
470CS 701 Fall 2003
©

Putting Programs into SSA
Form

Assume we have the CFG for a
program, which we want to put into
SSA form. We must:
• Rename all definitions and uses of

variables

• Decide where to add phi functions
Renaming variable definitions is
trivial—each assignment is to a new,
unique variable.
After phi functions are added (at the
heads of selected basic blocks), only
one variable definition (the most
recent in the block) can reach any
use. Thus renaming uses of variables
is easy.

471CS 701 Fall 2003
©

Placing Phi Functions
Let b be a block with a definition to
some variable, v. If b contains more
than one definition to v, the last (or
most recent) applies.
What is the first basic block following
b where some other definition to v as
well as b’s definition can reach?
In blocks dominated by b, b’s
definition must have been executed,
though other later definitions may
have overwritten b’s definition.

472CS 701 Fall 2003
©

Domination Frontiers (Again)
Recall that the Domination Frontier
of a block b, is defined as
DF(N) =
 {Z | M→Z & (N dom M) &

¬(N sdom Z)}

The Dominance Frontier of a basic
block N, DF(N), is the set of all blocks
that are immediate successors to
blocks dominated by N, but which
aren’t themselves strictly dominated
by N.
Assume that an initial assignment to
all variables occurs in b0 (possibly of
some special “uninitialized value.”)

473CS 701 Fall 2003
©

We will need to place a phi function
at the start of all blocks in b’s
Domination Frontier.
The phi functions will join the
definition to v that occurred in b (or
in a block dominated by b) with
definitions occurring on paths that
don’t include b.
After phi functions are added to
blocks in DF(b), the domination
frontier of blocks with newly added
phi’s will need to be computed (since
phi functions imply assignment to a
new vi variable).

474CS 701 Fall 2003
©

Examples of How Domination
Frontiers Guide Phi Placement

DF(N) =
 {Z | M→Z & (N dom M) &

¬(N sdom Z)}
Simple Case:

Here, (N dom M) but ¬(N sdom Z),
so a phi function is needed in Z.

v=1

v=2

N

M

Z

v1=1

v2=2

N

M

Z
v3= φ (v1,v2)

⇒

475CS 701 Fall 2003
©

Loop:

Here, let M = Z = N. M→Z,
(N dom M) but ¬(N sdom Z),
so a phi function is needed in Z.
DF(N) =
 {Z | M→Z & (N dom M) &

¬(N sdom Z)}

v=init

v=v+1 v2 =φ(v1,v3)
⇒

Z

v1=init

v3=v2+1

Z

476CS 701 Fall 2003
©

Sometimes Phi’s must be Placed
Iteratively

Now, DF(b1) = {b3}, so we add a phi
function in b3. This adds an
assignment into b3. We then look at
DF(b3) = {b5}, so another phi
function must be added to b5.

v=1

v=3

1

3

5

v1=1

v4=2

1

v5= φ (v3,v4)

⇒
v=2

2

4

v2=1
2

v3= φ (v1,v2)
3 4

477CS 701 Fall 2003
©

Phi Placement Algorithm
To decide what blocks require a phi
function to join a definition to a variable
v in block b:
1. Compute D1 = DF(b).

 Place Phi functions at the head of all
members of D1.

2. Compute D2 = DF(D1).
 Place Phi functions at the head of all
members of D2-D1.

3. Compute D3 = DF(D2).
 Place Phi functions at the head of all
members of D3-D2-D1.

4. Repeat until no additional Phi
functions can be added.

478CS 701 Fall 2003
©

PlacePhi{
 For (each variable v ∈ program) {

 For (each block b ∈ CFG){
 PhiInserted(b) = false
 Added(b) = false }
 List = φ
 For (each b ∈ CFG that assigns to V){
 Added(b) = true
 List = List U {b} }
 While (List ≠ φ) {
 Remove any b from List
 For (each d ∈ DF(b)){
 If (! PhiInserted(d)) {
 Add a Phi Function to d
 PhiInserted(d) = true
 If (! Added(d)) {
 Added(d) = true
 List = List U {d}
 }
 }
 }
 }
 }
}

479CS 701 Fall 2003
©

Example

We will add Phi’s into blocks 4 and 5.
The arity of each phi is the number of
in-arcs to its block. To find the args
to a phi, follow each arc “backwards”
to the sole reaching def on that path.

x1=1

x2=2

x3=3

x4=4

1

2 3

4

5

6

7

Initially, List={1,3,5,6}

Process 1: DF(1) = φ

Process 3: DF(3) = 4,
 so add 4 to List and
 add phi fct to 4.

Process 5: DF(5)={4,5}
 so add phi fct to 5.

