

CS 639: Foundation Models Course Overview

Fred Sala

University of Wisconsin-Madison

Jan. 20, 2026

Logistics: Lecture Location

- In-person in **Chemistry S413**
 - Will have slides
 - Occasionally whiteboard for derivations.
- Planning to record---final decision TBD.

Logistics: Enrollment

- Currently at capacity, approx. 200 students
 - Some folks on waitlist may not make it in
 - Decent chance many of the waitlist folks will
- Sorry 😞 ... will be offered again

Logistics: Teaching Team

Instructor: Fred Sala

- Location: 5514 Morgridge Hall
- Office Hours: TBD

TAs: Dyah Adila, Sonia Cromp, Samuel Guo, Akshat Singhal, Yichen Wang

- Location: Morgridge Huddle Room B2576
- Office Hours: [Calendar](#)
- Note: times possibly **subject to change**

Logistics: Content

Three locations:

- 1. **Course website:**

<https://pages.cs.wisc.edu/~fredsala/cs639/>

- 2. **Piazza.** <https://piazza.com/wisc/spring2026/d11c>

- access code: *introtofm*

- **Preferred for questions!**

- 3. **Canvas**

Course Content / Schedule

Tuesday Jan. 20	Lecture 1: Introduction and Class Overview		<ul style="list-style-type: none">• On the Opportunities and Risks of Foundation Models
Thursday Jan. 22	Tuesday Mar. 3	Lecture 13: Multimodal Architectures II	<ul style="list-style-type: none">• SAM 2• MMMU
Tuesday Jan. 27		Tuesday Apr. 7	Lecture 21: Evaluation I: Metrics and Benchmarks
Thursday Jan. 29	Thursday Mar. 5	Thursday Apr. 9	Lecture 22: Evaluation II
Tuesday Feb. 3		Tuesday Apr. 14	Lecture 23: Scaling I: Laws, MoEs and More
Thursday Feb. 5	Tuesday Mar. 10		<ul style="list-style-type: none">• Scaling Laws for Neural Language Models• Switch Transformers• GLaM: Efficient Scaling of Language Models
Tuesday Feb. 10	Thursday Mar. 12	Thursday Apr. 16	Lecture 24: Scaling II: Test-time Scaling
Thursday Feb. 12		Tuesday Apr. 21	Lecture 25: Agents I
Tuesday Feb. 17	Tuesday Mar. 17	Thursday Apr. 23	Lecture 26: Agents II
Thursday Feb. 19	Thursday Mar. 19		<ul style="list-style-type: none">• AgentBench• WebArena• Voyager
Tuesday Feb. 24	Tuesday Mar. 24	Tuesday Apr. 28	Lecture 27: Applications: FMs for Science & Medicine
Thursday Feb. 26	Thursday Mar. 26	Thursday Apr. 30	Lecture 28: Future Areas
			<ul style="list-style-type: none">• AI Index Report
			<ul style="list-style-type: none">• DeepSeek-R1

Logistics: Lecture Formats

Most class sessions:

- **Type 1: Lectures**
 - Mostly slides, some whiteboard
 - Will take some breaks, 1-2 during the lecture
 - Can ask questions---during lecture and breaks
- **Type 2: Guest Lectures**
 - More info later
- Combination of these two.

Logistics: Assignments & Grades

Homeworks:

- 6 or so, worth 50% total
- Posted after class; due when class starts on due date. About 2 weeks given for each one
- Combination of conceptual, implementation, calculation

In-class quizzes:

- Using Top Hat, for bonus points

Midterm

- Worth 20%. More info coming soon. (Note: no final exam).

