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Programs are not text; they are hierarchical compo- 
sitions of computational structures and should be edited, 
executed, and debugged in an environment that consist- 
ently acknowledges and reinforces this viewpoint. The 
Cornell Program Synthesizer demands a structural per- 
spective at all stages of program development. Its sepa- 
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grammar for the programming language. Its full-screen 
derivation-tree editor and syntax-directed diagnostic in- 
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I. Introduction 

The Cornell Program Synthesizer is an interactive 
programming environment with integrated facilities to 
create, edit, execute, and debug programs. Our goal was 
to develop a unified programming environment that 
stimulates program conception at a high level of abstrac- 
tion, promotes programming by step-wise refinement, 
spares the user from mundane and frustrating syntactic 
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details while editing programs, and provides extensive 
diagnostic facilities during program execution. 

We attained these goals by making the Synthesizer 
syntax-directed; both editing and execution are guided 
by the syntactic structure of the programming language. 

The grammar of the programming language is em- 
bodied in a collection of templates predefmed for all but 
the simplest statement types. Programs are created top- 
down by inserting new statements and expressions at a 
cursor position within the skeleton of previously entered 
templates. In general, the editing cursor can only be 
moved from one template to another and from one 
template to its constituents, and not simply from one line 
of text to another. Templates reinforce the view that a 
program is a hierarchical composition of syntactic ob- 
jects, rather than a sequence of characters. 

Runtime diagnostic facilities are likewise syntax-di- 
rected. Discrete computational units of execution corre- 
spond exactly to the syntactic units of the editor. When 
tracing, the screen cursor indicates the location of the 
instruction pointer in the source code as the program 
executes. When single-stepping, the user controls execu- 
tion with respect to the hierarchical template structure 
of the program. The Synthesizer consistently demands a 
structural perspective. 

The Synthesizer's editor is a hybrid between a tree 
editor and a text editor. Templates are generated by 
command, but expressions and assignment statements 
are typed one character at a time. It is impossible to 
make errors in templates because they are predefmed. 
Errors in user-typed text are detected immediately be- 
cause the parser is invoked by the editor on a phrase-by- 
phrase basis. By precluding the creation of syntactically 
incorrect files, the Synthesizer lets the user focus on the 
intellectually challenging aspects of programming. 

Because code is generated each time a template or 
phrase is inserted, execution can follow editing without 
delay. Execution is suspended when a missing program 
element is encountered, but can be immediately resumed 
after the required code has been inserted. Thus, incom- 
plete programs are executable; program development 
and testing can be conveniently and rapidly interleaved. 

The design and implementation of the Program Syn- 
thesizer began in May 1978, and demonstrable prototype 
versions were operational under UNIX as well as on 
Terak (LSI-11) microcomputers by December 1978 [24, 
25]. The Synthesizer, first used in classes at Cornell in 
June 1979, currently serves about 1500 of our introduc- 
tory programming students a year. The Synthesizer has 
also been adopted for elementary programming instruc- 
tion at Rutgers University, Princeton University, and 
Hamilton College. 

The first language implemented for the Synthesizer 
was PL/CS, an instructional dialect of PL/I [5, 23]. 
PL/CS had previously been defined to serve as a vehicle 
for research on batch-oriented, error-correcting compil- 
ers [6] as well as for program verification [4]. We are 
currently developing a version of the Synthesizer for 
Pascal. 
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Certain individual features of the Synthesizer have 
appeared in previous systems: 

-- immediate phrase-by-phrase syntax analysis in BASIC 
[16], 

--syntax-directed, program generation in EMILY [12] 
and the Fortran Language Anticipation and 
Prompting System [20], 

--full-screen editing in the RAND editor, the Berkeley 
display editor ex[15], and ged[22], 

--tree-editing in INTERLISP [26] and MENTOR [9], 
--selective hierarchical file display at SRI [10], 
--windowing in the Programmer's Assistant [27], 
--screen-oriented execution monitoring in CAPS [28], 

and 
--reverse execution in EXDAMS [3], P L / C  [29] and 

BIDOPS [14]. 

The combination of these facilities in the Synthesizer has 
made it a powerful and responsive programming tool. 

Related work in progress on language-specific pro- 
gramming environments includes LISPEDIT [1], and 
PDE1L [19] at IBM, Gandalf  at CMU [11, 13], ALBE at 
Yale [17], and COPE at Cornell [2]. 

k > 0  
'not positive' 

Both phrases and templates can be inserted into other 
templates at locations designated by placeholders, re- 
placing the given placeholder. This nesting of  templates, 
one within another, can occur to any depth. 

All modifications of program text occur relative to the 
current position of  the editing cursor. Although the cursor 
can be moved anywhere within a phrase, it can only be 
positioned at the leftmost symbol of a template or pla- 
ceholder. The upper leftmost symbol of a template de- 
notes the entire template including its constituents. The 
cursor never appears within the key words and punctua- 
tion marks of a template or in the margins. In general, 
the editing cursor is advanced from one template to 
another and from one template to its constituents. It is 
possible to position the cursor only where insertions and 
deletions are allowed. 

Thus, the Synthesizer views the following partially 
developed file segment as a hierarchical composition of 
nested templates and phrases rather than three indepen- 
dent lines of text. The cursor, indicated by 17, is posi- 
tioned at the statement placeholder. 

