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ABSTRACT

Weak supervision is a popular framework for overcoming the labeled data bottle-
neck: the need to obtain labels for training data. In weak supervision, multiple
noisy-but-cheap sources are used to provide guesses of the label and are aggre-
gated to produce high-quality pseudolabels. These sources are often expressed as
small programs written by domain experts—and so are expensive to obtain. In-
stead, we argue for using code-generation models to act as coding assistants for
crafting weak supervision sources. We study prompting strategies to maximize the
quality of the generated sources, settling on a multi-tier strategy that incorporates
multiple types of information. We explore how to best combine hand-written and
generated sources. Using these insights, we introduce ScriptoriumWs, a weak
supervision system that, when compared to hand-crafted sources, maintains accu-
racy and greatly improves coverage.

1 INTRODUCTION

Access to substantial amounts of high-quality labeled data is a key ingredient for training performant
machine learning models. Such data is usually produced by asking domain experts for ground-truth
labels, making the process of dataset creation expensive, slow, and hard to scale. Programmatic
weak supervision (PWS), a novel paradigm for generating labeled dataRatner et al./(2016)), sidesteps
these obstacles. The idea behind PWS is to leverage a combination of noisy label estimates obtained
from domain knowledge, heuristic rules, and pattern matching. These sources act as noisy labeling
functions (LFs), usually expressed as code. The outputs of these labeling functions are modeled and
aggregated to annotate unlabeled data points Ratner et al. (2016;2017;2019)); [Fu et al.|(2020a).

PWS has proven successful Bach et al.| (2019); Evensen et al. (2020); L1 et al.| (2021); (Gao et al.
(2022) but remains expensive: users must painstakingly write small programs to act as LFs. Users,
even domain experts, often need tedious experimentation to carefully set up proper thresholds, man-
ually fine-tune heuristic rules to capture enough keywords, or debug regular expressions. To tackle
these challenges, recent approaches automatically produce LFs by using a minimal level of super-
vision (i.e. a few labeled data points) [Varma & Ré|(2018)); Das et al.| (2020); [Zhao et al.| (2021);
Boecking et al.| (2021); Roberts et al.|(2022) or access to powerful external models (like large lan-
guage models) to prompt data labels Smith et al.| (2022). However, these approaches do not yield
programmatic LFs, but rather model-generated noisy label estimates, and so lose the ability to debug
and transfer, a key advantage of programmatic weak supervision.

A best-of-both worlds approach is to have code-generation models write labeling functions. This
neither requires domain experts to write code nor sacrifices the programmatic property of LFs.
Indeed, such an approach is now plausible given advances in models that produce code, such as
CodeT5 [Wang et al.| (2021b), Codex |Chen et al.| (2021), and CodeGen [Nijkamp et al.| (2022)).
Among other benefits, LFs generated by such models can be edited and used as templates, providing
programming assistance for users to design LFs more easily and efficiently. Additionally, unlike
human-designed LFs, synthesized LFs can be generated in large quantities. Finally, in contrast
to using large language models to obtain the noisy labels estimates via prompting, which requires
repeated inference calls, synthesized LFs can be stored and reused to label new data at zero cost.

However, it is unclear whether code generation models can produce sufficiently high-quality LFs,
and, when it is possible, what approach to take in order to do so. We ask the following fundamental
questions we aim to answer in this work:
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Python3
Write a function to label comment on *YouTube" as spam or not spam.

def is_spam(comment):
# If the comment is spam, function returns 1.
#1f the comment is not spam, function returns 0.
# If the comment cannot be determined as spam or not, function returns -1.
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Figure 1: Overview of the proposedScriptoriumWS system. Code generation models are prompted to produce
small programs that act as weak supervision labeling functions. These are used within a weak supervision
pipeline to label an unlabeled dataset. A downstream end model is trained on the labeled data.

1. Prompt format: Prompts are highly sensitive. Small changes to prompt components lead
to great variation in generated results. There is currently no consensus on the best way to
generally prompt code-generation models, let alone specifically for labeling functions. Our
first question is: what prompting strategy can yield high-quality LFs?