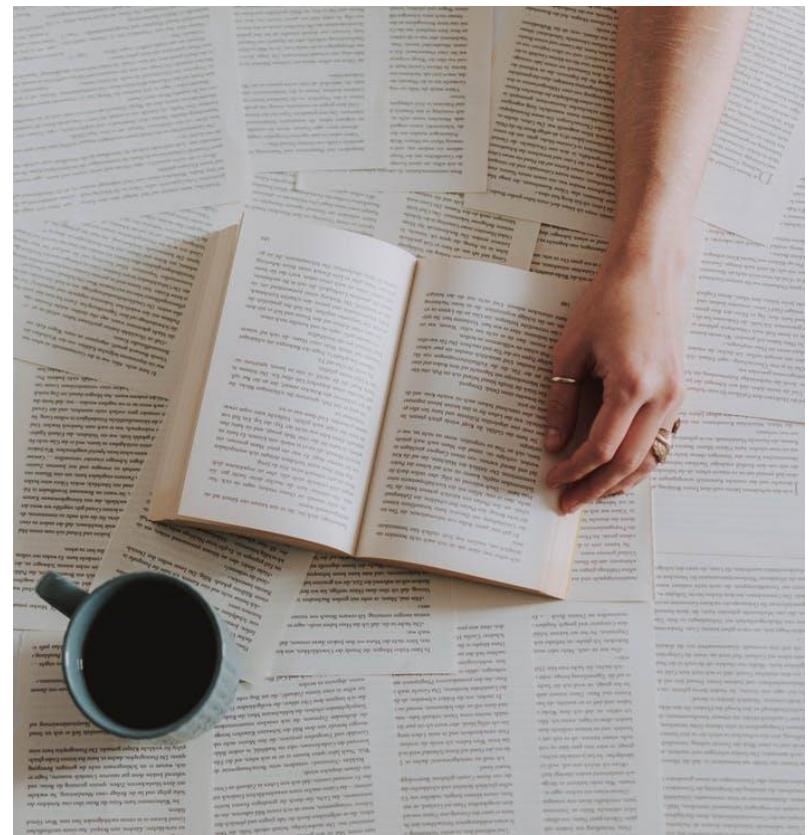
Final Project:

- 30% total, groups of 5-10; proposal midway. **More info soon!**

Class Setup: Reading

No overall textbook

- I will post useful notes, primers, papers
 - See schedule page
- We don't expect you to read everything--
 - many of the posted content is long
 - But, it's often useful to find relevant pieces and ask questions about them
- Expect **new papers** (submitted during the timeframe of the class)



Class Setup: Background

More on this at the end of class, but

- **Basic ML**
 - A few review lectures coming up soon
- **Technical components:**
 - Linear Algebra
 - Calculus
 - Probability

Note: this class is partially **conceptual** and partially **technical**

Class Setup: Goals

Two goals:

- Become acquainted with **how to use** large pretrained/language/foundation models
- Understanding the technical underpinnings of these models and **why** they work

Note: if you are only interested in a very broad overview of ML, then CS 540 or 760 might be a better choice.

Class Setup: Goals II

Mini-goals:

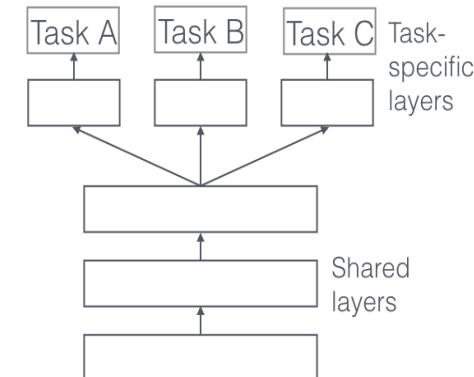
- **Understanding** research
- **Big picture/ML ecosystem**
- **Intuition** around modern ML paradigms

Break & Questions

What Is a Foundation Model?