II. Program Editing 

Programs are edited by inserting and deleting at the 
cursor position in a screen of text. The body of  text 
expands either horizontally or vertically, as necessary, to 
accommodate insertions; it contracts when characters or 
lines are deleted. The screen serves as a window into a 
file. Whenever the cursor moves to a location in the file 
not contained on the screen, the file shifts automatically 
to include the new cursor position within the window. 
All screen modifications are essentially instantaneous on 
a high speed video terminal. 

A. Files, Templates, Phrases, and the Cursor 
A Synthesizer file is an object with hierarchical struc- 

ture, not just a sequence of characters and lines. Files 
are composed of  two kinds of elements: templates and 
phrases. 

A template is a predefmed, formatted pattern of 
characters and punctuation marks. The key words, punc- 
tuation, and indenting format of  a template cannot be 
altered. The template provides an immutable framework 
for the insertion of  additional program units. Placehold- 
ers identify the locations where these insertions are per- 
mitted. Each placeholder designates the syntactic class 
of  permissible insertions. For example, the template for 
a conditional statement is: 

IF (condition) 
THEN statement 
ELSE statement 

where condition and statement are placeholders. 
A phrase is an arbitrary sequence of typed symbols. 

For example, each of  the following lines is a phrase: 

I F ( k > O )  
THEN D']tatement 
ELSE PUT SKIP LIST ( 'not positive' ); 

The cursor control keys move the cursor forward and 
backward through the program. For want of  better 
names, we refer to the keys as left, 1 fight, up, and down. 
Despite this nomenclature, the effect of  the control keys 
is defmed with respect to the one-dimensional reading 
order of  a program, not the two-dimensional coordinate 
system of its display. Thus, both fight and down move 
the cursor forward through the program; left and up 
move it backwards. Because much of the program text is 
immutable, the cursor jumps in logical increments, not 
character by character. Although fight and down both 
move the cursor forward, their units of  increment differ. 

Up and down move the cursor one program element 
at a time, stopping only once per template, phrase, or 
placeholder. The following file segment shows with un- 
derlines all the possible stopping points for the cursor 
when the up and down keys are used: 

I F ( k  > 0 ) 
THEN statement 
ELSE PUT SKIP LIST C_not positive'); 

Left and fight differ from up and down by also moving 
the cursor to every character within a phrase: 

I F ( k > 0  ) 
THEN statement 
ELSE P_UT SKIP LIST ('not positive' ); 

Boldface words such as left denote single keys of the terminal. 
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Other commands move the cursor in logical incre- 
ments greater than up and down according to the nesting 
structure of the templates. The two-key sequence long 
down advances the cursor to the next element at the same 
structural level; the sequence long up moves backward 
similarly. The diagonal key moves the cursor to the 
immediately enclosing program element. The sequence 
long diagonal moves the cursor to the top of the program. 

B. Insertions 
Files are created top-down by inserting templates 

and phrases into existing templates where they are in- 
stantly displayed on the screen. Templates are not typed: 
they are generated by command. Each insertion occurs 
at the position of  the editing cursor. Insertions can be 
made in any order, but only when the cursor is located 
at a placeholder. In order to insert the template 

PUT SKIP LIST ( list-of-expressions ); 

into 

I F ( k > 0 )  
THEN [~]taternent 
ELSE PUT SKIP LIST ( 'not positive' ); 

the user types the command .p, and then strikes return. 
The insertion is instantly displayed on the screen, with 
the cursor automatically advanced to the placeholder 
list-of-expressions: 

I F ( k > 0 )  
THEN PUT SKIP LIST ([l]ist-of-expressions); 
ELSE PUT SKIP LIST ( 'not positive' ); 

A template inserted by command is always syntactically 
correct for two reasons: 

(1) The command is validated to guarantee that it 
inserts a template permitted at the current cursor 
position. (For example, typing the command .p with 
the cursor positioned at list-of-expressions is an 
error.) 

(2) The template is a predefined unit. Because it is not 
typed, it contains no typographical errors. 

Phrases, unlike templates, are explicitly typed at the 
position of the editing cursor. As the first character of  a 
phrase is typed, the placeholder disappears. The phrase's 
right context shifts correspondingly, one character at a 
time, to accomodate the insertion. In the example above, 
");" is the right context of list-of-expressions. It shifts one 
character at a time to the right as a phrase is typed at 
list-of-expressions. Phrases and their right contexts are 
automatically continued on consecutive lines, as neces- 
sary: 

I F ( k > 0 )  
THEN PUT SKIP LIST ( the number k is strictly g 

reater than zero'[-] ); 
ELSE PUT SKIP LIST ( 'not positive' ); 

Because phrases are typed by the user, their syntactic 

correctness must be validated. Typed text is parsed as 
soon as the cursor is directed away from the phrase. 
Thus, the moment the user strikes return in the example 
above, the missing quote is detected, an error message is 
printed on the top line of the screen, and the editing 
cursor is positioned as close to the site of error as possible. 
The display would then appear: 

I F ( k > 0 )  
THEN PUT SKIP LIST ( If]he number k is strictly g 

reater than zero' ); 
ELSE PUT SKIP LIST ( 'not positive' ); 

In this case, because the error detection mechanism 
properly positions the cursor, the required quotation 
mark can be inserted in a single keystroke. The phrase 
and its right context shifts right and down in response to 
this insertion: 

I F ( k > 0 )  
THEN PUT SKIP LIST ( 'l'flhe number k is strictly 

greater than zero' ); 
ELSE PUT SKIP LIST ( 'not positive' ); 

Directing the cursor away from the phrase invokes the 
parser again. Because the phrase is now syntactically 
correct, the cursor is positioned as directed. Phrases are 
prettyprinted and redisplayed after being parsed success- 
fully. 