2. Capability of synthesized LFs: Next we ask: compared to human-designed LFs, what are
the strengths and weaknesses of synthesized LFs? Additionally, what is the typical result
when using these synthesized programs in programmatic weak supervision pipelines?

3. In-context few-shot settings: If we are allowed to include some heuristic rules or give
several examples into the prompt context, does this better guide the model in synthesizing
high-quality LFs? What type of in-context information can add and influence the quality
of synthesized LFs?

We answer these questions and use the resulting insights to build a novel programmatic weak super-
vision system called ScriptoriumWS. A high-level view of ScriptoriumWS is illustrated in Figure
[[] The system creates LFs by prompting code-generation models to synthesize programs and in-
corporates them into PWS pipelines. To validate ScriptoriumWS§, we conduct experiments with
OpenAl Codex (Chen et al.|(2021)), a state-of-the-art natural language-to-code system based on GPT-
3Brown et al.|(2020). We further propose a complementary approach to incorporate the strength of
synthesized and human-designed LFs to improve the performance of the end model.

With the aid of ScriptoriumWS, we explore the advantages that synthesized LFs can bring to the
weak supervision framework. We study various prompting strategies to gain insight into how to
best generate high-quality LFs. We conduct experiments in diverse text domains and empirically
demonstrate the effectiveness of ScriptoriumWS. Excitingly, we find that compared to the human-
designed LFs in WRENCH, LFs generated using ScriptoriumWS achieve much higher coverage (the
fraction of data points that receive labels) while maintaining high accuracy. For example, using the
WRENCH benchmark [Zhang et al.| (2021)) for comparison, we improve the coverage for the SMS
dataset from 40.5% to 100% and for the Spouse dataset from 25.8% to 100%, while also improving
downstream performance by 1.4 and 5.0 F1 points, respectively.

2 RELATED WORK

Programmatic Weak Supervision (PWS): PWS refers to a broad set of techniques where the
data is labeled using cheaply available but potentially noisy labeling information. This information
could be from external knowledge bases, heuristics, web search results, and more. Programmatic
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weak supervision Ratner et al.| (20165 |2017) abstracts out these sources as user-provided (written)
labeling functions and gives principled ways to aggregate their outputs to produce accurate pseu-
dolabels. This framework is practically effective and widely used in industry Ratner et al.| (2017);
Bach et al.|(2019) and also offers theoretical guarantees, including consistent estimation of accura-
cies of labeling functions |[Ratner et al.|(2016); |Vishwakarma et al. (2022). Its main downside is that
writing, iterating, and debugging programmatic labeling functions is slow and expensive.

Automated Weak Supervision (AutoWS): AutoWS is a class of techniques that reduce the need
for humans to design LFs. In many cases, designing LFs can be expensive or challenging, particu-
larly when the feature space is too complex, nuanced, or high-dimensional to be reasoned-about by
a human, such as in image and video domains. AutoWS techniques can be used in these situations
to automate the LF design process by instead using small models as LFs |[Varma & Ré (2018); Das
et al.[(2020); Boecking et al. (2021), or by augmenting a few given human-designed LFs to explore
more rules|Zhao et al.|(2021). Similarly, it is possible to directly query large pretrained models for
noisy label estimates Smith et al. (2022)). The downside of these approaches is that the resulting
labeling functions are typically no longer programs that can be debugged, modified, and re-used.

Large Pretrained Models and Prompt Engineering: Prompting is a common way to tap into
the knowledge and capabilities of large pre-trained models |Liu et al. (2023). Prompting refers to
giving natural language instructions to the model in order to get the answer. These prompts can
also contain examples of input-output pairs — usually referred to as in-context learning |Brown et al.
(2020); [Dong et al.| (2023). Prompting has been successfully applied in various applications and
understanding various aspects of prompting is a very active area of research. There are various
methods proposed for creating good prompts e.g. |Arora et al.| (2023) give a general prompting
method, chain of thought prompting [Wei et al. (2022)) and methods to automate prompt generation
Zhou et al.| (2022). For code generation, prompts with detailed instructions, problem statements,
partial code, etc. have been used [Sarsa et al.|(2022); Denny et al.|(2022). We are inspired by these
strategies when designing our proposed system.