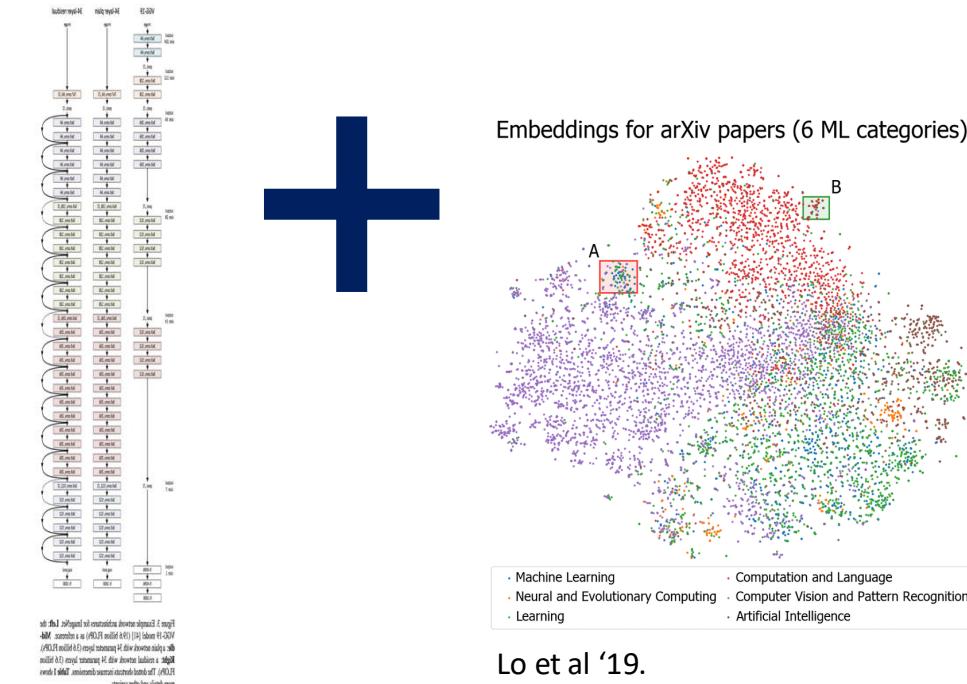
Three Historical Trends

- Brief introduction, more to come, but can explain some of **why** and **what**
- **FMs** start being developed in ~2018-2020



J. Ray

1. **Multitask models (old!)**
2. **Pretrained models and fine-tuning (2015 onwards)**
3. **Word embeddings and language models (2013 onwards)**



Lo et al '19.

He et al '16.

1. Multitask Models: What's a Task?

A little bit of terminology: in ML we build a model f to solve a task T . We train f on data pertaining to the task

- Example: **mushroom safety classification.**
 - f must take in a mushroom image and predict {safe, poisonous}
 - Training data:

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})$$

safe

poisonous

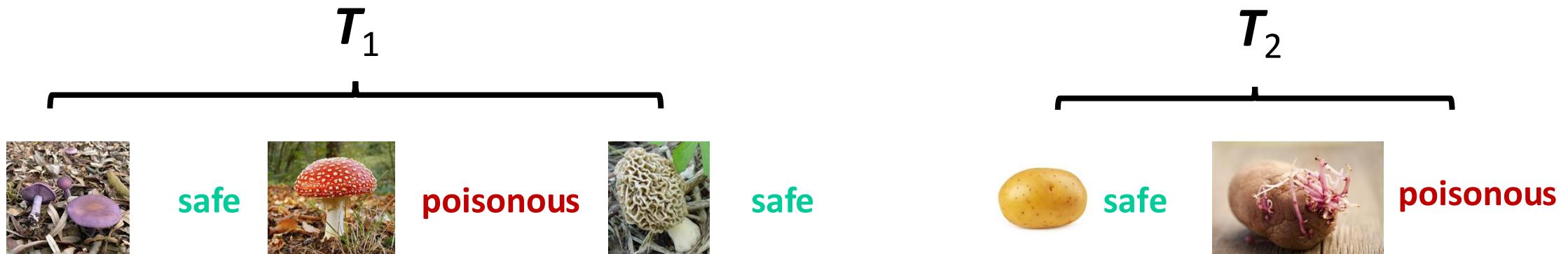
safe

- We can train different models to do different tasks

1. Multitask Models: Handling Multiple Tasks

A little bit of terminology: in ML we build a model f to solve a task T . We train f on data pertaining to the task

- We can train different models to do different tasks
- Example:
 - T_1 is a mushroom safety classification task; train f_1
 - T_2 is a potato safety classification task; train f_2