C. Modifications 
Structural changes to the program are accomplished 

by removal and insertion of whole templates and phrases. 
This highly disciplined mode of modification guarantees 
the structural integrity of the program at every step. The 
position of the editing cursor always denotes a whole 
program unit: template, phrase, or placeholder. Thus, it 
is not necessary to specify line limits in order to remove 
an entire program unit: 

delete (move the template or phrase to the file 
DELETED), 

clip (move the template or phrase to the file 
CLIPPED), 

.mv f (move the template or phrase to the file f). 

After a program unit has been removed, the display is 
immediately redrawn and the original placeholder reap- 
pears. The editing cursor can then be repositioned and 
the file segment reinserted: 

insert (insert the contents of CLIPPED at the current 
cursor position), 

.ins f (insert the contents of file f at the current 
cursor position). 

In the example below, because the cursor is positioned 
on the IF, it denotes the whole code segment shown: 

[I]F ( k  > 0 )  
THEN PUT SKIP LIST ( 'the number k is strictly 

greater than zero' ); 
ELSE PUT SKIP LIST ( 'not positive' ); 
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Suppose we wish to enclose this IF-statement within a 
WHILE-loop. In a conventional, line-oriented, text edi- 
tor, the lines 

DO WHILE ( condition ); 
END; 

would be inserted before and after the IF-statement in 
separate editing steps. The first of these editing steps 
would drastically alter the structure of  the program; in 
fact, it would make it temporarily incorrect due to the 
unbalanced DO-END pair. Such modifications have 
been the bane of  incremental compilation schemes. 

By contrast, in the Synthesizer, the two lines are part 
of one template and are therefore inserted simultane- 
ously. First, the IF-statement is temporarily removed 
from the file, leaving the cursor positioned at a (state- 
ment) placeholder: 

[~statement} 

Next, the WHILE-loop is inserted and the cursor ad- 
vanced into the body of the loop to a subordinate {state- 
ment) placeholder: 

DO WHILE ( condition ); 
[~statement} 
END; 

Finally, the IF-statement is inserted into the body of the 
loop, automatically indented further to the right: 

DO WHILE ( condition ); 
[ ~ F ( k > 0 )  

THEN PUT SKIP LIST ( 'the number k is strict 
ly greater than zero' ); 

ELSE PUT SKIP LIST ( 'not positive' ); 
END; 

The special function keys enable this manipulation to 
take place in a sequence of  just seven keystrokes: 

cli O (remove the IF-statement), 
.dw return (insert the WHILE-loop), 
return (move the cursor to i{statement)), 
insert (reinsert the IF-statement within the 

WHILE-loop). 

The reverse manipulation, extracting the IF-statement 
and discarding the WHILE-loop, would require only 
four keystrokes: [ 

clip (remove the IF-statement), 
diagonal (move the cursor to DO), ] 
delete (delete the WHILE-loop), 
insert (reinsert the IF-statement). 

Individual phrases are modified by first positioning 
the cursor anywhere within the phrase, and then modify- 
ing individual characters. As each change is typed, the 
context surrounding the phrase adjusts instantly. Char- 
acter insertions are made simply by typing; there is no 
separate insert mode. Using special function keys, it is 
possible to erase characters forwards or backwards either 

one at a time or all the way to the boundary of the 
phrase. Whenever modified, a phrase is checked for 
syntactic correctness, exactly as if it had just been intro- 
duced for the first time. If  every character of  a phrase is 
deleted, the appropriate placeholder automatically reap- 
pears. 

Templates, unlike phrases, cannot be modified--they 
are immutable. Insertions are permitted within templates 
only at the positions designated by placeholders. The 
predefmed key words and punctuation marks of a tem- 
plate cannot be changed. In fact, it is not even possible 
to position the editing cursor within the characters of  a 
template. 

An initial and overriding goal of  the Synthesizer was 
to guarantee that programs were completely correct at 
every stage of their development. Any modification that 
introduced an error was to be prevented. Context-sensi- 
tive constraints of the syntax forced us to retreat from 
that position. For example, consider the problem of 
changing the type of a program variable. Because a key 
word such as FIXED is part of an immutable declaration 
template, it is necessary to delete one declaration and 
insert another. However, the implemented dialect of 
PL/ I  requires that all variables be declared; deleting the 
declaration would introduce undeclared variable errors 
in every phrase referencing the variable. 

Rather than having a separate mechanism to make 
such modifications atomic operations, the Synthesizer 
tolerates invalid phrases, highlighting them with the 
complemented character font until corrected. Thus, the 
moment a declaration is deleted, all phrases containing 
the undeclared variable are highlighted. When the new 
declaration is inserted, all are redisplayed in the normal 
font. 