Using Large Pretrained Models for Data Annotation: Using large language models (LLMs) or
other large pretrained models with appropriate prompts to annotate data is a promising direction
that can reduce the cost and human effort in data labeling |Smith et al. (2022); Wang et al.| (2021a).
The main limitation here is in terms of scalability and privacy. Inference via querying an API for
every data example becomes cost-prohibitive when dealing with large-size training datasets, and
sending training data through APIs to other organizations poses a risk of privacy leaks, especially
for sensitive data.

3 METHODOLOGY

In this section, we first describe the programmatic weak supervision (PWS) setup and then discuss
approaches that we generate labeling functions by proposing different types of prompts to direct
LLMs like Codex in ScriptoriumWS.

3.1 PROGRAMMATIC WEAK SUPERVISION SETUP

Let X', ) be the instance and label spaces, respectively. For each of the n unlabeled examples, x; €
X, we observe noisy labels A ;, ..., Ay, ;. These are the outputs of m labeling functions (LFs) s,
where s, : X — Y and A\, ; = sq(z;). These LF outputs are fed to a two-step process to construct
pseudo labels. Firstly, we learn a noise model (also called a label model) that determines how
accurate the sources are. That is, we must learn 6 for Py(A1, A2, ..., A\pm, y). Note that the model
involves true labels y that are not observed for any of the samples and this makes the estimation
process challenging. Then, pseudo labels for each z; are inferred using the learned noise model.
In other words, we compute § = arg max, ¢y P;(g|A1, A2, ..., A ). Finally, an end model can be
trained using the generated training dataset: D = {(x;,9;)}7; C X x ).

A variety of label models are used for the estimation and inference sets. In this work, we focus on
LF generation and use standard label models such as Ratner et al.|(2019) and |[Fu et al.|(2020a).
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Synthesized LF

import re
def is_spam(comment):
Prompting Strategy (General Prompt) # If the comment is spam, function returns 1.
# If the comment is not spam, function returns 0.
# If the comment cannot be determined as spam, function returns -1.
if re.search("(?i)subscribe", comment):
return 1
elif re.search("(?i)like", comment):
return 1
elif re.search("(?i)share", comment):
return 1
elif re.search("(?i)comment", comment):
return 1
elif re.search("(?i)watch", comment):
return 1
else:
return 0

Python 3
Write a function to label comments on YouTube as spam or not spam.

def is_spam(comment):

# If the comment is spam, function returns 1.

# If the comment is not spam, function returns 0.

# If the comment cannot be determined as spam, function returns -1.
o

Figure 2: An example of synthesized LF using general prompt strategy for the YouTube spam clas-
sification task.

3.2 SCRIPTORIUMWS SYSTEM

ScriptoriumWS is built on top of the PWS framework. Instead of writing LFs A manually, we syn-
thesize them using OpenAl Codex. Codex is a descendant of the GPT-3 model, fine-tuned for use
in programming applications. It has shown remarkable performance Xu et al. (2022) on code gen-
eration tasks across various programming languages. We use the Codex API with natural language
prompts to generate code. We vary the temperature parameter from 0 to 0.2 to increase the diversity
of the outputs. We feed the synthesized LFs into the PWS pipeline.

3.3 TYPES OF PROMPT

We explored a variety of prompting strategies, based on the kinds of information typically available
to weak supervision users. We describe these strategies as being one of five categories, generally
going from the least to the most expensive information requirements.

General Prompts: First, we propose a general prompt format that can be easily extended with
additional information. A general prompt includes four components, which are the use of program-
ming language, basic task description, function signature, and labeling instructions. We demonstrate
an example for the YouTube spam classification task [Alberto et al.|(2015) in Figure[2]

A general prompt first provides the programming language to be used to synthesize code. Next,
the basic task description provides an overview of what the function is expected to do. Afterward,
the function signature outlines the name of the synthesized program and the input that the code
generation model should use. Finally, we place labeling instructions into the function signature to
specify the format and structure of the returned output.

