
534CS 701 Fall 2003
©

CS 701 Final Exam (Reminder)
Thursday, December 11, 11:00 a.m.—
1:00 p.m., in class.

535CS 701 Fall 2003
©

Procedure & Code Placement
We have seen many optimizations
that aim to reduce the number of
instructions executed by a program.
Another important class of
optimizations derives from the fact
that programs often must be paged in
virtual memory and almost always are
far bigger then the I-cache.
Hence how procedures and basic
blocks are placed in memory is
important. Page faults and I-cache
misses can be very costly.

536CS 701 Fall 2003
©

In “Profile Guided Code Positioning,”
Pettis and Hansen explore three kinds of
code placement optimizations:
1. Procedure Positioning.

Try to keep procedures that often call
each other close together.

2. Basic Block Positioning.
Try to place the most frequently
executed series of basic blocks “in
sequence.”

3. Procedure Splitting.
Place infrequently executed “fluff” in
a different memory area than heavily
executed code.

537CS 701 Fall 2003
©

Procedure Placement
Procedures (and classes in Java) are
normally separately compiled. They
are then placed in memory by a linker
or loader in an arbitrary order.
This arbitrary ordering can be
problematic:
If A calls B frequently, and A and B
happen to be placed far apart in
memory, the calls will cross page
boundaries and perhaps cause I-cache
conflicts (if code in A and B happen
to map to common cache locations).
However,
if A and B are placed close together in
memory, they may both fit on the
same page and fit into the I-cache
without conflicts.

538CS 701 Fall 2003
©

Pettis & Hansen suggest a “closest is
best” procedure placement policy.
That is, they recommend that we
place procedures that often call each
other as close together as possible.
How?
First, we must obtain dynamic call
frequencies using a profiling tool like
gprof or qpt.
Given call frequencies, we create a
call graph, with edges annotated with
call frequencies:

A

C D

EF

4 10

3

8 2

1

539CS 701 Fall 2003
©

Group Procedures by Call
Frequency

We find the pair of procedures that
call each other most often, and group
them for contiguous positioning.
The notation [A,D] means A and D
will be adjacent (either in order A-D
or D-A).
The two procedures chosen are
combined in the call graph, which is
simplified (much like move-related
nodes in an interference graph):

C [A,D]

EF

7

8 2

1

540CS 701 Fall 2003
©

Now C and F are grouped, without
their relative order set (as yet):

Next [A,D] and [C,F] are to be joined,
but in what exact order?
Four orderings are possible:
 A-D-C-F ≡ F-C-D-A
 A-D-F-C ≡ C-F-D-A
 D-A-C-F ≡ F-C-A-D
 D-A-F-C ≡ C-F-A-D
Are these four orderings equivalent?

[C,F] [A,D]

E

7

21

541CS 701 Fall 2003
©

No—Look at the original call graph.
At the boundary between [A,D] and
[C,F], which of the following is best:
 D-C (3 calls),
 D-F (0 calls)
 A-C (4 calls)
 A-F (0 calls)
A-C has the highest call frequency, so
we choose D-A-C-F.
Finally, we have:

We place E near D (call frequency 2)
rather than near F (call frequency 1).
Our final ordering is
 E-D-A-C-F.

E3
D-A-C-F

542CS 701 Fall 2003
©

Basic Block Placement
We often see conditionals of the form
 if (error-test)
 {Handle error case}
 {Rest of Program}
Since error tests rarely succeed (we
hope!), the error handling code
“pollutes” the I-cache.
In general, we’d like to order basic
blocks not in their order of
appearance in the source program,
but rather in order of their execution
along frequently executed paths.
Placing frequently executed basic
blocks together in memory fills the I-
cache nicely, leads to a smaller
working set and makes branch
prediction easier.

543CS 701 Fall 2003
©

Pettis & Hansen suggest that we
profile execution to determine the
frequency of inter-block transitions.
We then will group blocks together
that execute in sequence most often.
At the start, all basic blocks are
grouped into singleton chains of one
block each.
Then, in decreasing order of transition
frequency, we visit arcs in the CFG.
If the blocks in the source and target
can be linked into a longer chain
then do so, else skip to the next
transition.
When we are done, we have linked
together blocks in paths in the CFG
that are most frequently executed.

544CS 701 Fall 2003
©

Linked basic blocks are allocated
together in memory, in the sequence
listed in the chain.

545CS 701 Fall 2003
©

Example

A

B

C

D

E F

G

H

I

1000

7000

6500 500

2500 4000

2500
4000

500

6500

900

546CS 701 Fall 2003
©

Initially, each bock is in its own chain.
Frequency Action
7000 Form B-C
6500 Form B-C-D
6500 Form H-B-C-D
4000 Form H-B-C-D-F
4000 H is already placed
2500 E can’t be placed after D,

leave it alone
2500 H is already placed
1000 A can’t be placed before B,

leave it alone
900 I can’t be placed after B,

leave it alone
500 G can’t be placed after C,

leave it alone
500 Form G-I

547CS 701 Fall 2003
©

We will place in memory the following
chains of basic blocks:

H-B-C-D-F, E, A, G-I
On some computers, the direction of a
conditional branch predicts whether the
branch is expected to be taken or not
(e.g., the HP PA-RISC). On such
machines, a backwards branch (forming a
loop) is assumed taken; a forward branch
is assumed not taken.
If the target architecture makes such
assumptions regarding conditional
branches, we place chains to (where
possible) correctly predict the branch
outcome.
Thus E and G-I are placed after H-B-C-
D-F since D→E and C→G normally aren’t
taken.

548CS 701 Fall 2003
©

On the SPARC (V 9) you can set a bit in
each conditional branch indicating
expected taken/not taken status.
On many machines internal branch
prediction hardware can over-rule poorly
made (or absent) static predictions.

549CS 701 Fall 2003
©

Procedure Splitting
When we profile the basic blocks
within a procedure, we’ll see some
that are frequently executed, and
others that are executed rarely or
never.
If we allocate all the blocks of a
procedure contiguously, we’ll intermix
frequently executed blocks with
infrequently executed ones.
An alternative is “fluff removal.” We
can split a procedure’s body into two
sets of basic blocks: these executed
frequently and those executed
infrequently (the dividing line is, of
course, somewhat arbitrary).

550CS 701 Fall 2003
©

Now when procedure bodies are
placed in memory, frequently
executed basic blocks will be placed
near each other, and infrequently
executed blocks will be placed
elsewhere (though infrequently
executed blocks are still placed near
each other). In this way be expect to
make better use of page frames and I-
cache space, filling them with mostly
active basic blocks.