Process 5: DF(6) = {5}

Process 4: DF(4) = {4}

480CS 701 Fall 2003
©

x1=1

x2=2

x3=3

x5=φ (x1,x2,x3)

x6= (x4,x5)φ

x4=4

481CS 701 Fall 2003
©

SSA and Value Numbering
We already know how to do available
expression analysis to determine if a
previous computation of an
expression can be reused.
A limitation of this analysis is that it
can’t recognize that two expressions
that aren’t syntactically identical may
actually still be equivalent.
For example, given

t1 = a + b

c = a

t2 = c + b

Available expression analysis won’t
recognize that t1 and t2 must be
equivalent, since it doesn’t track the
fact that a = c at t2 .

482CS 701 Fall 2003
©

Value Numbering
An early expression analysis
technique called value numbering
worked only at the level of basic
blocks. The analysis was in terms of
“values” rather than variable or
temporary names.
Each non-trivial (non-copy)
computation is given a number, called
its value number.
Two expressions, using the same
operators and operands with the same
value numbers, must be equivalent.

483CS 701 Fall 2003
©

For example,
t1 = a + b

c = a

t2 = c + b

is analyzed as
v1 = a

v2 = b

t1 = v1 + v2

c = v1

 t2 = v1 + v2

Clearly t2 is equivalent to t1 (and
hence need not be computed).

484CS 701 Fall 2003
©

In contrast, given
t1 = a + b

a = 2

t2 = a + b

the analysis creates
v1 = a

v2 = b

t1 = v1 + v2

v3 = 2

 t2 = v3 + v2

Clearly t2 is not equivalent to t1
(and hence will need to be
recomputed).

485CS 701 Fall 2003
©

Extending Value Numbering to
Entire CFGs

The problem with a global version of
value numbering is how to reconcile
values produced on different flow
paths. But this is exactly what SSA is
designed to do!
In particular, we know that an
ordinary assignment
x = y

does not imply that all references to x
can be replaced by y after the
assignment. That is, an assignment is
not an assertion of value equivalence.

486CS 701 Fall 2003
©

But,
 in SSA form

xi = y j

does mean the two values are always
equivalent after the assignment. If yj

reaches a use of xi , that use of xi can
be replaced with yj .
Thus in SSA form, an assignment is
an assertion of value equivalence.

487CS 701 Fall 2003
©

We will assume that simple variable
to variable copies are removed by
substituting equivalent SSA names.
This alone is enough to recognize
some simple value equivalences.
As we saw,

t 1 = a 1 + b 1

c1 = a 1

t 2 = c 1 + b 1

becomes
t 1 = a 1 + b 1

t 2 = a 1 + b 1

488CS 701 Fall 2003
©

Partitioning SSA Variables
Initially, all SSA variables will be
partitioned by the form of the
expression assigned to them.
Expressions involving different
constants or operators won’t (in
general) be equivalent, even if their
operands happen to be equivalent.
Thus

v1 = 2 and w1 = a 2 + 1

are always considered inequivalent.
But,
v3 = a 1 + b 2 and w1 = d 1 + e 2

may possibly be equivalent since both
involve the same operator.

489CS 701 Fall 2003
©

Phi functions are potentially
equivalent only if they are in the
same basic block.
All variables are initially considered
equivalent (since they all initially are
considered uninitialized until explicit
initialization).
After SSA variables are grouped by
assignment form, groups are split.
If ai op by and ck op dl
are in the same group (because they
both have the same operator, op)
and ai /≡ ck or bj /≡ dl
then we split the two expressions
apart into different groups.
We continue splitting based on
operand inequivalence, until no more
splits are possible. Values still
grouped are equivalent.

490CS 701 Fall 2003
©

Example

Now b4 isn’t equivalent to anything,
so split a5 and b5. In G7 split
operands b3, a5 and b5. We now have

if (...) {
 a 1=0
 if (...)

b1=0
 else {

a2=x0
b2=x0 }

 a 3=φ(a 1,a 2)
 b 3=φ(b 1,b 2)
 c 2=*a 3
 d 2=*b 3 }
else {
 b 4=10 }
a5=φ(a 0,a 3)
b5=φ(b 3,b 4)
c3=*a 5
d3=*b 5
e3=*a 5

Initial Groupings:

G1=[a0,b0,c0,d0,e0,x0]
G2=[a1=0, b1=0]
G3=[a2=x0, b2=x0]
G4=[b4=10]
G5=[a3=φ(a 1,a 2) ,

b3=φ(b 1,b 2)]
G6=[a5=φ(a 0,a 3) ,

b5=φ(b 3,b 4)]
G7=[c2=*a 3,

d2=*b 3,
d3=*b 5,
c3=*a 5,
e3=*a 5]