Mission Statement: In addition to providing a basic task description, we also propose an extended
type of prompt, which we call the Mission Statement. Here we add information to the general prompt
to give the code generation model a better understanding of the task in the context. This additional
information includes the use of external knowledge bases, and it can include relevant background
descriptions about the problem or high-level dataset information (i.e., feature or label classes).

Human Heuristic: In practical applications, users generally have a wealth of prior knowledge and
expertise that they can bring to the prompt, including heuristic rules and domain-specific knowledge.
Incorporating this prior knowledge into the prompt can be helpful in guiding the code generation
model to have a better understanding of the problem and potentially develop a more effective so-
lution that leverages the user’s expertise. For example, if a user knows that certain keywords are
indicative of spam, they could include this information in the prompt. In ScriptoriumWSs, we refer-
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Synthesized LF

def is_spam(comment):
# If a comment is spam, function returns 1.
# If a comment is not spam, function returns 0.
# If a comment cannot be determined as a spam, function returns -1.
if 'my channel' in comment:

Prompting Strategy (Human Heuristic)

e return 1
Python 3 elif 'my video' in comment:
return 1
Here are some of how to di iate Youtube as spam or elif 'subscribe to my channel' in comment:
not spam. return 1

- Spam comments talk about 'my channel’, 'my video', etc.

if " i .
- Spam comments ask users to subscribe to their channels. slif ‘subscribe to my channel' in comment:

- Spam comments post links to other channels. _":‘f“"" 1 N

- Spam comments make requests rather than commenting. elif 'link to my channel' in comment:
return 1

Write a function to label comments on YouTube as spam or not spam. elif 'link to my video' in comment:
return 1

def is_spam(comment): elif 'please subscribe' in comment:
return 1

# If a comment is spam, function returns 1.
# If a comment is not spam, function returns 0.
# If a comment cannot be determined as a spam, function returns -1. return 1

elif 'please like' in comment:

elif len(comment) < 10:
return 0

else:
return -1

Figure 3: An example of a synthesized LF by using human heuristic strategy for the YouTube spam
classification task

Prompting Strategy (In-Context Data Exemplars)

Prompting Strategy (In-Context Labeling Fi ion s) Python 3

Python 3 ‘subscribe my' -> spam

'please visit our web: wellcomemd.blogfa.com' -> spam

Here is an example of a function that labels comment on YouTube as either spam 'Please visit this Website: oldchat.tk' -> spam

or not spam. i totally love this song. absolutely fantastic! i love ya shakira!' -> not spam
'Good song:-)' -> not spam

def keyword_lookup(x, keywords, label):

if any(word in x.text.lower() for word in ["http"]): Write a function to label comments on YouTube as spam or not spam.
return 1
return -1 def is_spam(comment):
# If the comment is spam, function returns 1.
Write a function to label comments on YouTube as spam or not spam. # If the comment is not spam, function returns 0.

# If the comment cannot be determined as spam, function returns -1.

def is_spam(comment):
# If a comment is spam, function returns 1.
# If a comment is not spam, function returns 0. synthesized LF
# If a comment cannot be determined as a spam, function returns -1.

nuw import re
Synthesized LF def is_spam(comment):
if re.search(r'\b(subscribe|visit|web|website)\b', comment,
def is_spam(comment): re.lGNORECASE):
if any(word in comment.lower() for word in ["http", "youtube", "video", return 1
"subscribe”, "channel", "watch"]): elif re.search(r'\b(love|good|fantastic|absolutely|totally)\b', comment,
return 1 re.IGNORECASE):
return -1 return 0
else:
return -1

Figure 4: Two synthesized LF examples generated by adding label function examples (left) and data
examples (right) for the YouTube spam classification task. We can see that code generation model
takes the given label function example as reference and learn the relationship between data examples
and their expected outputs to extend and synthesize it own program.

ence keywords from existing human-designed LFs and write them into heuristic rules then add these
rules to the prompt. We demonstrate an example in the category of human heuristic in Figure 3]

In-Context Labeling Function Exemplars: In-context few-shot learning is a popular approach
to perform a new task by inputting a few examples without the need of fine-tuning. We consider a
practical scenario where users have already written some LFs or are allowed to access a few existing
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LFs. Such LFs can be incorporated into the prompt. The code generation model can use them as
function templates to synthesize its own LF, which can be more closely aligned with the user’s prior
knowledge and expertise, rather than relying solely on the model’s own training data.

