
Programming Techniques
and Data Structures

M. Douglas Mcllroy
Editor

The Cornell Program
Synthesizer: A Synt.ax-
Directed Programming
Environment
T i m T e i t e l b a u m a n d T h o m a s R e p s
C o m e l l U n i v e r s i t y

Programs are not text; they are hierarchical compo-
sitions of computational structures and should be edited,
executed, and debugged in an environment that consist-
ently acknowledges and reinforces this viewpoint. The
Cornell Program Synthesizer demands a structural per-
spective at all stages of program development. Its sepa-
rate features are unified by a common foundation: a
grammar for the programming language. Its full-screen
derivation-tree editor and syntax-directed diagnostic in-
terpreter combine to make the Synthesizer a powerful
and responsive interactive programming tool.

Key Words and Phrases: programming environment,
program development system, syntax-directed editor,
template, diagnostic interpreter, source language debug-
ger.

CR Categories: 4.12, 4.13, 4.30, 4.42, 4.43

I. Introduction

The Cornell Program Synthesizer is an interactive
programming environment with integrated facilities to
create, edit, execute, and debug programs. Our goal was
to develop a unified programming environment that
stimulates program conception at a high level of abstrac-
tion, promotes programming by step-wise refinement,
spares the user from mundane and frustrating syntactic

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

The development of the Cornell Program Synthesizer was sup-
ported in part by the National Science Foundation under Grants
MCS77-08198 and MCS80-04218.

Authors' present address: Tim Teitelbaum and Thomas Reps,
Department of Computer Science, CorneU University, 405 Upson Hall,
Ithaca, NY 14853.
© 1981 ACM 0001-0782/81/0900-0563 $00.75

details while editing programs, and provides extensive
diagnostic facilities during program execution.

We attained these goals by making the Synthesizer
syntax-directed; both editing and execution are guided
by the syntactic structure of the programming language.

The grammar of the programming language is em-
bodied in a collection of templates predefmed for all but
the simplest statement types. Programs are created top-
down by inserting new statements and expressions at a
cursor position within the skeleton of previously entered
templates. In general, the editing cursor can only be
moved from one template to another and from one
template to its constituents, and not simply from one line
of text to another. Templates reinforce the view that a
program is a hierarchical composition of syntactic ob-
jects, rather than a sequence of characters.

Runtime diagnostic facilities are likewise syntax-di-
rected. Discrete computational units of execution corre-
spond exactly to the syntactic units of the editor. When
tracing, the screen cursor indicates the location of the
instruction pointer in the source code as the program
executes. When single-stepping, the user controls execu-
tion with respect to the hierarchical template structure
of the program. The Synthesizer consistently demands a
structural perspective.

The Synthesizer's editor is a hybrid between a tree
editor and a text editor. Templates are generated by
command, but expressions and assignment statements
are typed one character at a time. It is impossible to
make errors in templates because they are predefmed.
Errors in user-typed text are detected immediately be-
cause the parser is invoked by the editor on a phrase-by-
phrase basis. By precluding the creation of syntactically
incorrect files, the Synthesizer lets the user focus on the
intellectually challenging aspects of programming.

Because code is generated each time a template or
phrase is inserted, execution can follow editing without
delay. Execution is suspended when a missing program
element is encountered, but can be immediately resumed
after the required code has been inserted. Thus, incom-
plete programs are executable; program development
and testing can be conveniently and rapidly interleaved.

The design and implementation of the Program Syn-
thesizer began in May 1978, and demonstrable prototype
versions were operational under UNIX as well as on
Terak (LSI-11) microcomputers by December 1978 [24,
25]. The Synthesizer, first used in classes at Cornell in
June 1979, currently serves about 1500 of our introduc-
tory programming students a year. The Synthesizer has
also been adopted for elementary programming instruc-
tion at Rutgers University, Princeton University, and
Hamilton College.

The first language implemented for the Synthesizer
was PL/CS, an instructional dialect of PL/I [5, 23].
PL/CS had previously been defined to serve as a vehicle
for research on batch-oriented, error-correcting compil-
ers [6] as well as for program verification [4]. We are
currently developing a version of the Synthesizer for
Pascal.

563 Communications September 1981
of Volume 24
the ACM Number 9

Certain individual features of the Synthesizer have
appeared in previous systems:

-- immediate phrase-by-phrase syntax analysis in BASIC
[16],

--syntax-directed, program generation in EMILY [12]
and the Fortran Language Anticipation and
Prompting System [20],

--full-screen editing in the RAND editor, the Berkeley
display editor ex[15], and ged[22],

--tree-editing in INTERLISP [26] and MENTOR [9],
--selective hierarchical file display at SRI [10],
--windowing in the Programmer's Assistant [27],
--screen-oriented execution monitoring in CAPS [28],

and
--reverse execution in EXDAMS [3], P L / C [29] and

BIDOPS [14].

The combination of these facilities in the Synthesizer has
made it a powerful and responsive programming tool.

Related work in progress on language-specific pro-
gramming environments includes LISPEDIT [1], and
PDE1L [19] at IBM, Gandalf at CMU [11, 13], ALBE at
Yale [17], and COPE at Cornell [2].

k > 0
'not positive'

Both phrases and templates can be inserted into other
templates at locations designated by placeholders, re-
placing the given placeholder. This nesting of templates,
one within another, can occur to any depth.

All modifications of program text occur relative to the
current position of the editing cursor. Although the cursor
can be moved anywhere within a phrase, it can only be
positioned at the leftmost symbol of a template or pla-
ceholder. The upper leftmost symbol of a template de-
notes the entire template including its constituents. The
cursor never appears within the key words and punctua-
tion marks of a template or in the margins. In general,
the editing cursor is advanced from one template to
another and from one template to its constituents. It is
possible to position the cursor only where insertions and
deletions are allowed.

