
Causal Omnivore: Fusing Noisy Estimates of
Spurious Correlations

Dyah Adila† Sonia Cromp† Sicheng Mo⋆ Frederic Sala†

†University of Wisconsin-Madison
{adila, cromp}@wisc.edu
{fredsala}@cs.wisc.edu

⋆University California, Los Angeles
{smo3}@ucla.edu

December 5, 2022

Abstract

Spurious correlations are one of the biggest pain points for users of modern
machine learning. To handle this issue, many approaches attempt to learn features
that are causally linked to the prediction variable. Such techniques, however, suffer
from various flaws—they are often prohibitively complex or based on heuristics
and strong assumptions that may fail in practice. There is no one-size-fits-all causal
feature identification approach. To address this challenge, we propose a simple
way to fuse multiple noisy estimates of causal features. Our approach treats the
underlying causal structure as a latent variable and exploits recent developments in
estimating latent structures without any access to ground truth. Theoretically, we
show that our technique can recover causal structures under certain conditions. In
addition, our approach omnivorously integrates any source of causal signal. We
propose new sources, including an automated way to extract causal insights from
existing ontologies or foundation models. On multiple benchmark environmental
shift datasets, our discovered features can train a model via vanilla empirical
risk minimization that outperforms multiple baselines, including automated causal
feature discovery techniques such as invariant risk minimization on three benchmark
datasets.1

1 Introduction
Standard training pipelines struggle to differentiate between features that are causally
linked to the prediction target and those that are merely associations. When measured
in a new environment, such associations may no longer be predictive; they become
spurious correlations. This leads to models that are brittle: they may perform well in
environments identical to those they were trained on, but fail to generalize to others.
The issue is not new. A classic (likely apocryphal) piece of lore describes military

1Our code is available at https://github.com/SprocketLab/comnivore
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researchers training a classifier for tank detection that instead learns to predict weather
patterns—as cloudy-day training images lack any positive labels. The importance of
this problem has spurred significant research in the hope of building tools to identify a
set of causal features that transfer to any environment.

The holy grail is an algorithm that provably locates causal features from data without
any additional signal. In general, this is hopeless. It is known that identifying causal
relationships from observational data is not possible absent additional assumptions or
knowledge. Recent works attempt to use information from data drawn from multiple
environments to discover a common set of causal features [3, 20, 28]. These techniques
are promising but suffer from multiple flaws. For example, invariant risk minimization
(IRM) [3] requires a vast number of environments to be guaranteed to learn causal
features—and may perform worse than vanilla empirical risk minimization when this
fails to happen [33]. Experimentally, none of these techniques are known to work in all
cases [13]. Furthermore, by targeting a full end-to-end solution usable in any scenario,
they ignore the presence of easily-accessible sources of causal knowledge in many
specific scenarios.

Given the substantial challenge of a single technique that always finds spurious correla-
tions, an alternative is to build an omnivorous method that can flexibly take advantage
of any kind of causal signal. Such a technique must have two key properties:

1. Fusing Noisy Causal Estimates. Causal feature estimation approaches rely on
different assumptions and are affected by noise and variation differently. This
leads to noisy and contradictory estimates of causal features (or causal structures
among the features) that need to be reconciled.

2. Obtaining Inexpensive Sources of Causal Signal. Humans often have an easy
time determining causal information. An ideal system can either integrate human-
based specifications of causal features, or extract what are likely human-like
signals that exist inside knowledge bases, pretrained models, or other resources.

s

We propose COMNIVORE a system that takes a step towards satisfying these properties.
First, it enables the use of multiple sources to generate potential candidate feature sets.
In particular, it allows for simple ways for human specifications. When not available,
it enables for simple ways to automate such specifications. Second, it extracts causal
features from the resulting candidate feature sets by combining the outputs of multiple
causal estimation approaches. Using principles similar to those in weak supervision
[32], it estimates the reliability of each causal estimate output, without ground truth. It
then provides a higher-quality fused set of estimated features.

COMNIVORE is compatible with any pre-existing approach to causal feature estimation.
It has the benefit of simplicity—not requiring any specialized loss functions or difficult
bi-level optimization. Effectively, COMNIVORE simply asks as many sources of signal
as possible for causal information, weights this information, and trains a downstream
model on the detected features with vanilla empirical risk minimization. We validate
COMNIVORE empirically, showing that it outperforms competing end-to-end baselines
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Figure 1: COMNIVORE seeks to find causal features through a two-step process. It
flexibly pulls together multiple sources of candidate feature sets (left), such as pretrained
model embeddings, features from hand-crafted transformations, or automatically-learned
augmentations. It runs these candidate sets through a suite of causal feature estimation
approaches and models and combines the resulting estimates (center). A conventional
end model is trained on the discovered features (right).

such as IRM, while improving on ERM by 37.9% on three benchmark datasets (Table
2).