In-Context Data Exemplars: Besides providing Codex with heuristic rules and in-context few-
shot learning with human-designed LFs, we propose another approach by incorporating a few la-
beled data examples into the prompt to direct the model to understand the problem. Given data
examples can serve as concrete illustrations of the problem and provide a clearer understanding of
the task and the expected output. This can be especially easy and useful when the problem domain
is too complex to design heuristic rules or labeling functions manually.

4 EXPERIMENTS

In this section, we validate the capability of the proposed system. We implement ScriptoriumWsS
on the top of weak supervision pipeline proposed as part of the WRENCH benchmark Zhang et al.
(2021)) and use synthesized LFs to generate weak labels to learn the label model and then subse-
quently the end model.

4.1 SETUP

Datasets We evaluate our approach using four different types of text tasks involving a set of 6
datasets originally included in WRENCH. These 6 datasets are the IMDb Ren et al. (2020) and Yelp
Ren et al.| (2020) datasets for sentiment classification, the YouTube |Alberto et al. (2015) and SMS
Almeida et al. (2011) datasets for spam classification, the AGNews |Ren et al.| (2020) dataset for
topic classification, and the Spouse Ratner et al.|(2017) dataset for relation classification.

Label Model & End Model Our system is compatible with any choice of label and end model.
For ease of comparison, we follow WRENCH and evaluate with five label models to aggregate
the output of our synthesized LFs: majority vote (MV), weighted majority vote (WMYV), Snorkel
(Ratner et al., |2017), Dawid-Skene (DS) [Dawid & Skene (1979), and FlyingSquid (FS) [Fu et al.
(2020Db). Finally, once we generate labeled training datasets using these label models alongside our
LFs, we train a downstream model—for the sake of simplicity, we use a logistic regression end
model for all tasks.

4.2 ANALYSIS

We use our evaluation platform to validate the following claims:

Are ScriptoriumWS LFs comparable to human-designed LFs? We hypothesize that the syn-
thesized LFs generated by ScriptoriumWS can provide results that are comparable to human-
designed LFs. To see the strengths and weaknesses of synthesized LFs, we include four basic
measurements for LFs generated by different prompting strategies. These are coverage, overlap,
conflict, and accuracy. Coverage is the fraction of the dataset labeled by a given LF. Overlap shows
the fraction of the dataset with at least two (non-abstain) labels. Conflict indicates a data example
for which at least one other LF provides a different estimate. Accuracy computes the fraction of
the correctly labeled dataset. We take the average of these indicators over our synthesized LFs and
compare them with human-designed LFs in WRENCH.

The results are shown in Table [I} They demonstrate that ScriptoriumWS is capable of generating
LFs that have comparable accuracy to human-designed LFs. We observe that synthesized LFs sig-
nificantly outperform human-designed LFs in terms of coverage. This is not surprising, as human-
crafted LFs are often very specific and cannot cover too much of the dataset. On the other hand, we
see that there exist more conflicts among outputs produced by synthesized LFs. However, this is not
a concern, as such conflicts are resolved by (and in fact, are useful to learn) the label model.

