
Making Software Tutorial Video Responsive
Cuong Nguyen

Portland State University
Portland, OR 97207-0751

cuong3@pdx.edu

Feng Liu
Portland State University
Portland, OR 97207-0751

fliu@cs.pdx.edu

ABSTRACT
Tutorial videos are widely available to help people use soft-
ware. These videos, however, are viewed by users as captured
and offer little direct interaction between users and software.
This paper presents a video navigation method that allows
users to interact with software tutorial video as if they were
using the software. To make the tutorial video responsive, our
method records the user interaction events like mouse click
and drag during capturing the video. Our method then an-
alyzes, selects, and visualizes these user interaction events
at the event locations. When a user directly interacts with
an event visualization, our method automatically navigates
to the proper video frame to provide the visual feedback as
if the software were responding to the user input. Thus, our
method provides the experience of “interacting” with the soft-
ware through directly manipulating the tutorial video. Our
study shows our method can better help users follow tutorial
videos to complete tasks than the baseline timeline interface.

Author Keywords
Video Navigation and Browsing; Software Tutorial Video

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User Inter-
faces

INTRODUCTION
Tutorial videos are widely employed to help people use soft-
ware. These tutorial videos are often produced by screen cap-
turing the software-use workflow. When watching a software
tutorial video, users often need to frequently navigate to rele-
vant frames to recall parameters, check results, or skip certain
steps [12]. These navigation goals are important for users to
understand the operations and perform them using the soft-
ware; however, the classic timeline-based players do not suit
these navigation goals very well. Using the timeline for video
navigation, users need to focus on two different locations: the
timeline and the video content simultaneously. It is often slow
to locate frames of interest. More importantly, the timeline in-
terface does not provide direct interaction between users and
software. It does not support users to directly work with the
software through the software interface and does not provide
the visual feedback to the user input from the software. That

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI 2015, April 18–23, 2015, Seoul, Republic of Korea.
Copyright c© 2015 ACM 978-1-4503-3145-6/15/04 ...$15.00.
http://dx.doi.org/10.1145/2702123.2702209

Figure 1. Responsive tutorial video navigation. When a user clicks Event
15, our system navigates to the proper frame that shows a dialog to re-
spond to the user input.

is, the tutorial video is not responsive with the timeline inter-
face. These problems can compromise the user’s performance
in learning to use the software from the tutorial video.

This paper presents a method that makes a software tutorial
video responsive to the user input and allows users to navi-
gate the tutorial video as if they were using the software1. To
make the tutorial video responsive, our method records the
user interaction with the software when screen-capturing the
tutorial author’s software-use process. Our method then ana-
lyzes these interaction events and selects the relevant ones at
the current frame. These events are finally visualized close to
the event locations, such as buttons and menu items. Users
can navigate the tutorial video by directly interacting with
the event visualization as if they were interacting with the
software. Figure 1 shows an example of a user navigating a
Photoshop tutorial video. In the current frame, our system
displays the relevant events 14 and 15. Event 15 indicates
that the tutorial author clicked the menu item Fade Apply Im-
age. When watching this tutorial video, a user clicks Event
15 and our system automatically navigates to the frame that
provides the visual feedback to the user input as if Photoshop
is responding to the user input. Here the Fade dialog win-
dow appears after Event 15 is clicked which is exactly what
happened after the tutorial author clicked Fade Apply Image.

This responsive tutorial video navigation method has advan-
tages over timeline methods in that it merges two processes
together: navigating a software tutorial video and using the
software. Moreover, this method allows users to quickly
reach frames of interest by directly “interacting” with the
software through interacting with the event visualization. Our
study shows that our method can better help users follow tu-
torial videos to complete tasks than timeline interfaces.

RELATED WORK
The timeline interface has been enhanced with event visual-
ization to better support software tutorial video navigation.
Some methods detect and display tool invocation events on
timeline [1, 11, 12] and can help users quickly find frames of
1http://graphics.cs.pdx.edu/project/tutorDMVN

Video �meline

Video window

9

1

4
5

6

8

Figure 2. System overview.

interest based on the tool usage. Chronicle captures software
workflow histories and visualizes them on timeline to support
workflow exploration in a tutorial video [7]. Toolscape ex-
plores crowdsourcing to display step-by-step instructions on
timeline [9]. Instead of enhancing timeline, our work visual-
izes user interaction events right in the video window where
these events actually happen and allows users to navigate the
tutorial video through these in-context event visualization as
if they were directly interacting with the software.