2 Background and Problem Setting
We first describe some of the tools we will use and then detail the problem setting.

Identifying Causal Features Discovering causal features is an active area of research.
We briefly describe two sets of approaches. First, an important problem in causal in-
ference is learning causal structures from observational data, interventions, structural
assumptions, or heuristics. Naturally, such approaches do not work in every setting;
violations of their underlying assumptions can be thought of as noise. For instance, PC
[38], FCI [38], and Greedy Equivalence Search [9] assume the absence of certain condi-
tions on the latent confounders between features. Grow-Shrink (GS) [23], Incremental
Association Markov Blanket (IAMB) [40], Interleaved IAMB [45], and Exact Search
[37] require the underlying model to have a certain Bayesian structure. More recent
optimization-based methods [47] [48] are limited by optimization constraints. These
assumptions thus limit their accuracy when applied to complex and high-dimensional
data.

A second set of techniques attempt to use multiple distinct training environments to
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obtain causal features. The idea is that a good learned representation should be invariant
to changes in environment [3, 28]. On the other hand, the resulting optimization problem
is difficult, leading to the need to use approximations that may not perform well in
practice. In fact, even theoretically a huge number of environments may be needed to
ensure that one popular approach, invariant risk minimization [3], outperforms ERM
[33] .

Weak Supervision Weak supervision is a set of techniques that are used to construct
labeled training sets [16, 30, 32] from unlabeled training data. The idea is that even
though no labels are available, multiple noisy estimates of each label are observed.
These are the outputs of labeling functions λ1, . . . , λm. The challenge is to determine
the reliability of these functions and to use this information to fuse their outputs into
a pseudolabel of higher quality than each of their individual votes. We use similar
principles to fuse noisy causal estimates.

Problem Setting We have access to a dataset {(x1, y1), . . . , (xn, yn)} of samples
drawn from some distribution D. Potentially, we have access to additional training
distribution sets from D2, D3, . . . , Dk. We refer to these as the k training environemnts.

Our goal is to learn a model f(x) that performs well in new scenarios. Typically
this means that it is capable of domain generalization, i.e., it generalizes well to test
distributions Dtest that are disjoint from the training distributions Dtrain. However, we
might also be interested in f(x) performing well in subpopulation shift scenarios. In
this case, our goal is to maximize f(x)’s performance across all domains seen during
training (i.e., Dtest ⊆ Dtrain ), but the proportions of samples from each domain can
change.

We also assume we have access to pretrained model or foundation model (FM) embed-
dings. These embeddings are the outputs of a mapping g : X → Z from input space to
latent embedding space. This mapping is fixed and obtained from off-the-shelf models.

3 Approach
We present our method to train models robust to spurious correlations: COMNIVORE.
At high level, we break up the task into two parts. Our first goal is to obtain many
sources of potentially causal features and group them into a set of distinct feature
transformations. These might include the raw features, embeddings from pretrained
models like a ResNet or foundation models like CLIP, the result from performing a
manually-chosen transformation/augmentation on the dataset, or some combination of
the above. We call the resulting sets of feature transformations the candidate sets.

Directly relying on the features in these candidate sets may not be sufficient, however—
they may also be affected by spurious correlations. To further refine our estimated
features, we run a suite of causal estimation approaches for each set. We refer to these
as the causal feature selection functions. We will estimate the reliability of each of the
selection functions and produce an improved overall estimate of the causal features.
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Finally, we combine the resulting estimated features from each of the candidate sets and
train the end model.

Generating candidate sets Our first task is to generate candidate sets {C1, C2, . . . , Cb}.
These are transformed versions of the original features that ideally have some reduced
spuriousness. Potential choices of these include,

• Embeddings from off-the-shelf models, such as foundation models like CLIP,

• Existing end-to-end invariant feature construction methods, like IRM, when
suitable,

• Manually-selected transformations/augmentations,

• Automated transformations/augmentations.

We describe the latter two possibilities. First, we observe that humans can often identify
causal features with ease. As a running example, consider the Waterbirds dataset [42]
[49]. The goal is to classify birds as being water-based or terrestrial, and the background
in the images of these birds (bodies of water versus land) acts as a spurious feature. This
is challenging for training algorithms to discern, but nearly trivial for humans. It is easy
to encode this human insight into transformations that can be built with off-the-shelf
tools. In this case, running a standard segmentation algorithm to isolate the bird acts as
such a transformation, as shown in Figure 2.

Manually-selected transformations help translate easily-acquired human insights into
high-quality candidate sets. However, we do not always have access to such information.
In Section 4, we will show how to automate the process of encoding human insights
into causal versus spurious features. This will enable us to get the best-of-both worlds.
An example is shown in Figure 3.