How does ScriptoriumWS perform in PWS pipelines? We anticipate that as LFs from Scripto-
riumWS are comparable to human-designed LFs, such LFs will yield good performance in down-
stream tasks. We train the label model to aggregate the outputs of synthesized LFs and evaluate
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IMDb Yelp
HLFs Avg. Avg. Avg. Avg. HLFs Avg. Avg. Avg. Avg.
Coverage Overlap Conflict Accuracy Coverage Overlap Conflict Accuracy
WRENCH 5 0.236 0.116 0.045 0.699 8 0.183 0.136 0.049 0.731
General Prompt 6 0.894 0.887 0.331 0.595 11 0.716 0.716 0.213 0.736
+ Mission Statement 5 0.780 0.766 0.609 0.568 7 0.697 0.689 0.168 0.686
+ Human Heuristic 6 0.764 0.758 0.596 0.644 5 0.783 0.774 0.088 0.658
+ Labeling Function Exemplars 5 0.805 0.792 0.133 0.593 5 0.814 0.812 0.258 0.690
+ Data Exemplars 5 0.895 0.895 0.382 0.633 6 0.701 0.689 0.109 0.702
SMS YouTube
#LFs Avg. Avg. Avg. Avg. #1Fs Avg. Avg. Avg. Avg.
Coverage Overlap Conflict Accuracy °  Coverage Overlap Conflict Accuracy
WRENCH 73 0.007 0.003 0.000 0.973 10 0.170 0.132 0.075 0.826
General Prompt 8 0.815 0.815 0.260 0.897 9 0.592 0.592 0.493 0.646
+ Mission Statement 8 0.819 0.819 0.324 0.817 9 0.643 0.643 0.602 0.607
+ Human Heuristic 9 0.741 0.741 0.118 0.821 8 0.570 0.570 0.491 0.802
+ Labeling Function Exemplars 8 0.038 0.014 0.001 0.822 6 0.662 0.662 0.349 0.795
+ Data Exemplars 8 0.612 0.612 0.366 0.749 8 0.534 0.534 0.397 0.793
Spouse AGNews
HLFs Avg. Avg. Avg. Avg. HLFs Avg. Avg. Avg. Avg.
°  Coverage Overlap Conflict Accuracy °  Coverage Overlap Conflict Accuracy
WRENCH 9 0.042 0.021 0.009 0.586 9 0.103 0.051 0.024 0.817
General Prompt 8 1.000 1.000 0.324 0.807 8 0.305 0.279 0.080 0.565
+ Mission Statement 9 0.279 0.208 0.168 0.404 4 0.373 0.215 0.123 0.338
+ Human Heuristic 8 0.295 0.264 0.050 0.456 4 0.346 0.327 0.064 0.818
+ Labeling Function Exemplars 5 0.417 0.307 0.023 0.444 8 0.481 0.472 0.191 0.530
+ Data Exemplars 8 0.601 0.601 0.240 0.595 5 0.345 0.244 0.107 0.636
Table 1: Statistics of synthesized LFs.
IMDb (Accuracy) Yelp (Accuracy)
Snorkel WMV~ MV DS FS Avgerage  Coverage | Snorkel WMV~ MV DS FS Avgerage  Coverage
WRENCH 0.701 0.710  0.710 0.706  0.704 0.706 0.876 0.690 0.685 0.702 0.715 0.687 0.696 0.828
General Prompt 0.661 0.587 0.587 0.559 0.606 0.600 0.998 0.766  0.693 0.703 0.748 0.700 0.722 0.991
+ Mission Statement 0.613 0.600  0.600 0.542 0.612 0.593 0.973 0.743 0.665 0.675 0.634 0.670 0.677 0.988
+ Human Heuristic 0.710  0.652 0.652 0.588 0.649 0.650 0.985 0.661 0.635 0.642 0.695 0.610 0.648 0.955
+ Labeling Function Exemplars | 0.650  0.614 0.614 0.596 0.612 0.617 0.941 0.793 0.670 0.692 0.728 0.729 0.722 0.994
+ Data Exemplars 0.713 0.676  0.676  0.690 0.698 0.691 1.000 0.766  0.678 0.688 0.736  0.685 0.711 0.990
SMS (Fl1-score) YouTube (Accuracy)
Snorkel WMV~ MV DS FS Avgerage  Coverage Snorkel WMV~ MV DS FS Avgerage  Coverage
WRENCH 0.048 0.240  0.240  0.049  0.000 0.115 0.405 0852 0.780 0.840 0.832 0.764 0.814 0.893
General Prompt 0.632 0.526 0.672 0.622 0.632 0.617 1.000 0.760  0.700 0.724 0.668 0.784 0.727 1.000
+ Mission Statement 0.599 0.029 0.615 0599 0.599 0.488 1.000 0.540  0.624 0.648 0.688 0.468 0.594 1.000
+ Human Heuristic 0.606 0412 0.554 0.529 0.536 0.527 1.000 0.556  0.740 0.748 0.748 0.776 0.714 1.000
+ Labeling Function Exemplars | 0.086 0317 0.317 0.237 0.027 0.197 0.218 0.740  0.740 0.740 0.748 0.740 0.742 1.000
+ Data Exemplars 0.650  0.337  0.628 0.640 0.630 0.577 1.000 0.888 0.844 0.868 0.728 0.888 0.843 1.000
Spouse (F1-score) AGNews (Accuracy)
Snorkel WMV~ MV DS FS Avgerage  Coverage | Snorkel WMV~ MV DS FS Avgerage  Coverage
WRENCH 0.498 0.205 0.208 0.155 0.343 0.282 0.258 0.625 0.640 0.638 0.628 0.610 0.628 0.691
General Prompt 0.395 0.090 0.387 0382 0.374 0.325 1.000 0.537 0.530 0.529 0410 0.544 0.510 0.692
+ Mission Statement 0.381 0.173  0.355 0399 0.345 0.331 1.000 0.397 0393 0.347 0372 0372 0.376 1.000
+ Human Heuristic 0.393 0.204 0.243 0391 0.340 0.315 0.470 0.597 0.580 0.572 0.536  0.597 0.576 0.667
+ Labeling Function Exemplars | 0.394  0.172  0.169 0.165 0.287 0.237 1.000 0.544 0527 0.525 0485 0.525 0.521 0.811
+ Data Exemplars 0.395 0.134  0.378 0389 0.383 0.336 1.000 0.477 0.458 0.421 0.404 0471 0.446 1.000