To illustrate this, consider deleting the declaration of 
the variable temp from: 

DECLARE ( temp ) FIXED; 
DECLARE ( m, n ) FLOAT; 
temp= m; 
m = n; 
n=  temp; 

Errors introduced in the first and third assignment state- 
ments because of undeclared variables are highlighted: 

DECLARE ( m, n ) FLOAT; 
temp= m; I 
m = n; 
n=  temp; I 

When temp is redeclared, uses of  temp become correct 
and are again displayed in the normal font: 

DECLARE ( m, n, temp ) FLOAT; 
temp= m; 
m = n; 
n= temp; 

Users often forget declarations until reminded by an 
undeclared variable error message. Tolerance of invalid 
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phrases simplifies correction of  this common error. When 
an error is detected in a phrase, any movement of  the 
cursor away from the phrase overrides the error preven- 
tion mechanism and highlights the invalid phrase. The 
proper declaration can be inserted at any time. 

As an additional benefit, the ability to override the 
error prevention mechanism allows free-form ideas to be 
sketched temporarily in the file without regard to the 
syntax of the programming language. These informal 
program notes and plans remain highlighted until they 
are either completed correctly or deleted. Although in- 
valid phrases are permitted in programs, the overall 
structural integrity of  files is maintained because the 
correct nesting of  templates is always enforced. 

D. Syntactic Iteration and Optional Placeholders 
As described thus far, creating a file in the Synthe- 

sizer is exactly analogous to deriving a sentence with 
respect to a context-free grammar for the given program- 
ming language. Although a nontechnical vocabulary has 
been adopted in the presentation, the following corres- 
pondencies should be clear: 

placeholder 
template 
command 
insertion 
file 
cursor position 
file display 

nonterminal symbol 
right side of  a production 
the name of  a production 
derivation 
derivation tree 
node of  derivation tree 
sentential form 

In addition, the editor incorporates the usual metasyn- 
tactic formalism for syntactic iteration: 

(placeholder) zero or more occurrences of  
placeholder 

Conceptually, each item in such a list is preceded and 
followed by {placeholder}. However, these placeholders 
are only displayed when the cursor is positioned there 
(or when there are no occurrences in the list). In fact, 
return is the cursor motion that means: 

advance the cursor to the next template, phrase, or 
placeholder including iterated placeholders. 

The following sequence of  display snapshots illustrates 
repeated use of  return to advance the cursor: 

Original After 1 After 2 After 3 
screen return returns returns 

[~]= 0; x= 0; x= O; x= 0; 
y= 0; [~statement} F ] =  0; y=  0; 

y=  0; ~]statement} 

Optional components of  templates are denoted by square 
brackets: 

[placeholder] zero or one occurrence of  
placeholder 

In order to avoid excessive clutter on the screen, such 
optional placeholders are not normally displayed. A 
separate cursor motion is used to reveal them and to 
position the cursor there. For  example, from 

[~]O WHILE ( condition ); 
(statement} 
END; 

the move-to-optional-component command advances 
the cursor to 

[~ loop-name:] DO WHILE ( condition ); 
(statement} 
END; 

E. Comment Templates 
The limited number of  lines displayed on video 

terminals hampers editing large files. Comment templates 
provide a mechanism for hiding details of  a file, thereby 
allowing more of  the program to be displayed. The 
comment template also provides a mechanism for con- 
trolling the speed as well as the scope of  runtime diag- 
nostic monitoring. A comment template is a single pro- 
gram unit expressing a program specification together 
with its refinement [7]. It is the structural unit used to 
express computational abstractions in programs: 

/*  comment * / 
(statement} 

The two placeholders, comment and (statement}, are 
part of  one template. The (statement} part of  the tem- 
plate is indented to show that it is the refmement of  the 
specification provided in the comment part. Thus, a 
comment is not an arbitrary lexical insertion into the 
program; rather, it is a structural unit in its own right. 
The scope of  a comment is the list of  statements in its 
refinement. 

The display of  the refinement of  a comment can be 
suppressed simply by striking the ellipsis key. For ex- 
ample, 

/ *  Swap m and n * /  
temp= m; 
[~-l= n; 
n= temp; 

PUT SKIP LIST (m, n); 

When entering templates and phrases, each insertion 
terminated by return has the desired effect of  advancing 
the cursor to the next possible placeholder for an inser- 
tion. Cursor motions other than return do not reveal 
iterated placeholders. 

would be redisplayed instantly as 

/ *  S w a p m a n d n * /  
['~.. 

PUT SKIP LIST (m, n); 
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Having hidden the details of the code, more of the 
program fits on the screen while the comment remains 
displayed to specify what the hidden refinement does. 
The hidden code at . . . can easily be revealed by 
striking ellipsis again. Thus, comment templates provide 
selective display of the hierarchical structure of files. The 
ellipsis feature is intentionally coupled with comment 
templates in order to encourage program documentation. 

Comment templates serve a purpose during execution 
as well as editing. During program execution . . . .  is 
considered a single atomic step for the runtime flow- 
tracing and pacing features described in the next section. 
For example, suppose the execution pace were set at a 
half-second per step. Then . . . .  would be executed in as 
close to half a second as possible, regardless of the 
complexity of the statements hidden below the . . . .  
Thus, judicious use o f . . .  provides selective control of  
the speed and scope of diagnostic monitoring. 

The ellipsis feature of comment templates provides 
an incentive to use comments during program develop- 
ment, rather than after the fact. Because it rewards a 
skillful, precise use of comments, this feature promotes 
good programming style and method. 

