

3D Photo Stylization - Learning to Generate Stylized Novel Views from a Single Image

Fangzhou Mu¹, Jian Wang^{2†}, Yicheng Wu^{2†}, Yin Li^{1†}
¹University of Wisconsin-Madison, ²Snap Research (†co-corresponding authors)

User Study

Motivation

Artistic Style Transfer as digital lens

Can we generate stylized novel views from a single snapshot for interactive 3D browsing?

Key Features

Novel Problem Setting

3D effect in artistic style transfer Practical snapshot photography

Innovative Model Design

Joint model of view synthesis / stylization Efficient point cloud processing

Strong Synthesis Quality

Consistent stylization across views
Strong user preference

Related Work

- Artistic Style Transfer
 "Paint" an image in a reference style
- One-shot 3D photography
 Novel View synthesis from a snapshot

Method Outline

Content Point cloud based scene representation View 1 Style Render Stylize Stylize Stylize Stylize View N RGB point cloud Point cloud encoder Point cloud encoder Stylize Stylize Stylize Stylize Stylize Stylize Stylize Point cloud encoder RGB point cloud RGB poi

Qualitative Results

Applications

Extension to Multi-view Input

Layered Stylization for AR

3D Browsing of Stylized Historical Photos

Reference

- [1] Ranftl et al., "Vision Transformers for Dense Prediction." ICCV 21
- [2] Shih et al., "3D Photography using Context-aware Layered Depth Inpainting." CVPR 20
- [3] Liu et al., "AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer." CVPR 21
- [4] Huang et al., "Learning to Stylize Novel Views." ICCV 21