
399CS 701 Fall 2003
©

Constant Propagation
We can model constant propagation as
a data flow problem. For each scalar
integer variable, we will determine
whether it is known to hold a
particular constant value at a
particular basic block.
The value lattice is

T represents a variable holding a
constant, whose value is not yet
known.
i represents a variable holding a
known constant value.

T

⊥

..., −2, −1, 0, 1, 2, ...

400CS 701 Fall 2003
©

⊥ represents a variable whose value is
non-constant.

This analysis is complicated by the
fact that variables interact, so we
can’t just do a series of independent
one variable analyses.

Instead, the solution lattice will
contain functions (or vectors) that
map each variable in the program to
its constant status (T, ⊥, or some
integer).
Let V be the set of all variables in a
program.

401CS 701 Fall 2003
©

Let t : V → N U {T,⊥}
t is the set of all total mappings from
V (the set of variables) to N U {T,⊥}
(the lattice of “constant status”
values).
For example, t1=(T,6,⊥) is a mapping
for three variables (call them A, B and
C) into their constant status. t1 says
A is considered a constant, with value
as yet undetermined. B holds the
value 6, and C is non-constant.
We can create a lattice composed of t
functions:
tT(V) = T (∀ V) (tT=(T,T,T, ...)

t⊥(V) = ⊥ (∀ V) (t⊥=(⊥,⊥,⊥, ...)

402CS 701 Fall 2003
©

ta ≤ tb ⇔ ∀v ta(v) ≤ tb(v)

Thus (1,⊥) ≤ (T,3)
 since 1 ≤ T and ⊥ ≤ 3.
The meet operator ∧ is applied
componentwise:
ta∧tb = tc
 where ∀v tc(v) = ta(v) ∧ tb(b)

Thus (1,⊥) ∧ (T,3) = (1,⊥)
 since 1 ∧ T = 1 and ⊥ ∧ 3 = ⊥.

403CS 701 Fall 2003
©

The lattice axioms hold:
 ta ≤ tb ⇔ ta ∧ tb = ta (since this

axiom holds for each component)
 ta ∧ ta = ta (trivially holds)

 (ta ∧ tb) ≤ ta (per variable def of ∧)

 (ta ∧ tb) ≤ tb (per variable def of ∧)

 (ta ∧ tT) = ta (true for all
components)

 (ta ∧ t⊥) = t⊥ (true for all
components)

404CS 701 Fall 2003
©

The Transfer Function
Constant propagation is a forward
flow problem, so Cout = fb(Cin)

Cin is a function, t(v), that maps
variables to T,⊥, or an integer value
fb(t(v)) is defined as:

(1) Initially, let t’(v)=t(v) (∀v)
(2) For each assignment statement
 v = e(w1,w2,...,wn)

 in b, in order of execution, do:
 If any t’(wi) = ⊥ (1≤i≤n)
 Then set t’(v) = ⊥ (strictness)
 Elsif any t’(wi) = T (1≤i≤n)
 Then set t’(v) = T (delay eval of v)
 Else t’(v) = e(t’(w1),t’(w2),...)
(3) Cout = t’(v)

405CS 701 Fall 2003
©

Note that in valid programs, we don’t
use uninitialized variables, so
variables mapped to T should only
occur prior to initialization.
Initially, all variables are mapped to T,
indicating that initially their constant
status is unknown.

406CS 701 Fall 2003
©

Example

a=1
b=2

b=a+1 b=a+2

b=b-1

T, T

1,21,2

1,2 1,3

1,⊥

1,⊥
1,⊥

407CS 701 Fall 2003
©

Distributive Functions
From the properties of ∧ and f’s
monotone property, we can show that
 f(a∧b) ≤ f(a) ∧ f(b)
To see this note that
 a∧b ≤ a, a∧b ≤ b ⇒
f(a∧b) ≤ f(a), f(a∧b) ≤ f(b) (*)
Now we can establish that
 x≤y, x≤z ⇒ x ≤ y∧z (**)
To see that (**) holds, note that
 x≤y ⇒ x∧y = x
 x≤z ⇒ x∧z = x
 (y∧z)∧x ≤ y∧z
 (y∧z)∧x = (y∧z)∧(x∧x) =
 (y∧x)∧(z∧x) = x∧x = x
 Thus x ≤ y∧z, establishing (**).

408CS 701 Fall 2003
©

Now substituting f(a∧b) for x,
 f(a) for y and f(b) for z in (**) and
using (*) we get
 f(a∧b) ≤ f(a) ∧ f(b).