III. Execution of Programs 

Because programs are translated and maintained in 
interpretable form during editing, there is no compilation 
delay between editing and execution. Whenever execu- 
tion is suspended, control returns to the editor, a printed 
message explains why execution was suspended, and the 
file cursor is positioned in the source program at the 
point of suspension. It is possible to run incomplete 
programs. Execution is suspended whenever a place- 
holder is encountered and can be resumed after the 
missing program element has been inserted. After most 
editing changes to a program, it is still possible to resume 
execution; certain changes, such as modifying a decla- 
ration, destroy the possibility of  resuming execution. 

The high transmission rate of a video display termi- 
nal allows the incorporation of unique runtime debug- 
ging aids. Display-oriented monitoring facilities provide 
a window into the computer through which one observes 
a running program. Their power is enhanced when com- 
bined with syntax-directed commands for controlling 
execution. 

The flow of execution through the program can be 
traced using the screen cursor to indicate the location of 
the instruction pointer at each moment. The stopping 
places for the cursor during flow tracing correspond to 
the structural units of  the editor--one cursor jump for 
each template and phrase. Thus, the editor and the 
interpreter share a unified view of program structure-- 
separate editable units are seen as separate computa- 
tional units. During flow tracing, the program display is 
automatically redrawn whenever control passes outside 
the display window or a procedure is called. Judicious 

use of the ellipsis feature can eliminate the trace of 
uninteresting sections of code and minimize undesirable 
redrawing of the program display. 

Flow tracing at full speed provides a visible perform- 
ance measure: the distribution of light intensities at the 
various cursor locations clearly indicates the fraction of 
time spent there. A pace feature allows the user to slow 
execution to any speed. 

A syntax-directed single-step feature permits manual 
control of  program execution. There are five ways to 
specify the step size of each resumption in terms of the 
template and phrase structure of the file 

resume execute one step of  the current program 
element, 

long resume execute all steps of the current program 
element, 

return complete a list of statements, 
diagonal complete the enclosing template, 
long diagonal complete the enclosing procedure. 

Consider stepping through the following program seg- 
ment: 

DO WHILE ( k < n ); 
[i]F ( k>0 ) 

THEN PUT SKIP LIST ( 'the number k is strict 
ly greater than zero' ); 

ELSE PUT SKIP LIST ( 'not positive' ); 
k = k +  1; 
END; 

resume would advance the cursor to k>0, long resume 
would advance the cursor to k= k + 1; by executing the 
entire IF-statement, return would complete the state- 
ments in the body of the loop and position the cursor at 
k<n, diagonal would position the cursor at DO until the 
loop is completed, and long diagonal would position th~ 
cursor at the top of the procedure until control returns to 
the calling procedure. 

In this way, the Synthesizer maintains a unified view 
of  both static and dynamic program structure. The syn- 
tactic units of the editor are the computational units of  
the interpreter. 

Selected variables can be monitored during execution 
by displaying their names and values in a separate 
partition of the screen. The result of each assignment to 
a variable immediately appears on the screen replacing 
the previous value displayed for that variable. Currently, 
only one element of an array is displayed at a time. A 
least-recently updated replacement strategy is used when 
there is not enough room to display all monitored vari- 
ables. 

The facilities described above allow one to observe 
an error as it occurs. The pace feature, the step feature, 
and the pause statement serve as a throttle, providing 
control over the rate of'execution, and thus providing a 
better chance for seeing errors. The program can be run 
at top speed until reaching the vicinity of the bug, 
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whereupon it can be paced or single-stepped until the 
error is observed. 

It is easy to overshoot the mark, so the Synthesizer 
has a gear shift as well; a recently implemented reverse 
execution facility allows the program to run backwards 
a bounded number of steps. As with forward single- 
stepping, the step-size of each backwards step is specified 
in terms of the syntactic structure. Using the visual 
feedback provided by flow tracing and variable moni- 
toring, and by alternating the direction of execution in 
the vicinity of a bug, the user is able to converge swiftly 
and precisely on the error. While reverse execution ca- 
pabilities have been implemented by others [3, 14, 29], 
the novelty in the Synthesizer is the presence of enough 
immediate visual feedback to make the feature meaning- 
ful as a real-time control mechanism. 

IV. Advantages of Templates 

The Synthesizer's use of  templates is central to 
achieving our design goals. The integrated behavior of 
templates and the cursor enforces the proper view that 
a program is a hierarchy of  structurally nested compo- 
nents. Each template insertion is syntactically correct 
because template commands are only valid in appropri- 
ate contexts, and the templates are predefmed. A pro- 
gram developed on the Synthesizer is always well- 
formed, regardless of  whether it is complete or not. 

Templates eliminate mundane tasks of program de- 
velopment. Typographical errors in structural units are 
impossible; indentation is automatic, both when a tem- 
plate is introduced and when it is moved, and errors 
cannot be introduced by modification because templates 
are immutable. 

Placeholders in templates serve both as prompts and 
as syntactic constraints, by identifying places that can or 
must be refmed, as well as by restricting the range of 
choices to legitimate insertions. The template-generated 
skeleton simplifies incremental compilation by bounding 
the extent of the program affected by modifications. 