Thus, the Synthesizer views the following partially
developed file segment as a hierarchical composition of
nested templates and phrases rather than three indepen-
dent lines of text. The cursor, indicated by 17, is posi-
tioned at the statement placeholder.

II. Program Editing

Programs are edited by inserting and deleting at the
cursor position in a screen of text. The body of text
expands either horizontally or vertically, as necessary, to
accommodate insertions; it contracts when characters or
lines are deleted. The screen serves as a window into a
file. Whenever the cursor moves to a location in the file
not contained on the screen, the file shifts automatically
to include the new cursor position within the window.
All screen modifications are essentially instantaneous on
a high speed video terminal.

A. Files, Templates, Phrases, and the Cursor
A Synthesizer file is an object with hierarchical struc-

ture, not just a sequence of characters and lines. Files
are composed of two kinds of elements: templates and
phrases.

A template is a predefmed, formatted pattern of
characters and punctuation marks. The key words, punc-
tuation, and indenting format of a template cannot be
altered. The template provides an immutable framework
for the insertion of additional program units. Placehold-
ers identify the locations where these insertions are per-
mitted. Each placeholder designates the syntactic class
of permissible insertions. For example, the template for
a conditional statement is:

IF (condition)
THEN statement
ELSE statement

where condition and statement are placeholders.
A phrase is an arbitrary sequence of typed symbols.

For example, each of the following lines is a phrase:

I F (k > O)
THEN D']tatement
ELSE PUT SKIP LIST ('not positive');

The cursor control keys move the cursor forward and
backward through the program. For want of better
names, we refer to the keys as left, 1 fight, up, and down.
Despite this nomenclature, the effect of the control keys
is defmed with respect to the one-dimensional reading
order of a program, not the two-dimensional coordinate
system of its display. Thus, both fight and down move
the cursor forward through the program; left and up
move it backwards. Because much of the program text is
immutable, the cursor jumps in logical increments, not
character by character. Although fight and down both
move the cursor forward, their units of increment differ.

Up and down move the cursor one program element
at a time, stopping only once per template, phrase, or
placeholder. The following file segment shows with un-
derlines all the possible stopping points for the cursor
when the up and down keys are used:

I F (k > 0)
THEN statement
ELSE PUT SKIP LIST C_not positive');

Left and fight differ from up and down by also moving
the cursor to every character within a phrase:

I F (k > 0)
THEN statement
ELSE P_UT SKIP LIST ('not positive');

Boldface words such as left denote single keys of the terminal.

564 Communications September 1981
of Volume 24
the ACM Number 9

Other commands move the cursor in logical incre-
ments greater than up and down according to the nesting
structure of the templates. The two-key sequence long
down advances the cursor to the next element at the same
structural level; the sequence long up moves backward
similarly. The diagonal key moves the cursor to the
immediately enclosing program element. The sequence
long diagonal moves the cursor to the top of the program.

B. Insertions
Files are created top-down by inserting templates

and phrases into existing templates where they are in-
stantly displayed on the screen. Templates are not typed:
they are generated by command. Each insertion occurs
at the position of the editing cursor. Insertions can be
made in any order, but only when the cursor is located
at a placeholder. In order to insert the template

PUT SKIP LIST (list-of-expressions);

into

I F (k > 0)
THEN [~]taternent
ELSE PUT SKIP LIST ('not positive');

the user types the command .p, and then strikes return.
The insertion is instantly displayed on the screen, with
the cursor automatically advanced to the placeholder
list-of-expressions:

I F (k > 0)
THEN PUT SKIP LIST ([l]ist-of-expressions);
ELSE PUT SKIP LIST ('not positive');

A template inserted by command is always syntactically
correct for two reasons:

(1) The command is validated to guarantee that it
inserts a template permitted at the current cursor
position. (For example, typing the command .p with
the cursor positioned at list-of-expressions is an
error.)

(2) The template is a predefined unit. Because it is not
typed, it contains no typographical errors.

Phrases, unlike templates, are explicitly typed at the
position of the editing cursor. As the first character of a
phrase is typed, the placeholder disappears. The phrase's
right context shifts correspondingly, one character at a
time, to accomodate the insertion. In the example above,
");" is the right context of list-of-expressions. It shifts one
character at a time to the right as a phrase is typed at
list-of-expressions. Phrases and their right contexts are
automatically continued on consecutive lines, as neces-
sary:

I F (k > 0)
THEN PUT SKIP LIST (the number k is strictly g

reater than zero'[-]);
ELSE PUT SKIP LIST ('not positive');

Because phrases are typed by the user, their syntactic

correctness must be validated. Typed text is parsed as
soon as the cursor is directed away from the phrase.
Thus, the moment the user strikes return in the example
above, the missing quote is detected, an error message is
printed on the top line of the screen, and the editing
cursor is positioned as close to the site of error as possible.
The display would then appear:

I F (k > 0)
THEN PUT SKIP LIST (If]he number k is strictly g

reater than zero');
ELSE PUT SKIP LIST ('not positive');

In this case, because the error detection mechanism
properly positions the cursor, the required quotation
mark can be inserted in a single keystroke. The phrase
and its right context shifts right and down in response to
this insertion:

I F (k > 0)
THEN PUT SKIP LIST ('l'flhe number k is strictly

greater than zero');
ELSE PUT SKIP LIST ('not positive');

Directing the cursor away from the phrase invokes the
parser again. Because the phrase is now syntactically
correct, the cursor is positioned as directed. Phrases are
prettyprinted and redisplayed after being parsed success-
fully.

C. Modifications
Structural changes to the program are accomplished

by removal and insertion of whole templates and phrases.
This highly disciplined mode of modification guarantees
the structural integrity of the program at every step. The
position of the editing cursor always denotes a whole
program unit: template, phrase, or placeholder. Thus, it
is not necessary to specify line limits in order to remove
an entire program unit:

delete (move the template or phrase to the file
DELETED),

clip (move the template or phrase to the file
CLIPPED),

.mv f (move the template or phrase to the file f).