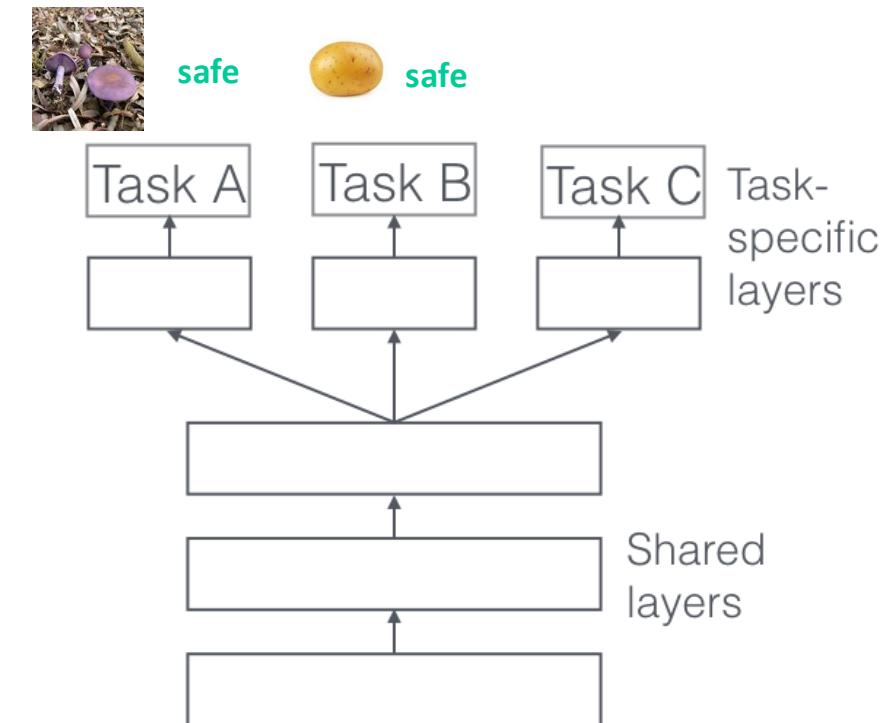
1. Multitask Models: An Alternative

Idea: Given tasks T_1, \dots, T_k , rather than training k separate models, train a common base and task-specific “heads”

- Related to *transfer learning*
- *Why?* If tasks are related, there’s
 - Common information
 - Equivalent to more data

Differences (vs. modern FMs)

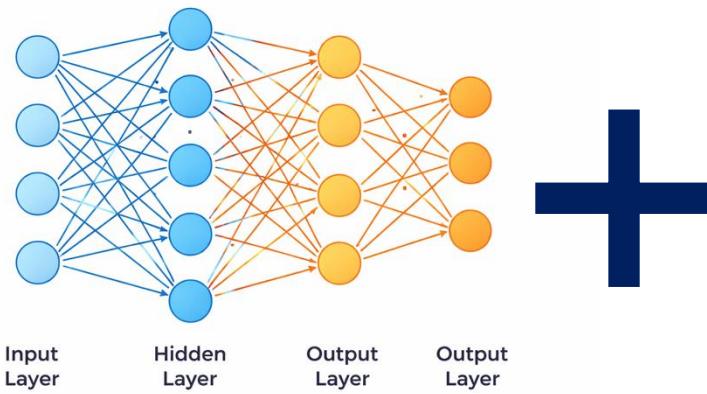
- Usually **fixed tasks**
- Train on **data from all tasks** (limited)



2. Pretraining and Fine-tuning

Motivation: Training from scratch is expensive. *Why?*

- What are the ingredients for a model? We need



Model

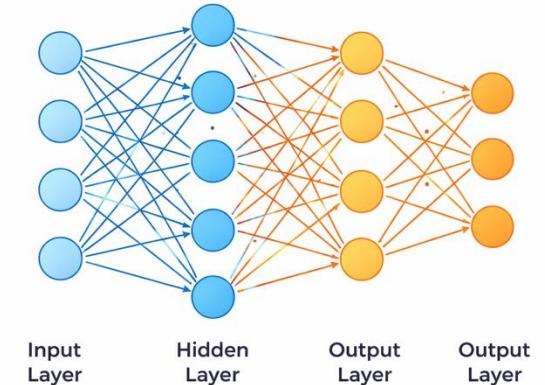
Data

Hardware

2. Pretraining and Fine-tuning

Motivation: Training from scratch is expensive.