Template insertion is an economical mode of pro- 
gram entry with a corresponding economical implemen- 
tation. Short commands insert long templates; because 
so few keystrokes are needed, typing mistakes are effec- 
tively minimized, and program entry is rapid. When 
statements are synthesized by command, there is no need 
for a parser to analyze the text. Thus, a template-based 
environment is ideal for microcomputers where space is 
in short supply. 

Templates correspond to abstract computational 
units; because they are both inserted and manipulated as 
units, the process of programming begins and continues 
at a high level of abstraction; the user is never mired in 
syntactic detail. At runtime, templates provide a frame- 
work for the structured, single-step debugging facility. 
Thus, templates provide a unified view of both static and 
dynamic program structure. 

V. Integration of Text and Structure 

The Synthesizer is based on the premise that pro- 
grams are not text. Although we want to promote the 
structural perspective, we recognize that abstract pro- 
grams must be viewed and manipulated with respect to 
some concrete textual representation. The hybrid design 
of the Synthesizer seeks a pragmatic balance between 
the extremes of a derivation-tree editor and a text editor. 

We believe we have successfully interleaved struc- 
tural and textual features so that shifts between the two 
perspectives occur smoothly and spontaneously. Parti- 
tioning a language such as PL/ I  into templates and 
phrases seems natural and lets each construct be edited 
in an appropriate manner. User competence and comfort 
within the environment is enhanced by the persistence 
and uniformity of the template-phrase distinction 
throughout the system. The dual interpretation of the 
cursor as both text pointer and tree pointer seems intu- 
itive: When the cursor is moved, it is perceived as a point 
stepping through program text in increments dictated by 
syntactic structure; when it stops, the cursor designates 
an entire structure that can be clipped or deleted as a 
unit. 

Although, on the whole, we believe the Synthesizer 
accomplishes a harmonious integration of text and struc- 
ture, occasionally, tension between the two perspectives 
leads to confusion and some inconvenience. One com- 
mon difficulty stems from the fact that different abstract 
objects have identical representations as text. For ex- 
ample, consider trying to move the phrase k = 0 to 
statement in the code segment below: 

IF ( k  = 0 )  
THEN statement 

Although k = 0 is textually correct as an assignmem 
statement, 2 it cannot be moved to statement because it is 
an instance of the syntactic class condition. By preventing 
such implicit syntactic transformations, a structure editor 
may detect modifications with unforeseen and unin- 
tended consequences. However, when the consequences 
are intended, requiting a special mechanism to divorce 
a phrase of text from its syntactic classification is incon- 
venient. 

A second example of tension between the textual and 
structural perspectives is the result of our decision to 
differentiate between declarations of formal parameters 
and local variables in the procedure template: 

name: PROCEDURE (parameters); 
{parameter declaration ) 
{declaration ) 
{statement ) 
END name; 

Although the templates for declaring parameters and 
local variables are distinct, 

2 We ignore the missing semicolon for the sake of discussion. 
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DECLARE ( list-of-parameters ) FIXED; 
DECLARE ( list-of-variables ) FIXED; 

once expanded they appear the same, as in: 

name: PROCEDURE ( j )  
DECLARE ( j )  FIXED; 
DECLARE ( k ) FIXED; 
(statement) 
END name; 

Now suppose we wish to change k to be a parameter of  
the procedure. Because k is declared as a local variable, 
we cannot just add it to the parameter list on the first 
line, even though the resulting program would be correct 
as text. This is particularly confusing because the decla- 
ration for k not only looks like a parameter declaration 
but appears to be in the right place. 

This example also illustrates an interplay in the 
Synthesizer between incremental error detetction and 
left-to-right error detection. Whenever a phrase is created 
or modified, the Synthesizer's local incremental error 
detection mechanism verifies that the new phrase is 
consistent with the previous state of the program. Any 
inconsistency leads to an immediate error message. As 
we have seen, adding k to the parameter list is an error 
because, at the time the change is attempted, k is already 
declared to be a local variable. 

However, when the user overrides the local error 
prevention mechanism and allows an invalid phrase to 
remain in the program, the Synthesizer abandons the 
incremental viewpoint in favor of a static, left-to-right 
notion of correctness. The incrementally incorrect pa- 
rameter list j,k turns out to be correct, whereas the 
declaration of k as a local variable is invalid because k 
already appears as a parameter: 

name: PROCEDURE (j, k ); 
DECLARE ( j )  FIXED; 
DECLARE ( [-~ ) FIXED; 
(statement) 
END name; 

The declaration for k must now be moved from the 
(declaration) part of the procedure template to the 
(parameter declaration) part. However, as in our first 
example, the problem is not just a question of the tem- 
plate being in the wrong position. The existing declara- 
tion is bound to the syntactic category (declaration) and 
cannot be moved to any other placeholder; it must be 
deleted and a new parameter declaration created. 

A third example of inconvenience in the Synthesizer's 
hybrid design is a result of  the immutability of  templates. 
Modifications that change only a few characters of  pro- 
gram text may require a significant amount of restruc- 
turing. For example, if the program were text, a WHILE- 
loop could be changed into an UNTIL-loop by substi- 
tution of  just five characters. In the Synthesizer, this 
change must be accomplished by moving the constituents 
of the existing WHILE-template into a newly inserted 
UNTIL-template. Although such modifications can be 

made rapidly using the clip, insert, and delete keys, they 
are admittedly awkward. 

