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Abstract. A wide variety of methods have been developed to approach
the problem of salient object detection. The performance of these meth-
ods is often image-dependent. This paper aims to develop a method that
is able to select for an input image the best salient object detection result
from many results produced by different methods. This is a challenging
task as different salient object detection results need to be compared
without any ground truth. This paper addresses this challenge by design-
ing a range of features to measure the quality of salient object detection
results. These features are then used in various machine learning algo-
rithms to rank different salient object detection results. Our experiments
show that our method is promising for ranking salient object detection
results and our method is also able to pick the best salient object detec-
tion result such that the overall salient object detection performance is
better than each individual method.

1 Introduction

Visual saliency measures the low-level stimuli that grabs viewers’ attention in
the early stage of human vision [21]. It has been used as an alternative to seman-
tic image understanding in a range of applications in computer vision, computer
graphics, and multimedia, such as object detection [22], adaptive image com-
pression [9], and content-aware image manipulation [35,42]. There is now a rich
literature on visual saliency analysis [1,4,8,10,13–16,18,19,22,23,26,30,31,33,34,
36–41,43,44,50–54,56,57]. Many of these methods aim to detect salient objects
from an input image as recently surveyed in [2], which is also the focus of this
paper.

While the research on salient object detection has been progressing quickly
and has achieved good results statistically on public benchmarks [7, 24, 25, 28,
29, 33, 37, 40, 50, 53, 54], each individual method has its own advantages and
disadvantages. As shown in Fig. 1, each method can produce good results for
some images but none of them can outperform the other methods for all the
images. For a specific input image, it is often useful to select the best salient
object detection result from many results created by different methods. This is
a challenging task as the quality of different salient object detection results need
to be compared without knowing the ground truth.

Our problem is relevant to the research on non-reference image quality assess-
ment, which estimates the quality of an image without a ground-truth one [45,
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Image GBVS [16] FT [1] CA [14] GC [8] HS [53] GBMR [54]

Fig. 1: Saliency detection examples. Different saliency detection methods have
their own advantages and disadvantages. Each method can produce good results
on some images but none of them can outperform the others on all the cases.

49]. The non-reference image quality assessment methods mostly detect and
measure image artifacts, such as those from compression. They cannot be used
in our problem.

This paper addresses the problem of comparing salient object detection re-
sults without ground truth using a data-driven approach. We study what makes
a good salient object detection result and design a range of features to measure
the quality of salient object detection. We then use a learning-to-rank method
to rank salient object detection results of the same input image. Specifically, we
first train a binary classifier to compare the quality between every two detection
results and then aggregate these pair-wise comparison results to rank all the
detection results.

To the best of our knowledge, this paper provides the first method that is
able to rank the quality of salient object detection results without any ground
truth. While this paper does not provide a new salient object detection method
per se, we provide a way to better leverage the vast amount of detection meth-
ods provided by the community. As shown in our experiments, our method can
reliably select for each input image the best detection result or the good results
from a range of different methods.

2 Feature Design

In this section, we discuss what makes a good salient object detection result.
According to previous research as well as our observation, we measure the quality
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Fig. 2: Saliency coverage distribution for low-quality and high-quality salient
object detection results.

of salient object detection through the analysis of the saliency map itself as well
as the interaction between the saliency map and the original image. Below we
describe how we design features to capture the aspects of a good saliency map
in detail.

Saliency Coverage The sizes of salient objects in natural images often fall into
a certain range. Therefore, when a saliency map has its salient pixels covering
an abnormally large or small area in the image, it is unlikely to be a good map.
We design the saliency coverage feature fC to encode this knowledge.

Given a saliency mapM (whose value is scaled to the range [0, 1]), we binarize
it using a threshold value t ∈ [0, 1] and compute the saliency coverage value as

fC(M) =
1

n

∑
i∈M

δ{M(i) > t} (1)

where n denotes the number of pixels in M . δ{.} is an indicator function whose
value is 1 if its argument is true and 0 otherwise.