After a program unit has been removed, the display is
immediately redrawn and the original placeholder reap-
pears. The editing cursor can then be repositioned and
the file segment reinserted:

insert (insert the contents of CLIPPED at the current
cursor position),

.ins f (insert the contents of file f at the current
cursor position).

In the example below, because the cursor is positioned
on the IF, it denotes the whole code segment shown:

[I]F (k > 0)
THEN PUT SKIP LIST ('the number k is strictly

greater than zero');
ELSE PUT SKIP LIST ('not positive');

565 Communications September 1981
of Volume 24
the ACM Number 9

Suppose we wish to enclose this IF-statement within a
WHILE-loop. In a conventional, line-oriented, text edi-
tor, the lines

DO WHILE (condition);
END;

would be inserted before and after the IF-statement in
separate editing steps. The first of these editing steps
would drastically alter the structure of the program; in
fact, it would make it temporarily incorrect due to the
unbalanced DO-END pair. Such modifications have
been the bane of incremental compilation schemes.

By contrast, in the Synthesizer, the two lines are part
of one template and are therefore inserted simultane-
ously. First, the IF-statement is temporarily removed
from the file, leaving the cursor positioned at a (state-
ment) placeholder:

[~statement}

Next, the WHILE-loop is inserted and the cursor ad-
vanced into the body of the loop to a subordinate {state-
ment) placeholder:

DO WHILE (condition);
[~statement}
END;

Finally, the IF-statement is inserted into the body of the
loop, automatically indented further to the right:

DO WHILE (condition);
[~ F (k > 0)

THEN PUT SKIP LIST ('the number k is strict
ly greater than zero');

ELSE PUT SKIP LIST ('not positive');
END;

The special function keys enable this manipulation to
take place in a sequence of just seven keystrokes:

cli O (remove the IF-statement),
.dw return (insert the WHILE-loop),
return (move the cursor to i{statement)),
insert (reinsert the IF-statement within the

WHILE-loop).

The reverse manipulation, extracting the IF-statement
and discarding the WHILE-loop, would require only
four keystrokes: [

clip (remove the IF-statement),
diagonal (move the cursor to DO),]
delete (delete the WHILE-loop),
insert (reinsert the IF-statement).

Individual phrases are modified by first positioning
the cursor anywhere within the phrase, and then modify-
ing individual characters. As each change is typed, the
context surrounding the phrase adjusts instantly. Char-
acter insertions are made simply by typing; there is no
separate insert mode. Using special function keys, it is
possible to erase characters forwards or backwards either

one at a time or all the way to the boundary of the
phrase. Whenever modified, a phrase is checked for
syntactic correctness, exactly as if it had just been intro-
duced for the first time. If every character of a phrase is
deleted, the appropriate placeholder automatically reap-
pears.

Templates, unlike phrases, cannot be modified--they
are immutable. Insertions are permitted within templates
only at the positions designated by placeholders. The
predefmed key words and punctuation marks of a tem-
plate cannot be changed. In fact, it is not even possible
to position the editing cursor within the characters of a
template.

An initial and overriding goal of the Synthesizer was
to guarantee that programs were completely correct at
every stage of their development. Any modification that
introduced an error was to be prevented. Context-sensi-
tive constraints of the syntax forced us to retreat from
that position. For example, consider the problem of
changing the type of a program variable. Because a key
word such as FIXED is part of an immutable declaration
template, it is necessary to delete one declaration and
insert another. However, the implemented dialect of
PL/ I requires that all variables be declared; deleting the
declaration would introduce undeclared variable errors
in every phrase referencing the variable.

Rather than having a separate mechanism to make
such modifications atomic operations, the Synthesizer
tolerates invalid phrases, highlighting them with the
complemented character font until corrected. Thus, the
moment a declaration is deleted, all phrases containing
the undeclared variable are highlighted. When the new
declaration is inserted, all are redisplayed in the normal
font.

To illustrate this, consider deleting the declaration of
the variable temp from:

DECLARE (temp) FIXED;
DECLARE (m, n) FLOAT;
temp= m;
m = n;
n= temp;

Errors introduced in the first and third assignment state-
ments because of undeclared variables are highlighted:

DECLARE (m, n) FLOAT;
temp= m; I
m = n;
n= temp; I

When temp is redeclared, uses of temp become correct
and are again displayed in the normal font:

DECLARE (m, n, temp) FLOAT;
temp= m;
m = n;
n= temp;

Users often forget declarations until reminded by an
undeclared variable error message. Tolerance of invalid

566 Communications September 1981
of Volume 24
the ACM Number 9

phrases simplifies correction of this common error. When
an error is detected in a phrase, any movement of the
cursor away from the phrase overrides the error preven-
tion mechanism and highlights the invalid phrase. The
proper declaration can be inserted at any time.

As an additional benefit, the ability to override the
error prevention mechanism allows free-form ideas to be
sketched temporarily in the file without regard to the
syntax of the programming language. These informal
program notes and plans remain highlighted until they
are either completed correctly or deleted. Although in-
valid phrases are permitted in programs, the overall
structural integrity of files is maintained because the
correct nesting of templates is always enforced.

D. Syntactic Iteration and Optional Placeholders
As described thus far, creating a file in the Synthe-

sizer is exactly analogous to deriving a sentence with
respect to a context-free grammar for the given program-
ming language. Although a nontechnical vocabulary has
been adopted in the presentation, the following corres-
pondencies should be clear:

placeholder
template
command
insertion
file
cursor position
file display

nonterminal symbol
right side of a production
the name of a production
derivation
derivation tree
node of derivation tree
sentential form

In addition, the editor incorporates the usual metasyn-
tactic formalism for syntactic iteration:

(placeholder) zero or more occurrences of
placeholder

Conceptually, each item in such a list is preceded and
followed by {placeholder}. However, these placeholders
are only displayed when the cursor is positioned there
(or when there are no occurrences in the list). In fact,
return is the cursor motion that means:

advance the cursor to the next template, phrase, or
placeholder including iterated placeholders.