To alleviate such inconveniences imposed by struc- 
tural constraints, we are building mechanisms that 
streamline these operations, yet enforce a discipline that 
emphasizes the abstract computational meaning of pro- 
gram units. For example, template-to-template transfor- 
mations allow controlled changes in a single step. Posi- 
tioning the cursor at a DO WHILE and typing the 
command .du could transform a WHILE-template into 
an UNTIL-template, leaving its constituents in corre- 
sponding places. Similarly, a local variable declaration 
could be transformed into a parameter declaration and 
repositioned in one step. 

Besides purely syntactic transformations, a more 
powerful collection of semantics preserving transforma- 
tions is also possible. For example, in one operation, 

DO j =  k to n by 1; 
(statement) 
END; 

could be transformed into one of  several equivalent 
alternative representations: 

j =  k; 
DO WHILE (j  ___ n ); 

(statement) 
j = j + l ;  
END; 

j =  k; 
I F ( j  <_n) 

THEN DO UNTIL (j  > n ); 
(statement) 
j = j +  1; 
END; 

A similar transformation capability would allow proce- 
dures to be extracted from in-line code. The user would 
specify a section of  program and the variables to become 
formal parameters. Then, in one operation, 

[ ] *  Swap m and n * /  
temp= m; 
m= n; 
n= temp; 

would be replaced by 

[]al l  swap (m, n); 

with the appropriate procedure created automatically: 

/ *  Swap m and n * /  
swap: PROCEDURE ( m, n ); 

DECLARE ( m, n ) FLOAT; 
DECLARE ( temp ) FLOAT; 
temp= m; 
m = n; 
n=  temp; 
END swap; 

Such transformations will add considerable editing 
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power but retain the disciplined viewpoint of the rest of 
the system. 

A final example illustrates an awkwardness arising 
not from the structural constraints of the Synthesizer, 
but from the textual constraints of a language whose 
concrete syntax was defined to be unambiguous for 
parsers. Inserting the template 

IF ( condition ) 
THEN statement 

into 

IF ( condition ) 
THEN [~]tatement 
ELSE PUT LIST ( 'whose else am i?' ); 

leads to an inconsistency between the explicitly derived 
structure (an IF-THEN within an IF-THEN-ELSE) 
and the structure implied by the parser-oriented concrete 
syntax (an IF-THEN-ELSE within an IF-THEN). Al- 
though tempted to adopt the derived interpretation (be- 
cause prettyprinting easily distinguishes one interpreta- 
tion from the other), we elected, instead, to maintain 
compatibility with PL/I. Therefore, we prevent such an 
insertion and require that the user provide a compound 
statement explicitly. 

There are many possible alternative designs, among 
them the following four: a) the compound statement 
could be inserted automatically when necessary; b) a 
compound statement could be displayed automatically 
when necessary; c) the IF-THEN-ELSE template could 
be defined as 

IF ( condition ) 
THEN DO; {statement} END; 
ELSE DO; {statement} END; 

d) the IF-THEN template could be eliminated thereby 
requiring that every conditional statement have an 
ELSE-clause. In this final case, the display of an empty 
ELSE clause could be suppressed unless necessary for 
disambiguation. 

VI. Implementation 

A. File Trees 
Synthesizer files are represented internally as execut- 

able derivation trees. Each template or phrase is repre- 
sented in this tree by a separate node. The pointers 
connecting nodes are, in fact, goto instructions for the 
interpreter; the null pointer is a halt instruction. Nodes 
are variable length; each is composed of three sections: 

I °xt°nsi°n I ooao I  o t uation I 

The extension identifies the node type and contains any 
other information needed to generate the display of the 
node bu tno t  necessary to execute it. The code section 
contains interpretable op-codes for executing the node. 
The entry point of the node is the first byte of the code 
section. The continuation contains a goto linking this 
node to the next op-code to be executed. The target of 
this goto is either the entry point of a sibling node or an 
interior op-code of a parent node. 

For example, the template 

IF ( condition ) 
THEN statement 
ELSE statement 

has the internal representation given below. 

~ from previous op-code to next op-code T 

[ IF [halt I skip_2_on~false [halt I skip_l [ halt ] g o t o ] [  

This node is tagged in the extension as an IF-node. It contains op-codes that implement the proper control flow and 
three halt instructions that represent the unexpanded placeholders. When the template has been expanded to 

I F ( k > 0 )  
THEN statement 
ELSE PUT LIST ( list-of-expressions ); 

a link to Polish postfix code for the phrase k > 0 replaces the first halt op-code, and a link to the node for the PUT- 
statement replaces the third halt op-code. A halt instruction remains for the other statement placeholder: 

~from previous op-code to next op-code I 

] IF ] g o t o ~ ,  ~ p ~ 2 _ . o n ~ f a l s e  I halt , s k i p _ _ l _ ~  ] ~ .  ] gOtoi 

[ condition I code for k > 0 ] g o t , , , ]  [PUT I halt ] got 
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The interpreter is classical: it executes straight line code 
and goto instructions. It is completely blind to the struc- 
ture of the tree and requires neither recursion nor a stack 
to execute a file tree. Access to variables and procedure 
definitions is through a symbol table. 

The editor walks the tree using the same goto pointers 
as the interpreter. Each cursor position designates one of 
the nodes of the tree. Cursor motion is defined with 
respect to a preorder traversal. There are no backward 
pointers; thus, backward cursor motion is implemented 
internally by going all the way around. 