Generating causal feature selection functions Next, we use the suite of causal
inference algorithms listed in Section 2 to obtain the estimated causal structures
for each candidate set. These algorithms take the sets of features paired with the
corresponding labels {({z11 , . . . , z1d}, y1), . . . , ({zn1 , . . . , znd }, yn)} for each available
training environment and output the estimates of causal structures that govern the
relationships among individual features and with the label. These causal structures are
represented in form of DAGs in G. Our approach treats the causal inference algorithms
[9, 23, 37, 38, 40, 45, 47, 48] like labeling functions in weak supervision as they output
noisy estimates of causal structures. Formally, given m causal algorithms, the output of
each algorithm λa is described by

λa : {({z11 , . . . , z1d}, y1), . . . , ({zn1 , . . . , znd }, yn)} → G, a = 1, . . .m (1)

One challenge is that such algorithms often have high complexity, sometimes superexpo-
nential in the number of features. We use a simple way to address this difficulty. We map
the features into a lower-dimensional space, perform estimation in this space, and then
return to the original space. At the end of this step, we have m DAGs {G1, . . . , Gm}
per candidate set and environment.
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Algorithm 1 COMNIVORE

Input:Training dataset drawn from a distribution Dorig = {(x1, y1), . . . , (xn, yn)},
causal feature selection functions λ, embedding mapping f Generate candidate sets C
for Ci ∈ C do

for λi ∈ λ do
Generate causal structure estimates Gi

for Gi ∈ G do
if fusing method == Graph-based WS then

Compute λj’s weight wj

while Annealing iteration do
Minimize weighted objective as in (2) to get Ĝ

collect all zi ∈ z that has a causal edge to label node
if fusing method == Vanilla WS then

for zi in z do
Construct label matrix L Get causal predictions from WS system Ŷi ± 1

Result: Singleton set of configurations .

Fusing noisy causal estimates Our final task is to obtain a fused estimate G from the
DAGs. Our goal is to obtain a better set of features compared to the noisy DAG estimates
{G1, . . . , Gm}. We employ two weak supervision-based techniques to combine the
Ga’s into Ĝ:

1. Graph-based Weak Supervision. With this approach, we learn weights wa for each
estimate Ga. These weights correspond to average distances to a true G∗ which we do
not observe. To estimate the weights, we use the algorithm in [36], described below. We
embed the graphs into Rd, producing an embedding r(Ga). We set up the following
system of equations for triplets (a, b, c) chosen from {1, . . . ,m}:

∥r(Ga)− r(Gb)∥2 = ∥r(Ga)− r(G∗)∥2 + ∥r(Gb)− r(G∗)∥2

∥r(Ga)− r(Gc)∥2 = ∥r(Ga)− r(G∗)∥2 + ∥r(Gc)− r(G∗)∥2

∥r(Gb)− r(Gc)∥2 = ∥r(Gb)− r(G∗)∥2 + ∥r(Gc)− r(G∗)∥2.

To obtain ∥r(Ga)− r(G∗)∥2, we add the first two equations, subtract the third, and
divide by two. This is an estimate of the average distance between our (embeddings of)
graphs; the weights w are just the reciprocals, so that wa = 1

∥r(Ga)−r(G∗)∥2 ).

Once we have estimated ŵa, we perform the following optimization

Ĝ = argmin
G∈G

1

m

m∑
j=1

wjdH(G,Gj) (2)
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Figure 2: Manual transformation candidate set examples. Humans can easily observe
that background is not causally linked to bird species (left) and that gender is not linked
to hair (right). These insights can be translated into simple augmentations that help
remove potentially spurious features: segmentation to remove background (left) and
facial features (right).

where dH denotes the Hamming distance. Note that we compute the mean in the original
DAG space, not in the embedding space. We use simulated annealing [17], an iterative
global search optimization method, to obtain Ĝ. Next we take all features zi that have a
causal path in Ĝ to the label node as the causal feature subset.

2. Vanilla Weak Supervision. Alternatively, instead of searching for the best overall
causal structure, we can try to solve a perhaps more manageable problem: is feature zi
causally related to the label y? We treat this problem for each feature zi as a simple
classification problem Yi ∈ {±1} where +1 means a causal edge present between zi
and y in DAG Gj , 0 indicates no relationship, and −1 an anti-causal edge present
between zi and y.

Inspired by [16], for each zi, we first construct a k ×m label matrix L, where k is the
number of environments we have access to and m is the number of causal estimation
functions. Note that L is constructed for each zi in each candidate set separately. We
encode the predictions output by each estimation algorithm into L and pass it as input
to any weak supervision approach, e.g., [16, 31, 32].