Table 2: Performance of label models across different type of prompting strategies.

the performance of the label model on the testing dataset. We compute model performance across
different label models for each type of prompting strategy.

The results are shown in Table [2] We find that the performance of the label model using synthesized
LFs is generally on par with that of the label model using human-designed LFs while achieving
much higher coverage. In particular, coverage on the SMS and Spouse datasets are low when using
human-designed LFs from WRENCH; however, when using our synthesized LFs, we achieve 100%
coverage while also achieving higher F1-scores. These results suggest that synthesized LFs can be a
valuable resource for PWS pipelines and provide strong evidence for the efficacy of ScriptoriumW$
in practical applications.

How does prompting strategy affect performance? Different prompting strategies can lead to
LFs that are more or less aligned with the user’s prior knowledge and expertise, which in turn can
affect the quality of LFs and their performance in downstream pipelines. For instance, providing
labeled data in the prompt can prime Codex with information about the relationships between the
input features and the target labels. On the other hand, providing heuristic rules in the prompt
can lead Codex to focus more on the user’s prior knowledge. We initially hypothesized that these
different prompting strategies would lead to a discernible pattern—some strategies would dominate
in certain settings. However, in our experimental results shown in Table [2] suggest no such pattern,
leading to an inconclusive result. It is important to carefully consider the goals and requirements
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IMDb (Accuracy) Yelp (Accuracy)

#LFs Sio]il];el \iﬂr‘y y& +[iSR +F€R Average Coverage | #LFs Szo{l];el ‘_YI]\:IQ/ _:\/I L\l; +DLSR +FLSR Average Coverage
WRENCH 5 0758 0754 0.754 0.754 0.756  0.755 0.876 8 0722 0.649 0.694 0807 0737 0722 0.828
+ General Prompt +6 0740 0737 0742 0.767 0.739  0.745 1.000 +11 0.750  0.671 0.704 0.801 0.730  0.731 1.000
+ Mission Statement +5 0732 0756 0761 0.767 0.747  0.753 1.000 +7 0734 0.660 0.693 0815 0753  0.731 1.000
+ Human Heuristic +6 0763 0769 0771 0.785 0.757  0.769 1.000 +5 0.680 0619 0.661 0804 0703  0.693 1.000
+ Labeling Function Exemplars | +5 0.737 0.746  0.750 0.786 0.735 0.751 1.000 +5 0.656 0.664 0.706 0.808 0.711 0.709 1.000
+ Data Exemplars +5 0770 0752 0.757 0.758 0.767  0.761 1.000 +6 0.724 0656 0.705 0.821 0.748  0.731 1.000