Direct manipulation video navigation, which allows users to
navigate a video by dragging an object of interest along its
motion trajectory [5, 6, 8], has been extended to assist soft-
ware tutorial video navigation. Denoue et al. developed a
text-based tutorial video navigation method that enables users
to directly select text content and scroll text in the video as if
they were using a text viewer [4]. The Waken video player
[1] displays tooltips and menus when a user hovers on cor-
responding tool icons in the video and allows the user to di-
rectly click on an icon to search for moments in the video
when that tool was used in a separated side panel. Our work
is inspired by these methods and further extends direct ma-
nipulation video navigation to develop a responsive software
tutorial video navigation method. Our method automatically
navigates to the proper frame to provide the visual feedback
as if the software were responding to the user input, providing
a navigation experience of directly using the software.

RESPONSIVE SOFTWARE TUTORIAL VIDEO
Our software tutorial video navigation method consists of two
components: event processing that captures, analyzes, and vi-
sualizes user interaction events in the tutorial video and user
interface that supports users to directly interact with the visu-
alized events as if they were using the software.

Figure 2 shows an overview of our system. Our system has a
video window and a timeline. Unlike timeline video players,
our system depicts a selected set of user interaction events
like mouse click and drag as visual annotations and over-
lays them on their corresponding software interface elements,
such as buttons and menu items. These events are color-coded
and labeled to convey the temporal order. The set of selected
events are dynamically adjusted to provide enough informa-
tion of the tutorial video around the current frame while not
cluttering the screen and overwhelming users. The event an-

notations help users understand the operations performed and
the order in which they happen. Users can navigate the video
to events of interest by directly interacting with their anno-
tations in the video window. When users click or drag on a
software interface element hinted by an event, our system au-
tomatically navigates to the proper frame as if the software
were responding. For example, clicking the File menu on
top of the screen will show a drop down menu, or dragging
along the arrow will gradually show the brush motion. Note,
while our system visualizes the event order, users can click
and navigate to any event without necessarily respecting the
order. The capability of non-linear navigation provided by
our system allows users to quickly locate frames of interest.

Event Processing
Our system records the events of user interaction with
the software when screen-capturing the tutorial author’s
software-use process. Our system currently focuses on mouse
activities, namely click and drag. Click events are often used
to invoke a tool or select an object and drag events are often
used for complex operations like drawing or adjusting param-
eters. Each extracted event contains the event label (click or
drag) and its corresponding trigger location (x, y) and time t.
We find that these two interaction events can already capture
a range of user interactions with software. More interaction
events will be included in future. These events can be gath-
ered using publicly available APIs [3] or through computer
vision analysis of the captured tutorial video [1].
Event Analysis and Selection
A software tutorial video often carries a large number of user
interaction events. At each frame, visualizing all the events
will clutter the video content and overwhelm users. There-
fore, our system only selects relevant events to visualize.

Temporal event culling. In software tutorial videos, users
often do not need to see all the interaction events in the video
at once to perform learning tasks. They often watch a tutorial
video for a few seconds, pause, and then switch to the soft-
ware to perform the operations they just watched [12]. Thus,
the interaction events in the local temporal interval around
the current frame often provide users enough learning infor-
mation since they are directly related to the software-using
task that users will perform using the software. Therefore,
at any video frame, we limit the number of events that will
be finally visualized to be 10 in the time interval around the
current frame. This time interval is dynamically adjusted to
always include at most 10 events at any time. We empirically
find that 10 events can already provide users with enough cues
for learning the use of the software, while avoiding cluttering
the video window and overwhelming users.

Relevant event selection. At each frame, our system displays
the current events as well as some past and future events. In
this way, the visual annotations of some events will overlay
software interface elements that are invisible at the current
frame. As illustrated in Figure 3 (b), Event 41 and 42 in the
dialog box are still visible after the dialog box disappears later
on. These events appear out of context and can confuse users.
Our system displays an event annotation only if its context
is visible. The event context is defined as the visual content
around the event location when it is triggered, such as the

41 42

(a) Frame 2632

41
42

(b) Frame 2657
Figure 3. Relevant event selection. Event 41 and 42 are in context in (a),
but are out of context in (b) where the dialog window disappears.
software interface elements and the image that a user draws
on. This task cannot be simply achieved by checking whether
the event is triggered at the current frame or not as some event
context lasts for an extended amount of time.

We use a visual template matching algorithm to determine if
an event context is visible or not. Specifically, we take the
pixel patch centered at the event location in the frame when
the event is triggered and compare it with the corresponding
patch centered at the same location in the current frame. The
pixel patch for a click event is a 20 × 20 window centered
at the event location. The pixel patch for a drag event is the
bounding box around the dragging path. We use the template
matching algorithm in OpenCV to compute the similarity be-
tween two pixel patches. If the matching score is no less than
0.6, we consider the event context is visible.