To examine the ability of this feature in discriminating between high- and
low-quality saliency maps, we conduct a small experiment. We randomly collect
3,000 images from the salient object detection benchmark THUS-10000 [7]. For
each image, we apply five different saliency detection methods GC [8], HC [8],
LC [55], GBMR [54], and HS [53] and create 15,000 saliency maps in total. We
then form two groups of images out of those saliency maps according to their
AUC score computed using the ground truth. The high-quality group contains
only good saliency maps with AUC score at least 0.9. The low-quality group
contains only the results with AUC score below 0.6.
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fCP = 0.75 fCP = 0.73 fCP = 0.19 fCP = 0.23

Fig. 3: Saliency map compactness feature. The green windows contain 75 % of
total saliency values. A good saliency map tends to have a high average saliency
value inside the enclosing window.

For each map from these two groups, we compute the saliency coverage value
(with threshold t = 0.5). We show the normalized histograms on the saliency
coverage value over each of these two groups in Fig. 2. This figure demonstrates
that the high-quality and low-quality saliency maps have clearly different distri-
butions, which shows the capability of the saliency coverage feature in discrimi-
nating the high- and low-quality saliency maps.

To make our system robust against the choice of the threshold t, we use 10
different threshold values in the range between 0 and 1. For each threshold value,
we compute a corresponding saliency coverage value. Finally, we concatenate the
10 saliency coverage values into a feature vector.

Saliency Map Compactness Previous research on saliency analysis shows
that a good saliency map should concentrate its salient pixels in a compact
region in the image [7,16,26]. To encode this observation, we estimate how dense
the salient pixel distribution is in the most salient area predicted by the saliency
map. Specifically, we first compute the minimal image window Wp covering the
proportion p of the total saliency in the saliency map M . We then compute the
compactness value fCP as the average saliency value inside Wp. In computing
Wp, we resize the saliency map to 100 x 100 to reduce the search space. We
then use the integral image method [48] to speed up the computation of the
total saliency in a candidate window in each search step, which involves only 3
additions and subtractions in total. For p = 0.5, Wp can typically be found in
0.02 seconds on a desktop machine with an i7 3.40 GHz CPU.

As demonstrated in Fig. 3, good saliency maps tend to have a high average
enclosed saliency value. To make our method robust against the selection of the
parameter value for p, we compute the compactness values using multiple values
for p and concatenate them all into a single feature vector. In this paper, we use
three p values, namely 0.25, 0.5, and 0.75.
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Image fCS = 0.28 fCS = 0.45 fCS = 0.56 fCS = 0.63

Image fCS = 0.33 fCS = 0.43 fCS = 0.46 fCS = 0.67

Fig. 4: Color separation feature. Good saliency maps can well separate the color
distributions of salient regions and background regions. They thus give small
fCS values.

Saliency Histogram The distribution of saliency values in the saliency map
can also be an indicator of its quality. For example, in salient object detection,
a good saliency map should well separate salient objects from the image back-
ground. This favors saliency histograms with concentrated peaks at two ends.
On the other hand, a saliency map where most of the pixels have middle-range
saliency values is unlikely to be a good map as it is mostly fuzzy. To capture this
observation, we compute the normalized 20-bin histogram over saliency values
in the saliency map and use it as our feature fH .

Color Separation Many of the previous saliency analysis methods use a global
contrast assumption [1,8,14]. This assumption suggests that salient regions and
background regions tend to be different from each other. We design the feature
fCS to score a saliency map according to the separation between the color dis-
tributions of salient regions and non-salient regions based on the saliency map.

We use color histograms to model the color distributions. As saliency often
provides a soft assignment of image pixels into salient and background regions,
we adopt a weighting-based technique to incorporate the saliency values into the
computation of the color histograms. In this paper, we use the histograms with
16 bins per-channel in the RGB color space.