491CS 701 Fall 2003
©

Variable e3 can use c3’s value and d2

can use c2’s value.

if (...) {
 a 1=0
 if (...)

b1=0
 else {

a2=x0
b2=x0 }

 a 3=φ(a 1,a 2)
 b 3=φ(b 1,b 2)
 c 2=*a 3
 d 2=*b 3 }
else {
 b 4=10 }
a5=φ(a 0,a 3)
b5=φ(b 3,b 4)
c3=*a 5
d3=*b 5
e3=*a 5

Final Groupings:

G1=[a0,b0,c0,d0,e0,x0]
G2=[a1=0, b1=0]
G3=[a2=x0, b2=x0]
G4=[b4=10]
G5=[a3=φ(a 1,a 2) ,

b3=φ(b 1,b 2)]
G6a=[a5=φ(a 0,a 3)]
G6b=[b5=φ(b 3,b 4)]
G7a=[c2=*a 3,

d2=*b 3]
G7b=[d3=*b 5]
G7c=[c3=*a 5,

e3=*a 5]

492CS 701 Fall 2003
©

Limitations of Global Value
Numbering

As presented, our global value
numbering technique doesn’t
recognize (or handle) computations
of the same expression that produce
different values along different paths.
Thus in

variable a3 isn’t equivalent to either
a1 or a2.

a1=1
t 1=a1+b0

a2=2
t 2=a2+b0

a3=φ(a 1,a 2)
t 3=a3+b0

493CS 701 Fall 2003
©

But,
we can still remove a redundant
computation of a+b by moving the
computation of t 3 to each of its
predecessors:

Now a redundant computation of a+b
is evident in each predecessor block.
Note too that this has a nice register
targeting effect—e1, e2 and e3 can be
readily mapped to the same live
range.

a1=1
t 1=a1+b0

a2=2
t 2=a2+b0

e3=φ(e 1,e 2)
t 3=e3

e1=a1+b0 e2=a2+b0

494CS 701 Fall 2003
©

The notion of moving expression
computations above phi functions
also meshes nicely with notion of
partial redundancy elimination. Given

moving a+b above the phi produces

Now a+b is computed only once on
each path, an improvement.

a1=1
t 1=a1+b0

a2=2

a3=φ(a 1,a 2)
t 3=a3+b0

a1=1
t1=a 1+b0

a2=2
t 2=a2+b0

t 3=φ(t 1,t 2)

495CS 701 Fall 2003
©

Reading Assignment
• Read "Global Optimization by

Suppression of Partial Redundancies,”
Morel and Renvoise.
(Linked from the class Web page.)

• Read “Profile Guided Code Positioning,”
Pettis and Hansen.
(Linked from the class Web page.)

496CS 701 Fall 2003
©

Partial Redundancy Analysis
Partial Redundancy Analysis is a
boolean-valued data flow analysis
that generalizes available expression
analysis.
Ordinary available expression analysis
tells us if an expression must already
have been evaluated (and not killed)
along all execution paths.
Partial redundancy analysis, originally
developed by Morel & Renvoise,
determines if an expression has been
computed along some paths.
Moreover, it tells us where to add
new computations of the expression
to change a partial redundancy into a
full redundancy.

497CS 701 Fall 2003
©

This technique never adds
computations to paths where the
computation isn’t needed. It strives to
avoid having any redundant
computation on any path.
In fact, this approach includes
movement of a loop invariant
expression into a preheader. This loop
invariant code movement is just a
special case of partial redundancy
elimination.

498CS 701 Fall 2003
©

Basic Definition & Notation
For a Basic Block i and a particular
expression, e:
Transpi is true if and only if e’s
operands aren’t assigned to in i.
Transpi ≡ ¬ Killi

Compi is true if and only if e is
computed in block i and is not killed
in the block after computation.
Compi ≡ Geni

499CS 701 Fall 2003
©

AntLoci (Anticipated Locally in i) is
true if and only if e is computed in i
and there are no assignments to e’s
operands prior to e’s computation.
If AntLoci is true, computation of e in
block i will be redundant if e is
available on entrance to i.

500CS 701 Fall 2003
©

We’ll need some standard data flow
analyses we’ve seen before:
AvIni = Available In for block i

 = 0 (false) for b0

 =

AvOuti = Compi OR
 (AvIni AND Transpi)

≡ Geni OR
 (AvIni AND ¬ Killi)

AND
p ∈ Pred(i)

 AvOutp

501CS 701 Fall 2003
©

We anticipate an expression if it is
very busy:
AntOuti = VeryBusyOuti
 = 0 (false) if i is an exit block

 =

AntIni = VeryBusyIni

 = AntLoci OR
 (Transpi AND AntOuti)

AND
s ∈ Succ(i)

 AntIns