The following sequence of display snapshots illustrates
repeated use of return to advance the cursor:

Original After 1 After 2 After 3
screen return returns returns

[~]= 0; x= 0; x= O; x= 0;
y= 0; [~statement} F] = 0; y= 0;

y= 0; ~]statement}

Optional components of templates are denoted by square
brackets:

[placeholder] zero or one occurrence of
placeholder

In order to avoid excessive clutter on the screen, such
optional placeholders are not normally displayed. A
separate cursor motion is used to reveal them and to
position the cursor there. For example, from

[~]O WHILE (condition);
(statement}
END;

the move-to-optional-component command advances
the cursor to

[~ loop-name:] DO WHILE (condition);
(statement}
END;

E. Comment Templates
The limited number of lines displayed on video

terminals hampers editing large files. Comment templates
provide a mechanism for hiding details of a file, thereby
allowing more of the program to be displayed. The
comment template also provides a mechanism for con-
trolling the speed as well as the scope of runtime diag-
nostic monitoring. A comment template is a single pro-
gram unit expressing a program specification together
with its refinement [7]. It is the structural unit used to
express computational abstractions in programs:

/* comment * /
(statement}

The two placeholders, comment and (statement}, are
part of one template. The (statement} part of the tem-
plate is indented to show that it is the refmement of the
specification provided in the comment part. Thus, a
comment is not an arbitrary lexical insertion into the
program; rather, it is a structural unit in its own right.
The scope of a comment is the list of statements in its
refinement.

The display of the refinement of a comment can be
suppressed simply by striking the ellipsis key. For ex-
ample,

/ * Swap m and n * /
temp= m;
[~-l= n;
n= temp;

PUT SKIP LIST (m, n);

When entering templates and phrases, each insertion
terminated by return has the desired effect of advancing
the cursor to the next possible placeholder for an inser-
tion. Cursor motions other than return do not reveal
iterated placeholders.

would be redisplayed instantly as

/ * S w a p m a n d n * /
['~..

PUT SKIP LIST (m, n);

567 Communications
of
the ACM

September 1981
Volume 24
Number 9

Having hidden the details of the code, more of the
program fits on the screen while the comment remains
displayed to specify what the hidden refinement does.
The hidden code at . . . can easily be revealed by
striking ellipsis again. Thus, comment templates provide
selective display of the hierarchical structure of files. The
ellipsis feature is intentionally coupled with comment
templates in order to encourage program documentation.

Comment templates serve a purpose during execution
as well as editing. During program execution is
considered a single atomic step for the runtime flow-
tracing and pacing features described in the next section.
For example, suppose the execution pace were set at a
half-second per step. Then would be executed in as
close to half a second as possible, regardless of the
complexity of the statements hidden below the
Thus, judicious use o f . . . provides selective control of
the speed and scope of diagnostic monitoring.

The ellipsis feature of comment templates provides
an incentive to use comments during program develop-
ment, rather than after the fact. Because it rewards a
skillful, precise use of comments, this feature promotes
good programming style and method.

III. Execution of Programs

Because programs are translated and maintained in
interpretable form during editing, there is no compilation
delay between editing and execution. Whenever execu-
tion is suspended, control returns to the editor, a printed
message explains why execution was suspended, and the
file cursor is positioned in the source program at the
point of suspension. It is possible to run incomplete
programs. Execution is suspended whenever a place-
holder is encountered and can be resumed after the
missing program element has been inserted. After most
editing changes to a program, it is still possible to resume
execution; certain changes, such as modifying a decla-
ration, destroy the possibility of resuming execution.

The high transmission rate of a video display termi-
nal allows the incorporation of unique runtime debug-
ging aids. Display-oriented monitoring facilities provide
a window into the computer through which one observes
a running program. Their power is enhanced when com-
bined with syntax-directed commands for controlling
execution.

The flow of execution through the program can be
traced using the screen cursor to indicate the location of
the instruction pointer at each moment. The stopping
places for the cursor during flow tracing correspond to
the structural units of the editor--one cursor jump for
each template and phrase. Thus, the editor and the
interpreter share a unified view of program structure--
separate editable units are seen as separate computa-
tional units. During flow tracing, the program display is
automatically redrawn whenever control passes outside
the display window or a procedure is called. Judicious

use of the ellipsis feature can eliminate the trace of
uninteresting sections of code and minimize undesirable
redrawing of the program display.

Flow tracing at full speed provides a visible perform-
ance measure: the distribution of light intensities at the
various cursor locations clearly indicates the fraction of
time spent there. A pace feature allows the user to slow
execution to any speed.

A syntax-directed single-step feature permits manual
control of program execution. There are five ways to
specify the step size of each resumption in terms of the
template and phrase structure of the file

resume execute one step of the current program
element,

long resume execute all steps of the current program
element,

return complete a list of statements,
diagonal complete the enclosing template,
long diagonal complete the enclosing procedure.

Consider stepping through the following program seg-
ment:

DO WHILE (k < n);
[i]F (k>0)

THEN PUT SKIP LIST ('the number k is strict
ly greater than zero');

ELSE PUT SKIP LIST ('not positive');
k = k + 1;
END;

resume would advance the cursor to k>0, long resume
would advance the cursor to k= k + 1; by executing the
entire IF-statement, return would complete the state-
ments in the body of the loop and position the cursor at
k<n, diagonal would position the cursor at DO until the
loop is completed, and long diagonal would position th~
cursor at the top of the procedure until control returns to
the calling procedure.