- Deep learning revolution (2010-). Each factor changes...
 - Larger datasets (for example, ImageNet)
 - Larger hardware resources (GPUs, multiple GPUs)
 - Produces larger models
 - LeNet: 60 thousand. AlexNet: 60 **million**.
- Much of 2010-2015 CV research builds larger and larger CNNs, so training costs ↑



2. Pretraining and Fine-tuning

Motivation: Training from scratch is expensive.

- Much of 2010-2015 CV research builds larger and larger CNNs, so training costs ↑
- Example: very deep residual networks (ResNets)

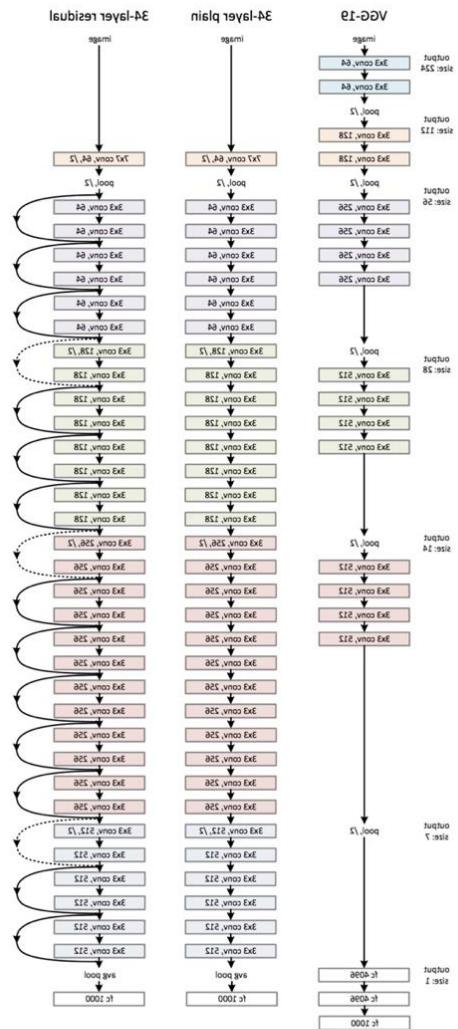


Figure 3. Example network architectures for ImageNet. **Left:** the VGG-16 model [11] (16.8 million FLOPs) as a baseline. **Mid:** a residual network with 34 parameters (3.8 million FLOPs). **Right:** a residual network with 34 parameters (3.8 million FLOPs). The dotted structures indicate dimensions. **Table 1** shows more details and offers analysis.

2. Pretraining and Fine-tuning

Motivation: Training from scratch is expensive.

Idea: *pretrain* a single model on a dataset

- Then *fine-tune* to adapt to downstream task
- Ex: pretrained ResNets on ImageNet (2015-)

Issues:

- Other data modalities/domains? Could build ImageNet analogue, but expensive
- Leads to **self-supervised training** (2016-)
 - No labels needed! Ex: SimCLR, DINO, lots more