In software tutorial videos, some interface elements may
change states or appearances when being clicked or dragged.
This may cause problems if we only compare the pixel patch
in the current frame with that in the event-triggered frame.
To address this problem, we also consider frames that contain
other states of the event such as idle, hover, and pressed. For
each event, we take the event-triggered frame as the pressed-
state frame. We search back in the video to find its corre-
sponding hover-state and idle-state frames. These frames are
also used for template matching. The maximum matching
score between any of these frames and the current frame is
used to determine the visibility of an event annotation.

Data adjustment. Sometimes, consecutive mouse activities
may occur at nearly the same location [10]. When these
events are visualized, their visual annotations will overlap
with each other. Our system detects these spatially co-located
events and offset their coordinates so that their annotations
are separated horizontally by at least 5 pixels. Multiple events
can also be triggered in a short time, but at different locations,
we merge these events as a single drag event to simplify the
visualization and make navigation of these events easier.

Event Visualization
We use graphical annotations to visualize the selected user
interaction events. The annotations provide users with navi-
gation cues to quickly locate frames of interest and help them
understand the operations performed in the tutorial video.
Figure 2 shows the annotations of the click and drag events
in our system. Similar to DemoWiz [3], we annotate a click
event as a circle centered at the event location and a drag event
as a straight arrow that connects the starting and ending point
of the path. The start of the arrow is annotated as a circle and
the end is annotated as an arrow-head. For the drag event, we

uniformly map the frames along the arrow so that users can
drag along the arrow to mimic the drag operation in the tu-
torial video and obtain the corresponding instantaneous feed-
back, as detailed later. We choose not to visualize the drag
event as the exact dragging path to simplify the annotation
for both clear visualization and easy navigation. As reported
in direct manipulation video navigation research [2], a com-
plex path needs to be simplified for users to drag easily.

To convey the event order, we label each event with a unique
number and render it next to the event. We also color-code
each event such that the past and future events are rendered
in blue and red, respectively.

User Interaction
Our system supports users to directly interact with the event
annotations to navigate a software tutorial video as if they
were interacting with the software. This is achieved by repli-
cating the software behavior by automatically navigating to
a target video frame where the software responds to the user
action. Such a target frame is available in the tutorial video
after an event is triggered.

We pre-process the event data to find the target frame of each
event. For each event, we measure the difference between the
event-triggered frame and the following frames. We compute
the difference between two frames by counting the number of
pixels that are different between two frames. We select the
target frame as the frame with the highest difference value
within the next 10 frames after the event was triggered. This
target frame shows the software’s response to the event. For
example, the target frame of a right click event on the canvas
in Photoshop brings in a drop down menu.

After a user clicks an event annotation in the video window,
our system calculates and selects the event with the closest
spatio-temporal distance to the click location. Then, the video
is navigated to the associated target frame of that event, cre-
ating an illusion that the software is responding to the user in-
teraction. For example, when watching a tutorial video show-
ing the use of the Gaussian Blur tool in Photoshop, the user
may want to locate the frame where the tool’s dialog box is
presented to recall its settings. Instead of scrubbing the time-
line in a video player, the user can quickly locate the frame
with the dialog box by invoking the same set of operations
as in Photoshop. That is, the user clicks on the Filter menu,
then clicks Blur, and finally invokes the dialog box by click-
ing Gaussian Blur. Each step is fast and intuitive because the
user is guided by the annotated events and can easily click
these events to navigate to the desired video segment.

Our system also supports direct scrubbing along the arrow
annotation of a drag event to allow a user to mimic the drag-
ging user input. When a user is dragging along the arrow, our
system will automatically navigate to the following frames to
provide the instantaneous feedback.

EVALUATION
We conducted a preliminary user study in our lab to evaluate
how our responsive video navigation method supports users
to navigate tutorial videos. We compared our method with a
classic timeline interface (Timeline).

We asked participants to learn from software tutorial videos to
perform two tasks, one using Excel and the other using Pho-
toshop. We captured and narrated two videos for our study.
The Excel video (1.85 minutes) shows how to create a col-
umn chart, correct its entries, and relocate the chart legends.
The Photoshop video (1.83 minutes) shows how to apply the
Emboss Filter, Apply Image, and Fade tools on an image. The
video frame size is 860× 546 pixels. We used a desktop PC
with two 23-inch monitors, a speaker, a standard mouse and
keyboard. Similar to a previous study [12], we displayed the
video player in one monitor and the actual software in another
one to minimize the effects of the limited screen space.

We used a between-subjects design to avoid the strong learn-
ing effect from having a participant perform the same task
aided by two methods. 12 users from the university campus
participated in our study. Their majors include Computer Sci-
ence, Accounting, Arts, etc. Their ages range from 18 to 28
years. These participants were randomly assigned to one of
the two methods, resulting in 6 participants per method.