In this way, the Synthesizer maintains a unified view
of both static and dynamic program structure. The syn-
tactic units of the editor are the computational units of
the interpreter.

Selected variables can be monitored during execution
by displaying their names and values in a separate
partition of the screen. The result of each assignment to
a variable immediately appears on the screen replacing
the previous value displayed for that variable. Currently,
only one element of an array is displayed at a time. A
least-recently updated replacement strategy is used when
there is not enough room to display all monitored vari-
ables.

The facilities described above allow one to observe
an error as it occurs. The pace feature, the step feature,
and the pause statement serve as a throttle, providing
control over the rate of'execution, and thus providing a
better chance for seeing errors. The program can be run
at top speed until reaching the vicinity of the bug,

568 Communications September 1981
of Volume 24
the ACM Number 9

whereupon it can be paced or single-stepped until the
error is observed.

It is easy to overshoot the mark, so the Synthesizer
has a gear shift as well; a recently implemented reverse
execution facility allows the program to run backwards
a bounded number of steps. As with forward single-
stepping, the step-size of each backwards step is specified
in terms of the syntactic structure. Using the visual
feedback provided by flow tracing and variable moni-
toring, and by alternating the direction of execution in
the vicinity of a bug, the user is able to converge swiftly
and precisely on the error. While reverse execution ca-
pabilities have been implemented by others [3, 14, 29],
the novelty in the Synthesizer is the presence of enough
immediate visual feedback to make the feature meaning-
ful as a real-time control mechanism.

IV. Advantages of Templates

The Synthesizer's use of templates is central to
achieving our design goals. The integrated behavior of
templates and the cursor enforces the proper view that
a program is a hierarchy of structurally nested compo-
nents. Each template insertion is syntactically correct
because template commands are only valid in appropri-
ate contexts, and the templates are predefmed. A pro-
gram developed on the Synthesizer is always well-
formed, regardless of whether it is complete or not.

Templates eliminate mundane tasks of program de-
velopment. Typographical errors in structural units are
impossible; indentation is automatic, both when a tem-
plate is introduced and when it is moved, and errors
cannot be introduced by modification because templates
are immutable.

Placeholders in templates serve both as prompts and
as syntactic constraints, by identifying places that can or
must be refmed, as well as by restricting the range of
choices to legitimate insertions. The template-generated
skeleton simplifies incremental compilation by bounding
the extent of the program affected by modifications.

Template insertion is an economical mode of pro-
gram entry with a corresponding economical implemen-
tation. Short commands insert long templates; because
so few keystrokes are needed, typing mistakes are effec-
tively minimized, and program entry is rapid. When
statements are synthesized by command, there is no need
for a parser to analyze the text. Thus, a template-based
environment is ideal for microcomputers where space is
in short supply.

Templates correspond to abstract computational
units; because they are both inserted and manipulated as
units, the process of programming begins and continues
at a high level of abstraction; the user is never mired in
syntactic detail. At runtime, templates provide a frame-
work for the structured, single-step debugging facility.
Thus, templates provide a unified view of both static and
dynamic program structure.

V. Integration of Text and Structure

The Synthesizer is based on the premise that pro-
grams are not text. Although we want to promote the
structural perspective, we recognize that abstract pro-
grams must be viewed and manipulated with respect to
some concrete textual representation. The hybrid design
of the Synthesizer seeks a pragmatic balance between
the extremes of a derivation-tree editor and a text editor.

We believe we have successfully interleaved struc-
tural and textual features so that shifts between the two
perspectives occur smoothly and spontaneously. Parti-
tioning a language such as PL/ I into templates and
phrases seems natural and lets each construct be edited
in an appropriate manner. User competence and comfort
within the environment is enhanced by the persistence
and uniformity of the template-phrase distinction
throughout the system. The dual interpretation of the
cursor as both text pointer and tree pointer seems intu-
itive: When the cursor is moved, it is perceived as a point
stepping through program text in increments dictated by
syntactic structure; when it stops, the cursor designates
an entire structure that can be clipped or deleted as a
unit.

Although, on the whole, we believe the Synthesizer
accomplishes a harmonious integration of text and struc-
ture, occasionally, tension between the two perspectives
leads to confusion and some inconvenience. One com-
mon difficulty stems from the fact that different abstract
objects have identical representations as text. For ex-
ample, consider trying to move the phrase k = 0 to
statement in the code segment below:

IF (k = 0)
THEN statement

Although k = 0 is textually correct as an assignmem
statement, 2 it cannot be moved to statement because it is
an instance of the syntactic class condition. By preventing
such implicit syntactic transformations, a structure editor
may detect modifications with unforeseen and unin-
tended consequences. However, when the consequences
are intended, requiting a special mechanism to divorce
a phrase of text from its syntactic classification is incon-
venient.

A second example of tension between the textual and
structural perspectives is the result of our decision to
differentiate between declarations of formal parameters
and local variables in the procedure template:

name: PROCEDURE (parameters);
{parameter declaration)
{declaration)
{statement)
END name;

Although the templates for declaring parameters and
local variables are distinct,

2 We ignore the missing semicolon for the sake of discussion.

569 Communications September 1981
of Volume 24
the ACM Number 9

DECLARE (list-of-parameters) FIXED;
DECLARE (list-of-variables) FIXED;

once expanded they appear the same, as in:

name: PROCEDURE (j)
DECLARE (j) FIXED;
DECLARE (k) FIXED;
(statement)
END name;

Now suppose we wish to change k to be a parameter of
the procedure. Because k is declared as a local variable,
we cannot just add it to the parameter list on the first
line, even though the resulting program would be correct
as text. This is particularly confusing because the decla-
ration for k not only looks like a parameter declaration
but appears to be in the right place.