Let bi denote the color range of the ith bin, the salient region’s normalized
color histogram hs can be computed as

hs(i) =

∑
p∈I M(p)δ{I(p) ∈ bi}∑

p∈I M(p)
(2)

where M(p) and I(p) denote the saliency value and color at pixel p. δ is the in-
dicator function defined previously. Similarly, we compute the normalized back-
ground color histogram hg as

hg(i) =

∑
p∈I(1−M(p))δ{Ip ∈ bi}∑

p∈I(1−M(p))
(3)
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We estimate the color separation feature fCS as the intersection between the
histograms for the salient and background region as follows,

fCS(M) =
1

nh

nh∑
i=1

min(hs(i), hg(i)) (4)

where nh denotes the number of bins in the histograms. Fig. 4 compares different
saliency maps generated from the same images. The examples show that good
saliency maps tend to have smaller feature values (i.e. the salient and background
color distributions are better separated) than those less accurate ones.

Segmentation Quality Salient object detection should give a good object
segmentation result. We design the feature fNC to measure the quality of a
saliency map by assessing the segmentation result it induces.

We first obtain the induced segmentation by binarizing the saliency map
with a threshold value t, which partitions an image into the salient region St

and background region Bt. According to the normalized-cut image segmenta-
tion method [46], a good segmentation result should maximize the intra-region
similarity while minimizing the inter-region similarity. The estimation for the
segmentation quality can then be computed using the normalized-cut energy
function.

fNC(St, Bt) =

∑
i∈St,j∈Bt,j∈N(i) wij∑

i∈St,j∈N(i) wij
+

∑
i∈St,j∈Bt,j∈N(i) wij∑

i∈Bt,j∈N(i) wij
(5)

where N(i) denotes the set of pixels neighboring to i. wij represents the color
similarity between the neighboring pixels i and j. Following [31], we compute
wij as

wij = exp(−η||Ii − Ij ||) (6)

where Ii and Ij represent the RGB color values at the pixels i and j, respectively.
||.|| denotes the L2 norm. η is set as η = 2 < ||Ii − Ij ||2 >−1 [31], where < . >
denotes the expectation operator. For the sake of robustness, we compute the
feature values using three different values for the threshold t, namely 0.5, 0.75,
and 0.95, and concatenate them into the feature vector.

Boundary Quality Good saliency maps should provide accurate and well de-
fined object boundaries. Therefore, the object boundary reflected in the saliency
map M should align well with strong edges in the input image I. We design the
boundary quality feature fB to encode this observation. Specifically, given the
input image I and its saliency map M , we compute the boundary map BM from
M and measure how well it correlates with the strong edge map EI of the image
I.

We generate EI using the structured-forests edge detection method [11]. We
then compute the saliency boundary map BM from M as
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Image fB = 0.6 fB = 0.21 fB = 0.15

Fig. 5: Boundary-quality feature. The strong edge maps have been overlayed in
red onto the saliency maps. The middle saliency map has low fB value because
its boundary does not correlate well with strong image edges, while the right-
most saliency map has low fB value because it fails to provide a well-defined
boundary.

BM (p) =
wp|M(p1)−M(p2)|∑

p∈M wp
(7)

wp = M(p)max(|M(p)−M(p1)|, |M(p)−M(p2)|)

where p1 and p2 denote two neighboring pixels of p. Those two neighboring pixels
are taken orthogonal to edge direction at p. wp computes the saliency-weighted
edge magnitude in the saliency map.

The factor |M(p1) − M(p2)| in Equation 7 weighs the boundary map com-
putation based on how well the edge point separates the salient region and the
background region. A large value of the factor indicates that the boundary is
well defined.

The boundary-quality feature fB measures the correlation between BM and
EI using the dot product between two edge maps.

fB(M, I) =
∑
p∈I

BM (p)EI(p) (8)

As shown in Fig. 5, better saliency maps tend to have higher boundary-
quality values. The saliency map in the third column fails because a portion of
its predicted boundary has a low edge value, which results in the low correlation
between BM and EI . In the right most saliency map, as most of the edge points
do not separate salient region and background region, the boundary map BM

was suppressed, which suggests the low-quality boundary and thus leads to a
small boundary-quality value.