4 Automating Candidate Set Transformations
There are many situations where a human user may not be aware of a spurious pattern in
the data. Had CelebA [22] not contained the appropriate annotation, a machine learning
practitioner wishing to predict hair colors may have overlooked this feature’s spurious
correlation with gender. More generally, it is not always certain that users may have
sufficient domain expertise to design hand-crafted transformations for candidate feature
sets.

We describe a simple method to fully automate the candidate set transformation. An
illustrative example is provided for the Waterbirds dataset [34]. To discover patterns in
the training images, we generate a caption for each image using a CLIP-based captioner
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Figure 3: Automated transformation candidate set. Left, an image from Waterbirds
[34] with its caption’s keywords in bold. Right, a 10 × 10 patch is covered if zero-
shot CLIP [29] predicts with confidence greater than 0.6 the presence of any word in
{tree, branch, forest, beach, rock, woman, ocean, field, man, background}. These words
were discovered to associate with non-causal information and therefore signal that the
corresponding patch should be masked out.

[24], then extract captions’ keywords. We search each label (waterbird and landbird) on
Wikipedia [43] and extract the keywords from the first resulting article’s introduction
section.

Spurious words are considered to be the top m most common caption keywords that
do not occur in the article keywords. We next break each training image into non-
overlapping p× p patches. If zero-shot CLIP [29] predicts any of the spurious words in
a given patch with confidence greater than τ , the patch is covered. A resulting image
from this process is depicted in Figure 3.

We note that there are many potential ways to fully automate the candidate set transforms
by taking advantage of ontologies and pretrained models. The proposed procedure
requires only the label names and some form of task description, for instance that the
dataset is comprised of images, allowing it to also be implemented in other settings
outside the specific example described above.

5 Theoretical Analysis
While the idea of fusing multiple noisy causal estimates is intuitively appealing, it is
not clear whether we can expect this to work and under what conditions. This section
is dedicated to showing how, in certain simple scenarios, the resulting estimates of the
causal structure are useful.

Setup and Noise Distributions We will consider two scenarios. In the first, we have
some candidate set of features z1, . . . , zk, and we are interested in determining whether
zi is causal for output y. In other words, we are predicting a set D ⊆ {1, . . . , k}. In the
second scenario, we additionally take into account the causal structure, i.e., a directed
acyclic graph G over the nodes z1, . . . , zk.
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We denote the causal recovery techniques by λa for a = 1, . . . ,m, so that λa : Rk×n →
2{1,...,k} in the first case, or λa : Rk → G in the second case. Recall that G is the set
of DAGs on k nodes. Finally, we have a access to k environments, where for each
environment, we observe n samples of the features z1, . . . , zk.

Each causal estimation function λa may fail in a variety of ways; this may be because
the underlying assumptions are not met, or because of noise, or for some other reason.
The outcome of such noise is either a predicted set D not equal to the true D∗, or a
predicted graph G not equal to G∗. We will model the noise in the estimation approaches
with the following model inspired by [36]:

Pθ(λ
1, . . . , λm|D∗) =

1

Z
exp

(
−

m∑
a=1

θadH(λa, D∗)

)
, (3)

where Z is the normalizing partition function, dH is the Hamming distance, and θ =
[θ1, . . . , θm]T is a vector of parameters. For sets, dH is simply the size of the symmetric
diference. We can also operate in the second scenario by switching D∗ to G∗ on both
sides of (3). In this case, the Hamming distance over graphs counts the number of
differences in edges. Note how the model works: if θa is large, then the probability mass
is significantly reduced even for a small distance between the prediction and the true
causal model; this implies that the quality of the approach λa is high. If θa is small, then
even a large distance does not significantly reduce the probability, so λa is low-quality.

Note that richer models are possible; for example, we could replace the graph Hamming
distance with the interventional distance as in [27]. The advantage of the exponential
family model above is that it is tractable without requiring significant specifications on
the underlying causal model.

Estimating Qualities and Performing Fusion The main challenge is how to estimate
θ1, . . . , θm. The two techniques in Algorithm 1 work for these two scenarios. We show
that the second approach has consistent estimation of θ in terms of the number of
environments k.

Suppose λa, . . . , λm are distributed according to (3) and we have access to k training
environments. Using vanilla weak supervision to estimate θ̂, we have that E[∥θ̂−θ∗∥] ≤
O(1/

√
k). This implies that, given sufficiently many environments, the weights we

learn for use in Algorithm 1 reflect the underlying quality of the causal estimation
functions.