This example also illustrates an interplay in the
Synthesizer between incremental error detetction and
left-to-right error detection. Whenever a phrase is created
or modified, the Synthesizer's local incremental error
detection mechanism verifies that the new phrase is
consistent with the previous state of the program. Any
inconsistency leads to an immediate error message. As
we have seen, adding k to the parameter list is an error
because, at the time the change is attempted, k is already
declared to be a local variable.

However, when the user overrides the local error
prevention mechanism and allows an invalid phrase to
remain in the program, the Synthesizer abandons the
incremental viewpoint in favor of a static, left-to-right
notion of correctness. The incrementally incorrect pa-
rameter list j,k turns out to be correct, whereas the
declaration of k as a local variable is invalid because k
already appears as a parameter:

name: PROCEDURE (j, k);
DECLARE (j) FIXED;
DECLARE ([-~) FIXED;
(statement)
END name;

The declaration for k must now be moved from the
(declaration) part of the procedure template to the
(parameter declaration) part. However, as in our first
example, the problem is not just a question of the tem-
plate being in the wrong position. The existing declara-
tion is bound to the syntactic category (declaration) and
cannot be moved to any other placeholder; it must be
deleted and a new parameter declaration created.

A third example of inconvenience in the Synthesizer's
hybrid design is a result of the immutability of templates.
Modifications that change only a few characters of pro-
gram text may require a significant amount of restruc-
turing. For example, if the program were text, a WHILE-
loop could be changed into an UNTIL-loop by substi-
tution of just five characters. In the Synthesizer, this
change must be accomplished by moving the constituents
of the existing WHILE-template into a newly inserted
UNTIL-template. Although such modifications can be

made rapidly using the clip, insert, and delete keys, they
are admittedly awkward.

To alleviate such inconveniences imposed by struc-
tural constraints, we are building mechanisms that
streamline these operations, yet enforce a discipline that
emphasizes the abstract computational meaning of pro-
gram units. For example, template-to-template transfor-
mations allow controlled changes in a single step. Posi-
tioning the cursor at a DO WHILE and typing the
command .du could transform a WHILE-template into
an UNTIL-template, leaving its constituents in corre-
sponding places. Similarly, a local variable declaration
could be transformed into a parameter declaration and
repositioned in one step.

Besides purely syntactic transformations, a more
powerful collection of semantics preserving transforma-
tions is also possible. For example, in one operation,

DO j = k to n by 1;
(statement)
END;

could be transformed into one of several equivalent
alternative representations:

j = k;
DO WHILE (j ___ n);

(statement)
j = j + l ;
END;

j = k;
I F (j <_n)

THEN DO UNTIL (j > n);
(statement)
j = j + 1;
END;

A similar transformation capability would allow proce-
dures to be extracted from in-line code. The user would
specify a section of program and the variables to become
formal parameters. Then, in one operation,

[] * Swap m and n * /
temp= m;
m= n;
n= temp;

would be replaced by

[]al l swap (m, n);

with the appropriate procedure created automatically:

/ * Swap m and n * /
swap: PROCEDURE (m, n);

DECLARE (m, n) FLOAT;
DECLARE (temp) FLOAT;
temp= m;
m = n;
n= temp;
END swap;

Such transformations will add considerable editing

570 Communications September 1981
of Volume 24
the ACM Number 9

power but retain the disciplined viewpoint of the rest of
the system.

A final example illustrates an awkwardness arising
not from the structural constraints of the Synthesizer,
but from the textual constraints of a language whose
concrete syntax was defined to be unambiguous for
parsers. Inserting the template

IF (condition)
THEN statement

into

IF (condition)
THEN [~]tatement
ELSE PUT LIST ('whose else am i?');

leads to an inconsistency between the explicitly derived
structure (an IF-THEN within an IF-THEN-ELSE)
and the structure implied by the parser-oriented concrete
syntax (an IF-THEN-ELSE within an IF-THEN). Al-
though tempted to adopt the derived interpretation (be-
cause prettyprinting easily distinguishes one interpreta-
tion from the other), we elected, instead, to maintain
compatibility with PL/I. Therefore, we prevent such an
insertion and require that the user provide a compound
statement explicitly.

There are many possible alternative designs, among
them the following four: a) the compound statement
could be inserted automatically when necessary; b) a
compound statement could be displayed automatically
when necessary; c) the IF-THEN-ELSE template could
be defined as

IF (condition)
THEN DO; {statement} END;
ELSE DO; {statement} END;

d) the IF-THEN template could be eliminated thereby
requiring that every conditional statement have an
ELSE-clause. In this final case, the display of an empty
ELSE clause could be suppressed unless necessary for
disambiguation.

VI. Implementation

A. File Trees
Synthesizer files are represented internally as execut-

able derivation trees. Each template or phrase is repre-
sented in this tree by a separate node. The pointers
connecting nodes are, in fact, goto instructions for the
interpreter; the null pointer is a halt instruction. Nodes
are variable length; each is composed of three sections:

I °xt°nsi°n I ooao I o t uation I

The extension identifies the node type and contains any
other information needed to generate the display of the
node bu tno t necessary to execute it. The code section
contains interpretable op-codes for executing the node.
The entry point of the node is the first byte of the code
section. The continuation contains a goto linking this
node to the next op-code to be executed. The target of
this goto is either the entry point of a sibling node or an
interior op-code of a parent node.

For example, the template

IF (condition)
THEN statement
ELSE statement

has the internal representation given below.