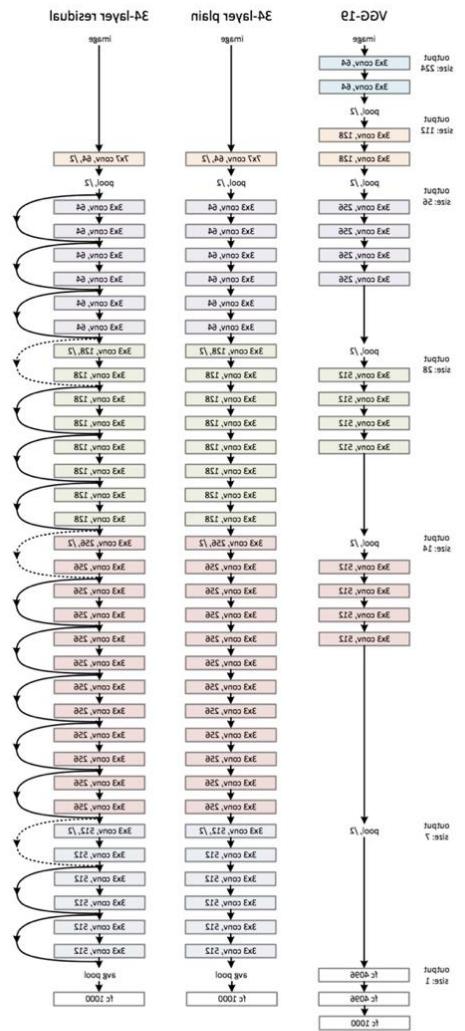


Figure 3. Example network architectures for ImageNet. Left: the VGG-19 model [11] (19.6 million FLOPs) as a baseline. Middle: a baseline network with 34 residual blocks (3.6 million FLOPs). Right: a learned network with 34 parallel blocks (3.6 million FLOPs). The dotted structures indicate dimensions. Table 1 shows more details and other variants.

He et al '16.

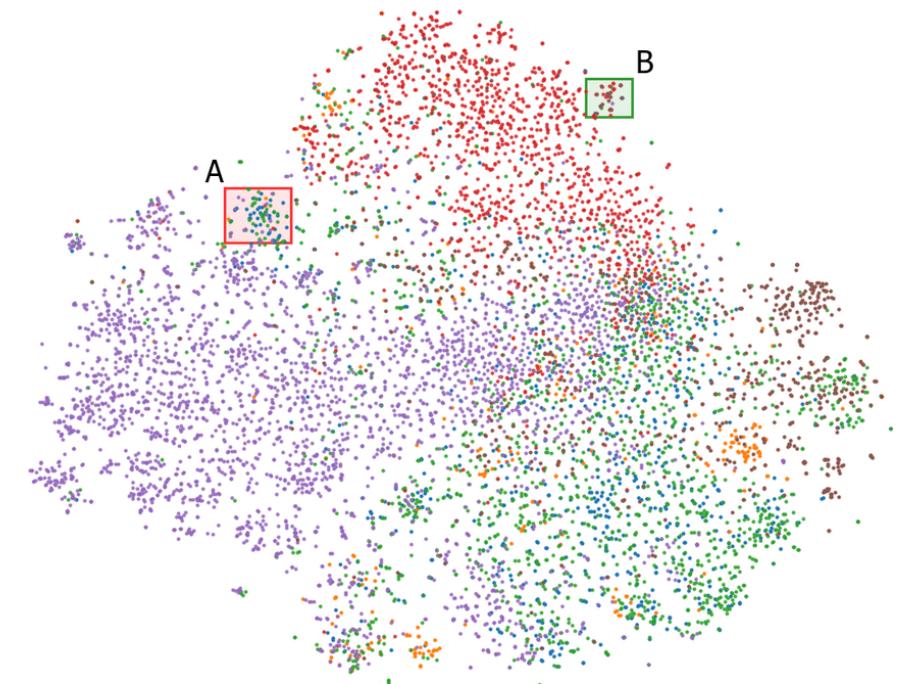
3. Word Embeddings and Language Models

Motivation: Deep learning advances – can they be applied to NLP?

Three areas of application:

1. General: *word embeddings*
2. Specific: *translation tasks*
3. Specific: *language modeling tasks*

Embeddings for arXiv papers (6 ML categories)