Many Data Flow problems have flow
equations that satisfy the distributive
property:
f(a∧b) = f(a) ∧ f(b)
For example, in our formulation of
dominators:
Out = fb(In) = In U {b}

where

In = ∩ Out(p)
p ∈ Pred(b)

409CS 701 Fall 2003
©

In this case, ∧ = ∩.

Now fb(S1∩S2) = (S1∩S2) U {b}

Also, fb(S1)∩fb(S2) =

 (S1 U {b}) ∩ (S2 U {b}) =
 (S1∩S2) U {b}

So dominators are distributive.

410CS 701 Fall 2003
©

Not all Data Flow Problems
are Distributive

Constant propagation is not
distributive.
Consider the following (with variables
(x,y,z)):

Now f(t)=t’ where
t’(y) = t(y), t’(z) = t(z),
t’(x) = if t(y)=⊥ or t(z) = ⊥
 then ⊥
 elseif t(y)=T or t(z) =T
 then T
 else t(y)+t(z)

x=y+z

t1 = (T,1,3) t2=(T,2,2)

411CS 701 Fall 2003
©

Now f(t1∧t2) = f(T,⊥,⊥) = (⊥,⊥,⊥)

f(t1) = (4,1,3)

f(t2) = (4,2,2)

f(t1)∧f(t2) = (4,⊥,⊥) ≥ (⊥,⊥,⊥)

412CS 701 Fall 2003
©

Why does it Matter if a Data
Flow Problem isn’t
Distributive?

Consider actual program execution
paths from b0 to (say) bk.

One path might be b0,bi1,bi2,...,bin
where bin=bk.

At bk the Data Flow information we
want is
fin(...fi2(fi1(f0(T)))...) ≡ f(b0,b1,...,bin)

On a different path to bk, say
b0,bj1,bj2,...,bjm, where bjm=bk

the Data Flow result we get is
fjm(...fj2(fj1(f0(T)))...) ≡

f(b0,bj1,...,bjm).

413CS 701 Fall 2003
©

Since we can’t know at compile time
which path will be taken, we must
combine all possible paths:

This is the meet over all paths (MOP)
solution. It is the best possible static
solution. (Why?)
As we shall see, the meet over all
paths solution can be computed
efficiently, using standard Data Flow
techniques, if the problem is
Distributive.
Other, non-distributive problems (like
Constant Propagation) can’t be solved
as precisely.
Explicitly computing and meeting all
paths is prohibitively expensive.

∧
p paths to bk

f(p)
∈ all

414CS 701 Fall 2003
©

Conditional Constant
Propagation

We can extend our Constant
Propagation Analysis to determine
that some paths in a CFG aren’t
executable. This is Conditional
Constant Propagation.
Consider

i = 1;

 if (i > 0)
 j = 1;
 else j = 2;

Conditional Constant Propagation can
determine that the else part of the if
is unreachable, and hence j must be
1.

415CS 701 Fall 2003
©

The idea behind Conditional Constant
Propagation is simple. Initially, we
mark all edges out of conditionals as
“not reachable.”
Starting at b0, we propagate constant
information only along edges
considered reachable.
When a boolean expression b(v1,v2,...)
controls a conditional branch, we
evaluate b(v1,v2,...) using the t(v)
mapping that identifies the “constant
status” of variables.
If t(vi)=T for any vi, we consider all
out edges unreachable (for now).
Otherwise, we evaluate b(v1,v2,...)
using t(v), getting true, false or ⊥.

416CS 701 Fall 2003
©

Note that the short-circuit properties
of boolean operators may yield true
or false even if t(vi)=⊥ for some vi.

If b(v1,v2,...) is true or false, we mark
only one out edge as reachable.
Otherwise, if b(v1,v2,...) evaluates to
⊥, we mark all out edges as reachable.
We propagate constant information
only along reachable edges.

417CS 701 Fall 2003
©

Example
i = 1;
done = 0;

while (i > 0 && ! done) {

 if (i == 1)
 done = 1;
 else i = i + 1;
}

i = 1;
done = 0;

i > 0 &&
! done

i == 1

done = 1;i = i + 1;

TF

F

T

(T,T) = (i,done)

418CS 701 Fall 2003
©

Pass 1:

i = 1;
done = 0;

i > 0 &&
! done

i == 1

done = 1;i = i + 1;

TF

F

T

(T,T) = (i,done)

(1,0)

(1,0)

(1,0)

(1,1)

(1,1)

419CS 701 Fall 2003
©

Pass 2:

i = 1;
done = 0;

i > 0 &&
! done

i == 1

done = 1;i = i + 1;

TF

F

T

(T,T) = (i,done)

(1,0)

(1,⊥)

(1,⊥)

(1,1)

(1,1)

(1,⊥)