As edge detection often depends on image scale, we compute the above
boundary-quality value at each of four different image scales, namely 0.25, 0.5,
0.75, and 1.0 and concatenate them into the feature vector.
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3 Salient Object Detection Ranking

Given an image I and its k saliency maps {Mi}i=1..k, our goal is to rank these
maps according to their quality without any ground truth. In this paper, we
adopt the pairwise-based learning-to-rank methodology [5, 12, 20]. Specifically,
we compare every pairs among the k saliency maps and then aggregate these
pairwise comparison results to produce the final overall ranking.

Before describing our method, let us describe how we obtain the labeled
trainining data. For each image in the dataset, we use k different salient object
detection methods to generate k saliency maps. We then use the salient object
mask provided with each image to measure the quality of each saliency map. In
this paper, we use the popular Area Under the ROC Curve (AUC score) as the
objective quality measurement for saliency maps. We obtain the ground-truth
ranking for each image by ranking its k saliency maps according to their AUC
scores.

We now elaborate our pairwise-based ranking method. Given two saliency
mapsMi andMj generated for the same image, we model the pairwise preference
(quality comparison) as the probability that Mi has higher quality than Mj

PMi,Mj = P (Mi ≻ Mj |fMi , fMj ) (9)

where Mi ≻ Mj means that Mi has higher quality than Mj . fM denotes the
feature vector extracted from the map M using the feature extraction method
described in Section 2.

To obtain the pairwise preference model PMi,Mj
, we consider it as a binary

classifier. For a given pair of saliency maps Mi and Mj , the feature vector fMiMj

is created by concatenating fMi
and fMj

. We train a binary classifier C that takes
fMiMj as input and outputs the preference label 1 if Mi ≻ Mj , and 0 otherwise.
The output of C can be used as an estimation for PMi,Mj . To train the classifier,
we obtain the preference labels for every pairs of saliency maps from each image
in the dataset using its ground-truth map ranking computed previously.

In this paper, we experimented with three binary classification methods,
including Random Forest Classifier (RFC) [3], Support Vector Machine (SVM)
[47], and Multi-Layer Perceptron (MLP) [17]. Specifically, for SVM, we use the
RBF-kernel probabilistic SVM implemented in the LIBSVM package [6]. For
RFC, we use the Random Forest implementation for MATLAB from Jaiantilal
et al.1. For MLP, we use the MATLAB Neural Network Toolbox implementation2

to train an MLP network with one hidden layer. All the models’ hyperparameters
are selected automatically via cross validation.

Ranking Prediction Once the pairwise preference model has been trained, it
can be used for ranking salient object detection results on new images. Specifi-
cally, given an image I and a set {Mi}i=1..k of k saliency maps generated from
I, we compute a relative score for each saliency map Mi as

1 https://code.google.com/p/randomforest-matlab/
2 http://www.mathworks.com/help/nnet/index.html
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r(Mi) =
∑

j=1..k,j ̸=i

PMi,Mj (10)

The overall ranking for every Mi’s can then be obtained by sorting to their
scores.

4 Experiments

We experiment with our method on the public salient object detection bench-
mark THUS-10000 [7]. This dataset contains 10,000 images. Each image is as-
sociated with a manually segmented salient object mask. For each of the ex-
periments in this section, we randomly select from the dataset 2,000 images for
training our ranking model, and use the remaining 8,000 images for testing. For
all experiments, we repeat this random partition 10 times and report the average
results.

In our experiments, we use ten state-of-the-art salient object detection meth-
ods, including GBVS [16], IT [23], FT [1], GC [8], HC [8], LC [55], SR [19],
CA [14], GBMR [54], HS [53]. For each image in the dataset, we use the codes
published by the authors of those methods to generate ten saliency maps. We
then perform the ranking on the resulting saliency maps for each image.