6 Experiments
This section validates the following claims about COMNIVORE:

• Performance (Section 6.1): We compare COMNIVORE against two automated causal
discovery techniques: IRM and REx [20]. We show that COMNIVORE outperforms
baseline end-to-end approaches on unseen environment Dnew with comparable per-
formance on the original environment Dorig on both subpopulation shift and domain
generalization datasets.
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IRM REx COMNIVORE-G COMNIVORE-V

Dataset Dnew Dorig Dnew Dorig Dnew Dorig Dnew Dorig

Waterbirds 37.5 72.3 58.6 95.5 71.0 91.4 71.0 90.7
CelebA 63.3 88.5 61.6 85.1 60.4 88.6 63.4 90.1
Camelyon17 64.2∗ 82.6∗ 75.0 87.0 87.2 91.6 72.3 89.0
ColorMNIST 66.9∗ 70.8∗ 68.7∗ 71.5∗ 70.4 99.7 80.0 67.2

Table 1: COMNIVORE performance compared to baseline end-to-end approaches. All
scores are accuracy. Best results for Dnew are highlighted in blue and Dorig in red.
COMNIVORE -G uses Graph-based WS as fusing method, COMNIVORE-V uses Vanilla
WS. Results are average over three runs. Results marked by ∗ are quoted from appropri-
ate papers.

ERM-CLIP ERM-CLIP(Augment) COMNIVORE-G

Dataset Dnew Dorig Dnew Dorig Dnew Dorig

Waterbirds 24.6 96.0 63.7 93.7 71.0 91.4
CelebA 2.20 93.8 52.0 90.0 60.4 88.6
Camelyon17 78.2 89.5 74.3 90.0 87.2 91.6
ColorMNIST 9.0 93.0 22.8 100.0 70.4 99.7

Table 2: COMNIVORE ablations. All scores are accuracy.

• AutoLF (Section 6.2): We demonstrate for Waterbirds [34] that COMNIVORE with
AutoLF performs identically to human-based LFs on Dorig and outperforms prior
works on Dnew, without any human supervision.

• Theory (Section 6.3): Aligned with the theoretical analysis presented in section 5,
we show empirical results on synthetic data that training vanilla ERM model with
causal features from COMNIVORE strictly outperforms vanilla ERM with all features
on Dnew, and is equal on Dorig given sufficiently high-quality estimation functions,
as reflected by θa.

• Ablations (Section 6.4): COMNIVORE’s significant lift on Dnew while retaining good
performance on Dorig is produced by our careful selection of causal features, rather
than simply removing spurious parts in {C1, C2, . . . , Cb} and using foundation model
embeddings. We show this by comparing COMNIVORE with training vanilla ERM and
baseline approaches using the foundation model embeddings of {C1, C2, . . . , Cb}.

Datasets We evaluate COMNIVORE on three datasets in the WILDS benchmark [18].
In subpopulation shift, Waterbirds combines bird images from the Caltech-UCSD
Birds-200-2011 (CUB) dataset [42] with backgrounds from the Places dataset [49], with
spurious correlation occurs between label Y = {landbirds,waterbirds} and background
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REx Manual Candidate Set Automated Candidate Set

Dnew 58.6 71.0 66.2
Dorig 95.5 90.7 93.1

Table 3: COMNIVORE-V with manually-built versus automated transformation-based
candidate set and REx, the prior approach with best Dnew performance. All scores are
accuracy. The automated approach extracts human insights by combining the use of
foundation models and ontologies, offering close-to-manual performance.

attribute A = {land,water}. There are n = 4, 795 training examples and 56 in the
smallest group (waterbirds on land); CelebA celebrity faces dataset [22] has spurious
correlation between the hair color label Y = {blond, dark} and the gender attribute
A = {male, female}. There are n = 162, 770 training examples with 1387 in the
smallest group (blond-haired males); In domain generalization, Camelyon17 [6]’s task
is to identify tumor in medical images. The domain shift is the different hospitals
where training and test samples are collected. There are n = 302, 436 training samples
and n = 85, 054 test samples. In addition, we also evaluate on ColorMNIST, where
spurious correlations between digits and color are artificially created, similar to the task
used in [3] and [20]. Pre-trained embeddings We use pre-trained CLIP embeddings
[29].

6.1 Performance Comparisons
We compare COMNIVORE with baseline approaches (IRM [3] and REx [20]), measuring
accuracy on the original train distribution Dorig and the new test distribution Dnew. For
COMNIVORE , we train a simple 2-layer MLP using ERM on the sets of causal features
acquired using both graph-based WS and vanilla WS. For IRM and REx, we experiment
with 2-layer MLPs using two choices of feature extractors: CLIP and ResNet50. The
latter follows the choice of architecture used in the WILDS benchmark [18]. We report
the best of the two results.

Table 1 shows the results. COMNIVORE outperforms IRM and REx on Dnew across all
datasets. For Dorig , COMNIVORE’s performance is comparable to the best baseline on
Waterbirds (by 4.6%) and achieved the best accuracies on ColorMNIST (tie with IRM),
CelebA and Camelyon17. This reflects our method’s ability to ingest and refine a large
number of causal features.