B. Declarations 
As demonstrated in Sec. II.C, declarations present a 

special problem: modifying a declaration can simulta- 
neously introduce errors and correct errors at other 
locations in the program. Internally, information about 
identifiers is stored in a symbol table. When a declaration 
is modified, the Synthesizer discards the old symbol table 
and traverses the tree in preorder reparsing and redoing 
the semantics of every phrase. Phrases with errors are 
marked as invalid and are printed in the highlighted font 
when the screen is redrawn. Because the allocation of 
variables within an activation record is recomputed in 
the process of reconstructing the symbol table, access to 
the variables of a suspended activation record is lost in 
the process. Therefore, execution cannot be resumed 
after such modifications. 

C. Displaying the Tree 
The print representation of a file is generated from 

the tree; a text representation is not saved. The external 
representation of each kind of template is stored in a 
table. The entries of this table alternate between terminal 
strings and placeholder-descriptors. For example, the IF- 
template is encoded as: 

"IF (" 
condition-descriptor 
") \ { \nTHEN" 
statement-l-descriptor 
"ELSE" 
statement- 2-descriptor 
" \ ) \ r "  

The placeholder-descriptors identify the placeholders 
and their positions within the code section of  an internal 
node. The terminal strings contain key words, punctua- 
tion marks, and formatting control characters that are 
interpreted on output. For example, 

\{ means move left-margin right one unit, 
\n  means line-feed, carriage-return to current left-mar- 

gin, 
\} means move left-margin left one unit, 
\ r  means carriage-return to current left-margin. 

The print routine traverses the tree in preorder, simul- 
taneously keeping track of position within the external 
representation of  the appropriate template. Each termi- 

nal string encountered is printed and its formatting 
commands obeyed. Each phrase is translated from post- 
fix to infix for display. (The parentheses of  a phrase are 
saved in the extension of the node encoded one bit per 
operator.) 

As the tree is traversed for display, a table mapping 
internal node addresses to external screen coordinates is 
updated. This table is used both for cursor motion in the 
editor, and at runtime for the trace feature. 

D. Implementation of Debugging Features 
The tracing, pacing, and single-step features are im- 

plemented by taking appropriate action on the interpre- 
tation of  each goto leading to a new node. 

When tracing, each goto uses the map from internal 
node addresses to screen coordinates to determine 
the new cursor position. If  the map is not defined for a 
given target node, then the cursor lies outside the window 
and the program is redrawn with the new cursor position 
centered in the window. Traced programs are never 
permitted to run any faster than one cursor update per 
refresh of the video screen in order to avoid stroboscopic 
effects such as loops that appear to run backwards. When 
pacing, the interpreter waits appropriately at each 
goto before continuing execution. When stepping, the 
interpreter waits for a resume command before contin- 
uing. 

The variable-monitoring feature is implemented in a 
straightforward manner: a table mapping identifiers to 
screen positions is maintained. Assignment to a moni- 
tored variable is detected by the interpreter whereupon 
the appropriate position is updated on the screen. 

Reverse execution also has a straightforward imple- 
mentation: the forward execution interpreter maintains 
a history file of the flow of control and the values 
destroyed by assignments to variables. The reverse exe- 
cution interpreter restores values and updates the screen 
to give the illusion of  the program executing backwards. 

VII. The Synthesizer Generator 

Continuing research and development of the Synthe- 
sizer will increase its power, versatility, and range of 
application complementing the unique syntax-directed 
mechanisms the environment already provides. For ex- 
ample, global data flow analysis techniques will be used 
to answer queries about static program structure, as in 
[18]. The video display can be used to express static 
relationships between components of a program; the 
multiple fonts of a terminal can be exploited to highlight 
regions of interest. For example, the programmer might 
request the highlighting of all uses or all assignments to 
a variable X. Alternatively, the analysis can be keyed to 
the present location of  the editing cursor. For example, 
the programmer might request the highlighting of all 
assignments to X that can account for its value at the 
present cursor location, or all possible uses of  X that can 
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be reached from the present cursor location. 
To facilitate such further development, we are imple- 

menting a language-independent system for generating 
Synthesizer-like systems from a grammatical specifica- 
tion of  a given programming language. An attribute 
grammar will be used to define the syntax, display 
format, and semantics of  each template and phrase. In 
our application, where program units are inserted and 
deleted in arbitrary order, semantic analysis must be 
both incremental and reversible. For this purpose, attri- 
bute grammars have the advantage of  expressing seman- 
tics and context-sensitive constraints applicatively and 
on a modular basis; the arguments to each semantic 
function are imported explicitly from neighboring nodes 
in the derivation tree. 

Because propagation of  semantic information 
through the tree is implicit in the formalism, an incre- 
mental attribute evaluator can update the appropriate 
attribute values in conjunction with each editing opera- 
tion. In particular, because the attribute dependencies 
are known, the evaluator can delete semantic informa- 
tion automatically when program units are deleted; a 
separate mechanism to undo semantics is not needed. 
We have described one such incremental attribute eval- 
uator in [8]; more recently, we have developed an opti- 
mal-time incremental evaluator that runs in time pro- 
portional to the number of  attribute values that actually 
must be changed [21]. 
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