

C D E

B

Control Flow Graph

Postominator Tree

A

H

H

G A

A

B G

C F

D E

Control Dependence
Graph

390CS 701 Fall 2003
©

Let’s reconsider the CD Graph:

Blocks C and F, as well as D and E,
seem to have the same control
dependence relations with their
parent. But this isn’t so!
C and F are control equivalent, but D
and E are mutually exclusive!

C

D E

F

G

B

Control Flow Graph

A

H

A

B G

C F

D E

Control Dependence
Graph

391CS 701 Fall 2003
©

Improving the Representation
of Control Dependence

We can label arcs in the CFG and the
CD Graph with the condition (T or F
or some switch value) that caused the
arc to be selected for execution.
This labeling then shows the
conditions that lead to the execution
of a given block.
To allow the exit block to appear in
the CD Graph, we can also add
“artificial” start and exit blocks,
linked together.

392CS 701 Fall 2003
©

Now C and F have the same Control
Dependence relations—they are part
of the same extended basic block.
But D and E aren’t identically control
dependent. Similarly, A and H are
control equivalent, as are B and G.

C

D E

F

G

B

Control Flow Graph

A

H

A

B G

C F

D E

Control Dependence
Graph

Start

Exit

T

T

T

T

F F

F

F

Start

H

T T

TT

T

T
T

TF

393CS 701 Fall 2003
©

Data Flow Frameworks
Revisited

Recall that a Data Flow problem is
characterized as:
(a) A Control Flow Graph
(b) A Lattice of Data Flow values
(c) A Meet operator to join solutions
 from Predecessors or Successors
(d) A Transfer Function
 Out = fb(In) or In = fb(Out)

394CS 701 Fall 2003
©

Value Lattice
The lattice of values is usually a meet
semilattice defined by:
A: a set of values
T and ⊥ (“top” and “bottom”):

distinguished values in the lattice
≤: A reflexive partial order relating

values in the lattice
∧: An associative and commutative

meet operator on lattice values

395CS 701 Fall 2003
©

Lattice Axioms
The following axioms apply to the
lattice defined by A, T, ⊥, ≤ and ∧:
 a ≤ b ⇔ a ∧ b = a
 a ∧ a = a
 (a ∧ b) ≤ a
 (a ∧ b) ≤ b
 (a ∧ T) = a
 (a ∧ ⊥) = ⊥

396CS 701 Fall 2003
©

Monotone Transfer Function
Transfer Functions, fb:L → L (where L
is the Data Flow Lattice) are normally
required to be monotone.
That is x ≤ y ⇒ fb(x) ≤ fb(y).

This rule states that a “worse” input
can’t produce a “better” output.
Monotone transfer functions allow us
to guarantee that data flow solutions
are stable.
If we had fb(T) = ⊥ and fb(⊥)=T,
then solutions might oscillate
between T and ⊥ indefinitely.
Since ⊥ ≤ T, fb(⊥) should be ≤ fb(T).
But fb(⊥) = T which is not ≤ fb(T) =
⊥. Thus fb isn’t monotone.

397CS 701 Fall 2003
©

Dominators fit the Data Flow
Framework

Given a set of Basic Blocks, N, we
have:

A is 2N (all subsets of Basic Blocks).
T is N.
⊥ is φ.
a ≤ b ≡ a ⊆ b.
fZ(in) = In ∪ {Z}

∧ is ∩ (set intersection).

398CS 701 Fall 2003
©

The required axioms are satisfied:
 a ⊆ b ⇔ a ∩ b = a
 a ∩ a = a
 (a ∩ b) ⊆ a
 (a ∩ b) ⊆ b
 (a ∩ N) = a
 (a ∩ φ) = φ

Also fZ is monotone since

a ⊆ b ⇒ a ∪ {Z} ⊆ b ∪ {Z} ⇒
fZ(a) ⊆ fZ(b)