6.2 Automated Candidate Set Transformation
Next, we evaluate COMNIVORE when using the candidate set built from automated
transformations described in Section 4. We use a patch size p of 75, spurious word list
length m of 10 and threshold τ of 0.6 on Waterbirds [34]. As shown in Table 3, this
configuration yields a similar performance to COMNIVORE with human-supervised

11



R
M

SE

R
M

SE

Graph-based WS Vanilla WS

Figure 4: Synthetic Experiments. Errors on Dorig and Dnew when using only causal
features converges to lower bound (error on Dorig using all features) with increasing θ.

LFs for Dorig . AutoLF’s score of 66.2 on Dnew also improves by 7.6% on the baseline
Dnew Waterbirds results of Table 3.

We observed that the result is typically sensitive to the choices of threshold. We hy-
pothesize that expanding the approach to larger ontologies will further close the gap to
manual performance.

6.3 Synthetics and Theoretical Characterization
We evaluate a key claim from our theoretical characterization in Section 5. We expect
that as the values of the θ parameter vector are larger, the quality of the causal estimation
functions improves, and that our resulting algorithm produces causal features that
perform well in a new environment.

We validate this notion using a synthetic dataset reflecting a simple linear regression
setup. In the original environment Dorig, the label is a function of all of the fea-
tures, while in the new environment Dnew, the label is a function of only a subset of
features—and the remaining features have a significantly different distribution from
their counterparts in Dorig.

The results are shown in Fig. 4. We swept the average magnitude of θ, used our two
approaches based on graph-based WS (left) and vanilla WS (right), trained a linear
regression end model, and measured the root mean squared error (RMSE). As expected,
using all features results in very good error in Dorig (green curve) and very poor error
in Dnew (red curve). Applying our causal approaches resulted in nearly-as-good Dorig

performance (blue curve), and vastly improved Dnew performance (yellow curve). As
we hoped, the error of this curve generally decreases with improved quality estimates
(i.e., larger θ). Additionally, we note that the vanilla WS approach, while slightly noisier,
produces a smaller final error. This suggests a closer analysis of the two approaches
would be useful.
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6.4 Ablations
We investigate the source of COMNIVORE’s performance lift. We train models using
vanilla ERM on the extracted features of the candidate sets and original images, without
performing the causal estimate step. We report the results in table 2. On Dnew, COM-
NIVORE outperforms both vanilla ERM trained using original images and candidate
sets. COMNIVORE’s performance on Dorig is within relatively comparable accuracy
with the best of vanilla ERM on Waterbirds, CelebA, and ColorMNIST (by 5.6%, 5.2%,
and 0.3%) and performed the best on Camelyon17. This result demonstrates that COM-
NIVORE ’s performance lift is produced by both candidate set generation and causal
features selection.

7 Conclusion
We introduced COMNIVORE, a system for efficiently discovering causal features for
downstream model training. It operates by flexibly integrating multiple sources of
potential causal signal and fusing together noisy estimates of causal structures. We
showed how to acquire candidate feature sets through a variety of means—via pretrained
model embeddings, hand-crafted augmentations that encode human insights into causal
relationships, or automated transformations that take advantage of preexisting signal in
ontologies and foundation models. The causal feature sets are further refined by running
suites of causal feature estimation methods and fusing their outputs. We validated
COMNIVORE empirically, showing how that it can outperform end-to-end methods like
IRM.
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Appendix
We discuss related work, provide a glossary containing key terminology, introduce
additional details into our algorithm and theoretical claims, then give extra experimental
details and results.

A Related Work
This section presents discussion of related work and connections to our work.

Invariant learning methods such as IRM [3], REx [20], and a multitude of similar
works [1, 2, 11, 26] share a similar goal with our work. The aim is finding feature
representations that are invariant across domains or environments. We can think of these
invariant features as similar to our goal causal feature subset. This is achieved mainly
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by minimizing specialized loss functions. IRM and REx minimize the sum of loss terms
across environments and thus require environment labels. Environment Inference for
Invariant Learning (EIIL) [11] and Predictive Group Invariance (PGI) [1] train an initial
ERM model to infer environment labels and later on train another model with invariant
learning objectives. In contrast, COMNIVORE estimates the causal features in-prior to
training a model and thus circumvents the need for any specialized loss functions.

Improving robustness to spurious correlations and distribution shift is an ex-
tensive line of work that can be divided into two aspects, based on whether access to
group/domain information is given or not. In the line that requires group information
a priori, one popular work is group distributionally robust optimization (GDRO) [34],
which divides the data into explicit groups and then trains them to directly minimize the
worst group-level error among these groups. Similarly, Fish [35] and Inter-environment
Gradient Alignment (IGA) [19] aim to improve domain generalization performance by
maximizing inter-domain gradient terms in their loss functions.