~ from previous op-code to next op-code T

[IF [halt I skip_2_on~false [halt I skip_l [halt] g o t o] [

This node is tagged in the extension as an IF-node. It contains op-codes that implement the proper control flow and
three halt instructions that represent the unexpanded placeholders. When the template has been expanded to

I F (k > 0)
THEN statement
ELSE PUT LIST (list-of-expressions);

a link to Polish postfix code for the phrase k > 0 replaces the first halt op-code, and a link to the node for the PUT-
statement replaces the third halt op-code. A halt instruction remains for the other statement placeholder:

~from previous op-code to next op-code I

] IF] g o t o ~ , ~ p ~ 2 _ . o n ~ f a l s e I halt , s k i p _ _ l _ ~] ~ .] gOtoi

[condition I code for k > 0] g o t , , ,] [PUT I halt] got

571 Communications September 1981
of Volume 24
the ACM Number 9

The interpreter is classical: it executes straight line code
and goto instructions. It is completely blind to the struc-
ture of the tree and requires neither recursion nor a stack
to execute a file tree. Access to variables and procedure
definitions is through a symbol table.

The editor walks the tree using the same goto pointers
as the interpreter. Each cursor position designates one of
the nodes of the tree. Cursor motion is defined with
respect to a preorder traversal. There are no backward
pointers; thus, backward cursor motion is implemented
internally by going all the way around.

B. Declarations
As demonstrated in Sec. II.C, declarations present a

special problem: modifying a declaration can simulta-
neously introduce errors and correct errors at other
locations in the program. Internally, information about
identifiers is stored in a symbol table. When a declaration
is modified, the Synthesizer discards the old symbol table
and traverses the tree in preorder reparsing and redoing
the semantics of every phrase. Phrases with errors are
marked as invalid and are printed in the highlighted font
when the screen is redrawn. Because the allocation of
variables within an activation record is recomputed in
the process of reconstructing the symbol table, access to
the variables of a suspended activation record is lost in
the process. Therefore, execution cannot be resumed
after such modifications.

C. Displaying the Tree
The print representation of a file is generated from

the tree; a text representation is not saved. The external
representation of each kind of template is stored in a
table. The entries of this table alternate between terminal
strings and placeholder-descriptors. For example, the IF-
template is encoded as:

"IF ("
condition-descriptor
") \ { \nTHEN"
statement-l-descriptor
"ELSE"
statement- 2-descriptor
" \) \ r "

The placeholder-descriptors identify the placeholders
and their positions within the code section of an internal
node. The terminal strings contain key words, punctua-
tion marks, and formatting control characters that are
interpreted on output. For example,

\{ means move left-margin right one unit,
\n means line-feed, carriage-return to current left-mar-

gin,
\} means move left-margin left one unit,
\ r means carriage-return to current left-margin.

The print routine traverses the tree in preorder, simul-
taneously keeping track of position within the external
representation of the appropriate template. Each termi-

nal string encountered is printed and its formatting
commands obeyed. Each phrase is translated from post-
fix to infix for display. (The parentheses of a phrase are
saved in the extension of the node encoded one bit per
operator.)

As the tree is traversed for display, a table mapping
internal node addresses to external screen coordinates is
updated. This table is used both for cursor motion in the
editor, and at runtime for the trace feature.

D. Implementation of Debugging Features
The tracing, pacing, and single-step features are im-

plemented by taking appropriate action on the interpre-
tation of each goto leading to a new node.

When tracing, each goto uses the map from internal
node addresses to screen coordinates to determine
the new cursor position. If the map is not defined for a
given target node, then the cursor lies outside the window
and the program is redrawn with the new cursor position
centered in the window. Traced programs are never
permitted to run any faster than one cursor update per
refresh of the video screen in order to avoid stroboscopic
effects such as loops that appear to run backwards. When
pacing, the interpreter waits appropriately at each
goto before continuing execution. When stepping, the
interpreter waits for a resume command before contin-
uing.

The variable-monitoring feature is implemented in a
straightforward manner: a table mapping identifiers to
screen positions is maintained. Assignment to a moni-
tored variable is detected by the interpreter whereupon
the appropriate position is updated on the screen.

Reverse execution also has a straightforward imple-
mentation: the forward execution interpreter maintains
a history file of the flow of control and the values
destroyed by assignments to variables. The reverse exe-
cution interpreter restores values and updates the screen
to give the illusion of the program executing backwards.

VII. The Synthesizer Generator

Continuing research and development of the Synthe-
sizer will increase its power, versatility, and range of
application complementing the unique syntax-directed
mechanisms the environment already provides. For ex-
ample, global data flow analysis techniques will be used
to answer queries about static program structure, as in
[18]. The video display can be used to express static
relationships between components of a program; the
multiple fonts of a terminal can be exploited to highlight
regions of interest. For example, the programmer might
request the highlighting of all uses or all assignments to
a variable X. Alternatively, the analysis can be keyed to
the present location of the editing cursor. For example,
the programmer might request the highlighting of all
assignments to X that can account for its value at the
present cursor location, or all possible uses of X that can

572 Communications September 1981
of Volume 24
the ACM Number 9

be reached from the present cursor location.
To facilitate such further development, we are imple-

menting a language-independent system for generating
Synthesizer-like systems from a grammatical specifica-
tion of a given programming language. An attribute
grammar will be used to define the syntax, display
format, and semantics of each template and phrase. In
our application, where program units are inserted and
deleted in arbitrary order, semantic analysis must be
both incremental and reversible. For this purpose, attri-
bute grammars have the advantage of expressing seman-
tics and context-sensitive constraints applicatively and
on a modular basis; the arguments to each semantic
function are imported explicitly from neighboring nodes
in the derivation tree.

Because propagation of semantic information
through the tree is implicit in the formalism, an incre-
mental attribute evaluator can update the appropriate
attribute values in conjunction with each editing opera-
tion. In particular, because the attribute dependencies
are known, the evaluator can delete semantic informa-
tion automatically when program units are deleted; a
separate mechanism to undo semantics is not needed.
We have described one such incremental attribute eval-
uator in [8]; more recently, we have developed an opti-
mal-time incremental evaluator that runs in time pro-
portional to the number of attribute values that actually
must be changed [21].