Before the study, we showed the final results of the tasks and
asked participants if they could produce exactly the same re-
sults using the software. All participants responded that they
were not sure how to perform the tasks and would need the
tutorial videos although about half of them are familiar with
Photoshop and Excel. They were trained to navigate tutorial
videos using the method that they would use. The training
session used a practice video that lasts 46 seconds and shows
how to use some tools in Photoshop. These tools are different
than those used in the Photoshop tutorial video in the formal
study. Participants then proceeded to perform the Excel and
Photoshop task. They were told to complete the task with the
software as fast and as accurate as possible. Participants click
the start and end buttons to record the task completion time.

Results. As reported in Table 1, participants were faster us-
ing our method to complete both tasks than Timeline. We an-
alyzed the task completion time with an independent-samples
t-test. The difference between our method and Timeline in the
Excel task is not statistically significant (p = 0.34) and that
in the Photoshop task is statistically significant (p < 0.02).

The subjective feedback shows that most participants who
used our method consider that having the tutorial video re-
spond to the user input like a software is very intuitive and
helps them easily find frames of interest. They felt that our
method helps them perform the tasks faster in the software as
they can practice the interactions beforehand in the video.

Limitations. For a long video with a large number of events,
it is difficult for our method to provide a concise summary of
all the events at once although our method can enable users
to quickly navigate through it by directly interacting with the
event visualizations. Moreover, our method currently only
captures mouse click and drag events. We will incorporate
more user interaction events like keyboard inputs in future.

CONCLUSION
This paper presented a dedicated method for software tuto-
rial video navigation. Our method captures user interaction
events and visualizes a set of appropriately selected events

Excel: mean std Photoshop: mean std
Timeline 211.0 78.6 218.6 28.8

Ours 177.8 19.5 155.6 45.9

Table 1. The task completion time (in seconds).

in the event locations. Our method allows users to navigate
a tutorial video and mimic the captured user interactions as
if they were directly interacting with the software. Our pre-
liminary study showed that our responsive video navigation
method enables users to follow tutorial videos to complete
software-use tasks quickly.
Acknowledgments. Figure 2 and 3 use cat images from Pix-
abay user wilkernet and DevianArt user Oliver Pietern under
a Creative Commons license. This work was supported by
NSF IIS-1344163, CNS-1205746 and CNS-1218589.

REFERENCES
1. Banovic, N., Grossman, T., Matejka, J., and

Fitzmaurice, G. Waken: reverse engineering usage
information and interface structure from software
videos. In ACM UIST (2012), 83–92.

2. Brockly, C. Evaluation of direct manipulation
techniques for in-scene video navigation. Master’s
thesis, RWTH Aachen University (2009).

3. Chi, P., Lee, B., and Drucker, S. DemoWiz:
re-performing software demonstrations for a live
presentation. In ACM CHI (2014), 1581–1590.

4. Denoue, L., Carter, S., Cooper, M., and Adcock, J.
Real-time direct manipulation of screen-based videos. In
IUI Companion (Mar. 2013), 43–44.

5. Dragicevic, P., Ramos, G., Bibliowitcz, J.,
Nowrouzezahrai, D., Balakrishnan, R., and Singh, K.
Video browsing by direct manipulation. In ACM CHI
(2008), 237–246.

6. Goldman, D. B., Gonterman, C., Curless, B., Salesin,
D., and Seitz, S. M. Video object annotation, navigation,
and composition. In ACM UIST (2008), 3–12.

7. Grossman, T., Matejka, J., and Fitzmaurice, G.
Chronicle: capture, exploration, and playback of
document workflow histories. In UIST (2010), 143–152.

8. Karrer, T., Weiss, M., Lee, E., and Borchers, J. Dragon:
a direct manipulation interface for frame-accurate
in-scene video navigation. In CHI (2008), 247–250.

9. Kim, J., Nguyen, P., Weir, S., and Guo, P.
Crowdsourcing step-by-step information extraction to
enhance existing how-to videos. In ACM CHI (2014),
4017–4026.

10. Lafreniere, B., Grossman, T., and Fitzmaurice, G.
Investigating the feasibility of extracting tool
demonstrations from in-situ video content. In ACM CHI
(2014), 4007–4016.

11. Matejka, J., Grossman, T., and Fitzmaurice, G. Ambient
help. In ACM CHI (2011), 2751–2760.

12. Pongnumkul, S., Dontcheva, M., Li, W., and Wang, J.
Pause-and-play: automatically linking screencast video
tutorials with applications. In ACM UIST (2011).