More similar to our approach are methods that do not assume group information at
training time. For instance, distributionally robust optimization (DRO) minimizes worst
group loss within a ball centered around the training distribution [4, 14]. More recent
methods [21, 25, 46] train two ERM models: the first one is to estimate which data
points play a crucial role in their subsequent steps (e.g., which points belong to minority
groups, which samples come from the same class but has different spurious features,
etc.). Next, such methods train another ERM model with specialized objectives (e.g., to
up-weight minority groups, using contrastive loss to learn invariant features, etc.). Note
that all of these works are compatible with our approach as well.

Causal inference algorithms [9, 23, 37, 38, 40, 45, 47, 47] seek to discover the
structure that governs relationship between set of features in the data. Ideally, for our
purpose, if we feed the sets of features and labels into these algorithms, we hope to
be able to extract the features that have a causal link to the label. Unfortunately, this
problem is statistically and computationally hard [8, 10]. As a result, these methods
resort to local heuristics and assumptions, thus limiting their accuracy when applied
to complex high-dimensional data. Our approach fuses these noisy estimates of causal
structures to get the estimated set of causal features on which training an end model will
be robust to spurious correlation and domain shift.

Weak supervision is a set of techniques that use noisy sources of labels to construct
labeled training sets without access to ground truth labels [16, 30, 32]. This technique
is vastly explored for binary classification problems. Recently, [36] enables weak
supervision over broader sets of problems, which also serves as a basis for our graph-
based weak supervision fusion method.

B Glossary
The glossary is given in Table 4 below.
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Symbol Used for

x Input data point x ∈ X .
y Ground truth label y ∈ Y .
D Data distribution. Each Di is a distribution where samples are drawn (e.g., Dtrain and Dtest).
f End classification model.
g A fixed mapping from input space X to embedding space Z that is made available by

off-the-shelf pretrained or foundation models.
C Candidate sets.
k number of environments
z Features z = {z1, . . . zd}, where each zi is feature vector component.
n Number of data points.
d Number of features (i.e., dimension of feature vector).
λ Causal inference algorithms λ = {λ1, . . . , λm} that vote on each set of features

{({z11 , . . . , z1d}, y1), . . . , ({zn1 , . . . , znd }, yn)}.
m Number of causal inference estimate algorihtms.
G DAG where each Gm ∈ G represents a noisy estimate of causal structure.
G Space of graphs.
Ĝ Combination of Gs.
G∗ True causal structure (not observable).
r(G) Graph embedding.
L Label matrix.
θ Accuracy parameter of λ, where θm is accuracy of λm

Table 4: Glossary of variables and symbols used in this paper.

C Additional Algorithmic and Theory Details
Next we give some additional algorithmic and theory details.

C.1 Projection to Low-Dimensional Space
We use sklearn’s [5] implementation of feature agglomeration, an unsupervised di-
mensionality reduction technique that uses agglomerative clustering to group together
features that look very similar [39]. Our method also works with any dimensionality
reduction technique like PCA [15]. We chose feature agglomeration because it provides
an automatic mapping from higher to lower dimensional space, thus eliminating the
need to manually set thresholds for the components.

C.2 L Matrix Computation
In Vanilla WS fusion method, for each zi, we construct a k ×m label matrix L, where
k is the number of environments we have access to and m is the number of causal
estimation functions. Formally, let A(b,j) be the (d + 1) × (d + 1) adjacency matrix
representation of Gj from bth environment, and the label node is the d+ 1th node in
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Gj , each entry of L is defined by:

Lbj =


1, if A

(b,j)
id = 1

0, if A
(b,j)
id = 0

−1, if A
(b,j)
id = −1

, b ∈ 1 . . . k, j ∈ 1 . . .m, i ∈ 1, . . . d− 1 (4)

C.3 Theoretical Details
The proof of Theorem 5 follows directly by applying the results in [16] (Theorem 1).

D Extended Experimental Details

D.1 Dataset Details
Table 5 shows details on train/dev/test splits for each dataset, as well as the number of
smallest group samples in distribution shift datasets. All splits are following the default
provided by WILDS benchmark [18].

Dataset Ntrain Ndev Ntest Nsmallest

Waterbirds 4,795 1,199 5,794 56
CelebA 162,770 19,867 19,962 1,387
Camelyon17 302,436 33,560 85,054 (Dnew) + 34,904 (Dorig) N/A

Table 5: Details for each dataset. Ntrain: The size of the unlabeled training set. Ndev:
The size of the labeled dev set. Ntest: The size of the held-out test set. Nsmallest: The
size of the smallest group for subpopulation shift datasets.

As an additional point of comparision, we note that EIIL [11] achieves a 69.7% accuracy
on Dorig and 78.8% Dnew in Waterbirds dataset.