Acknowledgments. Many people have participated in
the development of the Synthesizer. We are deeply in-
debted to A. Demers for many stimulating discussions
and for writing the LSI-11 operating system kernel; his
insights and assistance have been invaluable. We are
also extremely grateful for the generous help of J. Archer,
R. Conway, M. Fingerhut, D. Giles, C. Hauser, S.
Horwitz, D. Jacobs, R. Johnson, D. Krafft, S. Mahaney,
and R. Olsson.

Received 5/80; revised and accepted 4/81

References
1. Alberga, C.N., Brown, A.L., Leeman, G.B., Mikelsons, M., and
Wegman, M.N. A program development tool. Conference Record of
the 8th Ann. Symp. on Principles of Programming Languages,
Williamsburg, VA, Jan., 1981, 92-104.
2. Archer, J., Conway, R., Shore, A., and Silver, L. The CORE user
interface. Tech. Report No. TR80-437, Dept. of Comptr. Sci., CorneU
Univ., Ithaca, NY, Sept. 1980.
3. Balzer, R.M., EXDAMS-EXtendable Debugging and Monitoring
System, AFIPS Proc. V. 34 (SJCC 1969), 567-580.

4. Constable, R., and O'Donnell, M.J. A Programming Logic.
Winthrop, Cambridge, MA, 1978.
5. Conway, R. and Constable, R. PL/CS-A disciplined subset of
PL/I. Tech. Rept No. 76-293, Dept. of Comptr. Sci., Cornell 1976.
6. Conway, R. Primer on Disciplined Programming Using PL/CS.
Winthrop, Cambridge, MA, 1978.
7. Conway, R. and Gries, D. An introduction toprogramming--a
structured approach using PL/I and PL/C. Winthrop, Cambridge,
MA, 1979, 135-137.
8. Demers, A., Reps, T., and Teitelbaum, T. Incremental evaluation
for attribute grammars with application to syntax-directed editors.
Conference Record of the 8th Ann. Symp. on Principles of
Programming Languages, Williamsburg, VA, Jan. 1981.
9. Donzeau-Gouge, V., Huet, G., Kahn, G., Lang, B., and Levy, J.J.
A structure-oriented program editor. Tech. Rept, IRIA-LABORIA,
France 1975.
10. Engelbart, D.C. and English, W.K. A research center for
augmenting human intellect. AFIPS Proc. V. 33 (FJCC, 1968).
11. Feiler, P.H. and Medina-Mora, R., An incremental programming
environment. Dept. of Comptr. Sci., Carnegie-Mellon Univ.,
Pittsburgh, PA, April 1980.
12. Hansen, W. Creation of hierarchic text with a computer display.
Ph.D. Thesis, Comptr. Sci. Dept, Stanford University, Stanford, CA,
June 197 I.
13. Habermarm, A.N. An overview of the Gandalf project. Comptr.
Sci. Res. Rev. 1978-79, Carnegie-Mellon Univ., Pittsburgh, PA, 1979.
14. Hodgson, L.I., and Porter, M. BIDOPS: A bi-directional
programming system. Dept. of Comptr. Sci., Univ. of New England,
Armidale, N.S.W., Australia, 1980.
15. Joy, B. Ex Reference manual. Dept. of Electrical Eng. and
Comptr. Sci., Univ. California, Berkeley, CA, 1977.
16. Kurtz, T.E. BASIC. SIGPLAN Notices, Aug. 1978.
17. Lewis, J.W. and Porges, D.F. ALBE/P: a language-based editor
for Pascal. Dept. of Comptr. Sci., Yale Univ., New Haven, CT.
18. Masinter, L.M. Global program analysis in an interactive
environment. Xerox PARC Report SSL-80-1, Jan. 1980.
19. Mikelsons, M. and Wegman, M.N. PDE1L: The PL1L program
development environment principles of operation. Res. Rept RC8513,
IBM, Thomas J. Watson Research Center, Yorktown Heights, NY,
Nov. 1980.
20. Pinc, J.H. and Schweppe, E.J. A Fortran language anticipation
and prompting system. Proc. ACM Nat. Conf., Atlanta, Georgia,
1973.
21. Reps, T. Optimal-time incremental semantic analysis for syntax-
directed editors. Tech. Report No. 81-453, Dept. of Comptr. Sci.,
CorneU University, Ithaca, NY, March 1981.
22. Skinner, G. Ged user documentation. Dept. of Comptr. Sci.,
Cornell Univ., Ithaca, NY,
23. Teitelbaum, T. A formal syntax for PL/CS. Tech Rept 76-281,
Dept. of Comptr. Sci., Cornell Univ., Ithaca, NY, 1976.
24. Teitelbaum, T. The Cornell Program Synthesizer: a
microcomputer implementation of PL/CS. Tech. Report No. TR79-
370, Dept. of Comptr. Sci., Cornell Univ., Ithaca, NY, June 1979.
25. Teitelbaum, T. The Cornell program synthesizer: A tutorial
introduction. Tech. Report No. TR79-381, Dept. Comptr. Sci.,
Cornell Univ., Ithaca, NY, July 1979, Revised Jan. 1980.
26. Teitelman, W. INTERLISP reference manual. Xerox PARC,
1974.
27. Teitelman, W. A display-oriented programmer's assistant. Xerox
PARC, March 1977.
28. Wilcox, T.R., Davis, A.M., and Tindall, M.H. The design and
implementation of a table driven, interactive diagnostic programming
system. Comm. ACM 19, 11 (Nov. 1976), 609-616.
29. Zelkowitz, M. Reversible execution as a diagnostic tool. Ph.D.
Thesis, Dept. of Comptr. Sci, Cornell Univ., Ithaca, N.Y., Jan. 1971.

573 Communications September 1981
of Volume 24
the ACM Number 9