4.1 Ranking Accuracy

We examine the quality of the our ranking results by assessing how well they
correlate with the ground-truth ranking. To the best of our knowledge, our work
is the first to approach the problem of ranking salient object detection results. To
serve as the baseline for our comparison, we consider the ranking strategy that
assigns a fix ranking to every input image. That fix ranking is computed based
on the performance of each salient object detection method over the whole train-
ing set. In particular, we compare our method against the following two baseline
ranking methods.

Mean-AUC-Based Ranking (MAR) : In this baseline ranking method, the mean
AUC score over the whole training set is computed for each method. The MAR
ranking is obtained by sorting the methods according to their mean AUC scores.
The resulted ranking is applied for all testing images.

Voting-Based Ranking (VBR) : In this method, each image in the training set
casts a vote for the saliency method that works best for it (according to the AUC
score). The resulted ranking is then obtained by sorting the methods according
to their number of votes over the whole training set.

We implement both methods and compare their performance to that from our
image-specific ranking method.
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Table 1: Rank correlation
Kendall τ correlation Weighted Kendall τ correlation

MAR Baseline Ranking 0.49 0.74

VBR Baseline Ranking 0.48 0.73

Our Method (RFC) 0.62 0.81

Our Method (MLP) 0.64 0.83

Our Method (SVM) 0.65 0.83

Correlation with Ground-Truth Ranking To evaluate how well our ranking
results agree with the ground-truth ranking, we compute their rank correlation.
In particular, we experiment with two rank correlation metrics.

Kendall τ rank correlation : The Kendall τ rank correlation [27] is one of the
most well known method for comparing ranking results [32]. Given a set of
elements S = {si, i = 1..n} and two ranking functions r1 and r2, the Kendall τ
rank correlation is computed as

τ(r1, r2) = 1−
2
∑

i,j δ{r1(i, j) ̸= r2(i, j)}
n(n− 1)

(11)

where δ denotes the indicator function. r(i, j) outputs 1 if the ranking function
r gives i the higher rank than j, and 0 otherwise. This metric penalizes a pair
of elements if their relative orders given by the two ranking functions disagree.

Weighted Kendall τ rank correlation : Inspired by [32], we also experiment with
the weighted Kendall τ rank correlation metric

τ(r1, r2) = 1−
2
∑

i,j wijδ{r1(i, j) ̸= r2(i, j)}
n(n− 1)

(12)

where the weight wij is defined as

wij = max{AUC(i), AUC(j)}|AUC(i)−AUC(j)| (13)

Intuitively, the weighted Kendall τ rank correlation reduces the penalty on
the discordant pairs of maps when their AUC scores are close to each other. At
the same time, it emphasizes the penalty on the pairs containing high-quality
maps.

Table 1 shows the average rank correlation on the test data. The results
show that the saliency map ranking from our method has significantly higher
correlation with the ground-truth ranking than those from the baseline methods.

Rank-n Accuracy In this experiment, we examine the effectiveness of our
ranking results for the task of retrieving the best saliency map for a given image.
For evaluation, we measure the rank-n accuracy.
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Fig. 6: Rank-n accuracy. The ranking predicted by our model is significantly
better than the baseline ranking in selecting the best salient object detection
results.

Given the ranking results for all testing images, the rank-n accuracy is com-
puted as the percentage of the test data for which the actual best method is
ranked within the top n positions.

Fig. 6 shows rank-1, rank-2, rank-3, and rank-4 accuracy from our methods,
as well as those from the baseline ranking methods. From the figure, we can see
that the ranking results from our methods can provide significantly better best
map prediction accuracy than those from the baseline ranking methods.

Discussion To further evaluate the robustness of our saliency map ranking
method, we perform an additional test. For each image in the dataset, we ran-
domly select the ground-truth mask from another image to use as its additional
saliency map. This map can be considered a “noisy” individual map as it is
a good map on its own but is likely inaccurate with respect to the input im-
age. With the resulting new set of individual maps, we redo all the experiments
described previously in this section.