D.2 ColorMNIST
We construct our implementation of synthetic colored version of the MNIST dataset
[12]. In contrast with IRM and REx, we do not collapse the classes (i.e., y = 0 for
digits 0− 4 and y = 1 for digits 5− 9). Instead, we directly use the digits 0 vs 1. More
specifically, we take MNIST subsets of digits 0 and 1, assign a color to each digit, and
flip the color on Dtest. We use the default train/dev/test splits provided by MNIST.

We also note that in IRM’s version of ColorMNIST, IRM achieves 70.8% accuracy on
Dorig and 66.9% Dnew; and in REx’s implementation, REx achieves 71.5% accuracy
on Dorig and 68.7% on Dnew. Our main experimental table contains the values we
obtained on our version of the dataset.
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D.3 Manual Candidate Sets
This section details the construction of manual candidate sets used in our experiments.
The original and transformed images are shown in figure 5. For Waterbirds and celebA,
segmentation is done using Pytorch’s off-the-shelf DeepLabV3 model [7]. For Came-
lyon17, the candidate set generated is the gaussian blurred version of the original images,
generated using PIL’s Gaussian Blur filter [41]. For ColorMNIST, the candidate set used
is the original images and the black and white version. Table 6 details the candidate sets
used for best numbers reported. v

Dataset Candidate Sets Used

Waterbirds {Segmentation}
CelebA {Original, Segment + Crop Bottom, Segment + Crop Face}
Camelyon17 {Original, Gaussian Blur}
ColorMNIST {Original, bw}

Table 6: Candidate Set used for each dataset. Original images can also be a candidate
set (e.g., in celebA and Camelyon17).

Or
ig

in
al

Se
gm

en
t

Or
ig

in
al

Ga
us

sia
n 

Bl
ur

Or
ig

in
al

Se
gm

en
t +

 C
ro

p 
Bo

tto
m

Se
gm

en
t +

 C
ro

p 
Fa

ce

Figure 5: Candidate Sets
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D.4 Hyperparameters and Model Selection
D.4.1 End Classification Model

Experiments were done three times, and we reported an average of three runs. Models are
selected based on the best performance on the dev set (and OOD dev set for Camelyon17).
Experiments are conducted using two NVIDIA RTX A4000 GPUs. For all datasets, we
train a 2-layer MLP with 512 hidden dimensions. Best hyperparameters are reported in
table 7. All models are trained using 0.9 momentum and 0.1 l2 regularization penalty.
Training epochs are set until 500, and we picked the checkpoint with the highest dev
performance.

Dataset dim(z) Learning rate Batch size

Waterbirds 5 5e− 4 32
CelebA 3 1e− 4 16
Camelyon17 3 5e− 4 1280
ColorMNIST 10 1e− 4 1280

Table 7: Best hyperparameters. dim(z) is the lower dimension space used to project
features.

D.4.2 Automated Candidate Set Generation

We choose the word count m, patch size p and threshold τ hyperparameters yielding
highest average dev set accuracy, then report the performance on the test set averaged
across three runs.

D.5 Baseline Implementations
IRM A ResNet50 is trained using the IRM implementation from the WILDS bench-
mark [18]. Reported results are averaged across three runs, using the hyperparameters
yielding highest average accuracy on the dev set in any epoch. In real-world applications,
the best strategy would often be to select a model that balances somewhere in between
maximizing average and worst-group accuracy as determined by domain experts. In this
work, however, we choose to report epochs that maximize average accuracy without
regard to worst-group accuracy in order to establish a uniform, unbiased method to
select the “best" hyperparameters and performance metrics.

The maximum possible number of epochs is 200. Momentum of 0.9, IRM λ of 100 and
penalty annealing iterations of 500 are used for all datasets. Learning rate and batch size
are reported in Table 8.

We do not report the hyperparameters for Camelyon, because we report IRM result on
Cameyon based on the WILDS leaderboard [44].
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Dataset Learning rate Batch size

Waterbirds 1e− 5 128
CelebA 1e− 6 96
ColoredMNIST 1e− 7 64

Table 8: Best hyperparameters for IRM.

REx We train a 2-layer MLP with 256 hidden dimensions using REx implementation
for all datasets. Experiments were done three times, and we reported an average of three
runs. The maximum possible number of epochs is 500, and we picked the checkpoint
with the highest performance on dev set (and OOD dev set for Camelyon17). Penalty
annealing iterations of 100 are used for all the datasets. Other best hyperparameters are
reported in Table 9.

Dataset Learning rate Batch size β

Waterbirds 1e− 3 2000 10000
CelebA 3e− 3 4000 100
Camelyon17 3e− 3 32 100
ColoredMNIST 3e− 5 1000 10000

Table 9: Best hyperparameters for REx. β is assigned weight for variance of risks in
REx risk function used to balance between reducing average risk and enforcing quality
of risks[20].
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