Video Frame Interpolation via Adaptive Convolution |
Simon Niklaus*, Long Mai*, and Feng Liu |
Computer Science Department Portland State University |
Abstract |
Video frame interpolation typically involves two steps:
motion estimation and pixel synthesis. Such a two-step approach heavily
depends on the quality of motion estimation. This paper presents a robust
video frame interpolation method that combines these two steps into a single
process. Specifically, our method considers pixel synthesis for the
interpolated frame as local convolution over two input frames. The
convolution kernel captures both the local motion between the input frames
and the coefficients for pixel synthesis. Our method employs a deep fully
convolutional neural network to estimate a spatially-adaptive convolution
kernel for each pixel. This deep neural network can be directly trained end
to end using widely available video data without any difficult-to-obtain
ground-truth data like optical flow. Our experiments show that the
formulation of video interpolation as a single convolution process allows
our method to gracefully handle challenges like occlusion, blur, and abrupt
brightness change and enables high-quality video frame interpolation. |
Paper |
Simon Niklaus, Long Mai, and Feng Liu. Video Frame Interpolation via
Adaptive Convolution
. IEEE CVPR 2017. PDF (spotlight) Note: After the publication of our paper, we recently found that the idea of estimating spatially-varying linear filters to transform an image for many computer vision tasks was explored by Seitz and Baker in their ICCV 2009 paper "filter flow". It would have been nice to cite and discuss their "filter flow" paper in our work. We encourage others to cite Seitz and Baker if your work builds upon the idea of estimating spatially-varying linear filters for image transformation / synthesis. |
Related Paper |
Simon Niklaus and Feng Liu. Context-aware Synthesis
for Video Frame Interpolation. IEEE CVPR 2018. PDF Simon Niklaus, Long Mai, and Feng Liu. Video Frame Interpolation via Adaptive Separable Convolution. IEEE ICCV 2017. PDF Code |
Demo Video |
Acknowledgment This work was supported by NSF IIS-1321119. This video uses materials under a Creative Common license or with the owner's permission, as detailed at the end. |
* The first two authors contributed equally to this paper. |