Examining the results, we observe that the ranking accuracy is almost unaf-
fected by the inclusion of the additional map. Specifically, we obtain the rank-
1 accuracy of 44.8%, the average Kendall τ rank correlation of 0.66, and the
weighted Kendall τ rank correlation of 0.83. This result shows that our method
is robust against the inclusion of such a “noisy” individual map.

4.2 Saliency Map Selection Quality

We now further evaluate the ability of our method in selecting the best saliency
map given an input image. While rank-1 assessment can give the absolute accu-
racy, it gives little insight for the cases where the system fails to predict the true
best map. In practice, there are scenarios where an incorrectly selected saliency
map is still useful as long as its quality is close to that of the true best map.

To take that into account, we consider an alternative method to evaluate the
best-map selection quality. In particular, a best map selection result is considered
correct if the AUC score of the selected saliency map differs from that of the true
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Fig. 7: Tolerance-based best map selection accuracy. At the high tolerance values,
our results produce noticeably smaller number of errors than selecting any single
method to use for all images. Note that the larger the tolerance value is, the more
severe an error would be.

best map by no more than a tolerance value ϵ. The accuracy of a saliency map
selection method can then be measured as the percentage of all testing images
for which the map selection are correct according to this condition. We call this
the tolerance-based accuracy. For comparison, we consider the baseline best-
map selection methods that always pick a single saliency detection algorithm to
use for all images. In particular, we experiment with three methods that always
select the GBMR, HS, and GC saliency map, respectively. We choose those three
methods for our comparison as they have the highest mean AUC scores over the
whole dataset.

Table 2 shows the tolerance-based accuracy at ϵ = 0.02 (i.e. two percent of
the AUC range). This result shows that for 82% of all testing images our method
can select the good saliency maps that are close to the ground-truth best maps.

Table 2: Tolerance-based accuracy at ϵ = 0.02
Our SVM Our RF Our MLP Baseline GBMR

Accuracy (%) 82 79.5 80 72

We note that the higher the tolerance threshold is, the more severe an in-
correct map selection would be. We provide in Fig. 7 the curve representing the
tolerance-based best-map selection accuracy measured over the wide range of
tolerance values ϵ. The curves show that our methods make noticeably smaller
number of errors with small values of ϵ compared to the baseline methods.
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Fig. 8: ROC curves for different salient object detection methods.

4.3 Salient Object Detection Performance

Although our main goal in this paper is not to develop a new salient object
detection method, it is interesting to investigate how our method can be used to
improve the overall performance of individual methods. For each testing image,
we use the saliency map ranking obtained for that image to select the best
saliency map and use it as our final salient object detection result.

Fig. 8 shows the ROC curves measured from the saliency maps generated
using different methods. The figure shows that using the saliency maps selected
by our methods, we can improve the ROC curves over each individual method.
This confirms the observation that although some methods clearly dominate
the others over a large number of images, selecting the image-dependent best
saliency map for each specific image is promising in pushing forward the salient
object detection performance.

Limitation One limitation of our method is that it requires to run all the
individual salient object detectors for each input image. Some of the individual
detectors are slow, which makes our method computationally expensive in terms
of running time. This limits the applicability of our method compared to some
fast individual methods. However, we note that in practice we can pick the best
one from only a few fast and statistically best-performed detectors instead of
using all available detectors. This will significantly speed up our method as our
method typically takes only 20 seconds to execute both the feature extraction
step and the saliency map ranking step.
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5 Conclusion

In this paper, we develop a data-driven approach for comparing salient object
detection results without knowing the ground truth. We designed a wide range
of dedicated features to capture the saliency map quality. Those features are
used in our learning-to-rank framework to produce the saliency map ranking for
each input image. Experiments on the large salient object detection benchmark
show that our method can produce ranking results that correlate well with the
ground-truth ranking. Our method can be used to adaptively select good saliency
maps for each input image, which can improve the overall salient object detection
performance.
Acknowledgement. This work was supported in part by NSF grants IIS-
1321119, CNS-1205746, and CNS-1218589.
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