SMS (Fl1-score) YouTube (Accuracy)

#LFs S:]_U{]‘;d \:_ﬂ;:lly i\’[}}{ +DLSR +FLSR Average Coverage | #LFs Szo{l];el ‘-Y]]\:Il;/ -:\/IL\I; +DLSR +FLSR Average Coverage
WRENCH 73 0.678 0772 0756 0.750 0.057  0.603 0.405 10 0.808 0732 0.808 0.828 0.788  0.793 0.893
+ General Prompt +8 0720 0542 0750 0.709 0473  0.639 1.000 +9 0.832 0740 0.788 0.820 0.756  0.787 1.000
+ Mission Statement +8 0619 0405 0672 0576 0420 0.538 1.000 +9 0.820 0732 0756 0.784 0716  0.762 1.000
+ Human Heuristic +9 0.632 0476 0582 0594 0482 0553 1.000 +8 0.808  0.756 0.808 0.816 0772  0.792 1.000
+ Labeling Function Exemplars | +8 0405 0465 0473 0610 0029 0.396 1.000 +6 0776 0.756  0.780 0.796 0.780  0.778 1.000
+ Data Exemplars +8 0692 0418 0746 0722 0509  0.617 1.000 +8 0.800  0.756  0.800 0.780 0.788  0.785 1.000

Spouse (F1-score) AGNews (Accuracy)

#LFs S:U]fl‘({'l \1\/1{[&/ }_\{\;{ +DLSR +FLSR Average Coverage | #LFs Szo{l];el ‘-Y]]\:Il;/ -:\/IL\I; +DLSR +FLSR Average Coverage
WRENCH 9 0220  0.179 0.I8T 0.166 0268  0.203 0.258 9 0.825 0.823 0827 0829 0817 0824 0.691
+ General Prompt +8 0.157 0298 0303 0301 0.155 0.243 1.000 +8 0.806 0823 0.825 0751 0817 0.804 1.000
+ Mission Statement +9 0.101 0308 0301 0314 0.195 0.244 1.000 +4 0.684 0713 0714 0726 0719 0711 1.000
+ Human Heuristic +8 0058 0213 0218 0299 0.104 0.178 1.000 +4 0813 0811 0812 0766 0.806  0.802 1.000
+ Labeling Function Exemplars | +5 0.147  0.152  0.154 0.148 0.093  0.139 1.000 +8 0784 0797 0795 0794 0790  0.792 1.000
+ Data Exemplars +8 0.192 0.301 0300 0308 0.164  0.253 1.000 +5 0.711 0.726 0725 0.712  0.737 0.722 1.000

Table 3: Performance of end models across different type of prompting strategies.

of the task and choose a prompt that is suitable for the task. A deeper analysis that elucidates
the successes and failure modes of each prompting strategy is required to evaluate our original
hypothesis and, perhaps more broadly, to better understand the role of prompting in code generation.

Can end model performance be improved by combining ScriptoriumWS§ with PWS? End
models can only be trained on points that receive labels. Building on our observation that synthesized
LFs offer high coverage, we hypothesize that end model performance can be improved over the
standard PWS pipeline by simply including the examples that are labeled by ScriptoriumWS. This
yields a complementary approach that incorporates both our synthesized LFs for points that are not
labeled by human-designed LFs, and the labels that were originally produced by human-designed
LFs. We train the end model on the union of these two sets. In Table 3] we show the performance
of the end model when using this approach. As before, the dataset is fully covered by this approach
and the end-model performance improves due to the significant increase in labeled examples. This
shows that ScriptoriumWS can be used complementarity with existing PWS pipelines, for which
human-designed LFs have already been created to improve performance.

5 CONCLUSION

In this paper, we aim to reduce the human effort required to design weak supervision labeling func-
tions. We propose a novel system, ScriptoriumWSs, to leverage code-generation models to provide
programming assistance to synthesize labeling functions (LFs) automatically. We study a variety of
prompting strategies, propose a simple pipeline, and obtain promising results when comparing to
human-designed labeling functions on the WRENCH weak supervision benchmark.
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