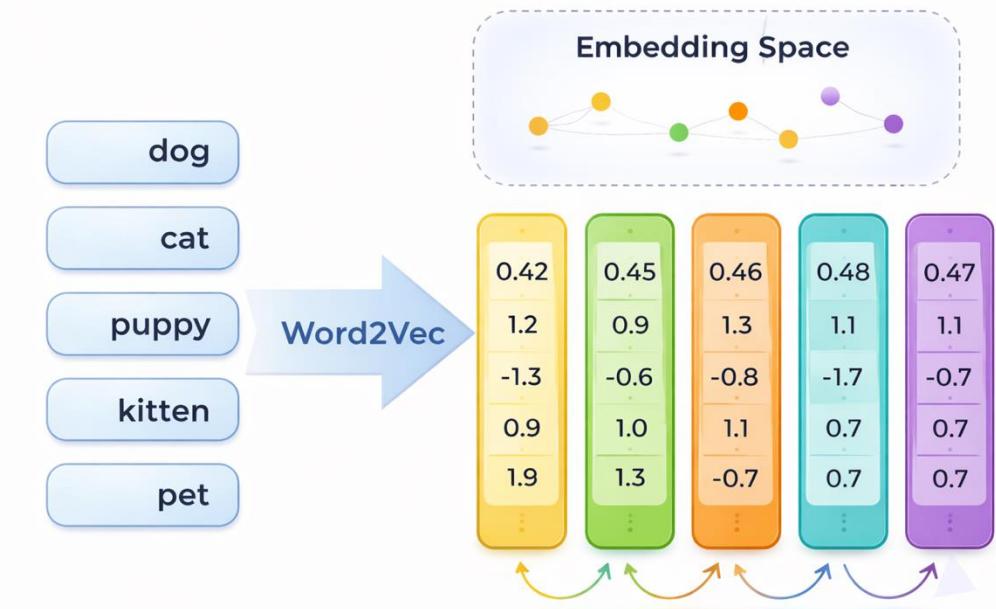


• Machine Learning	• Computation and Language
• Neural and Evolutionary Computing	• Computer Vision and Pattern Recognition
• Learning	• Artificial Intelligence

3. Word Embeddings and Language Models

Motivation: Can we learn, in advance, *structured representations* of words?

- Then plug into language-specific neural networks (LSTMs, etc)
- First step: **word embeddings** (2013-2016): Glove, Word2Vec, etc.
 - Transform words into vectors
 - Can use as input to a neural network
 - A form of *representation learning*

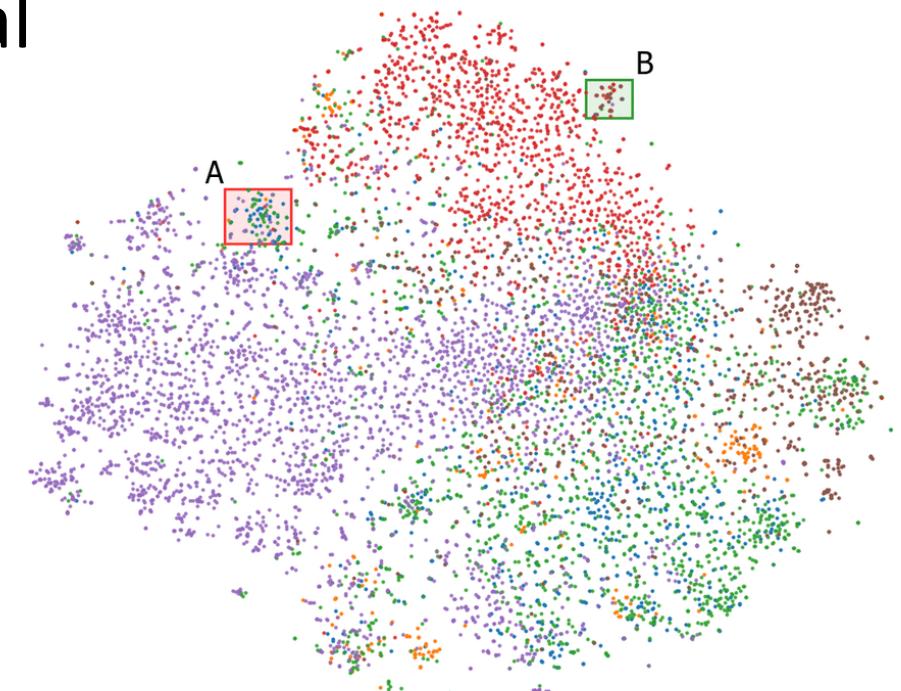


3. Word Embeddings and Language Models

Motivation: Can we learn, in advance, *structured representations* of words?

- Then plug into language-specific neural networks (LSTMs, etc)?
- First step: **word embeddings** (2013-2016): Glove, Word2Vec, etc.
- **Issues:** static. No context used for words like “bank” that have **multiple meanings**

Embeddings for arXiv papers (6 ML categories)

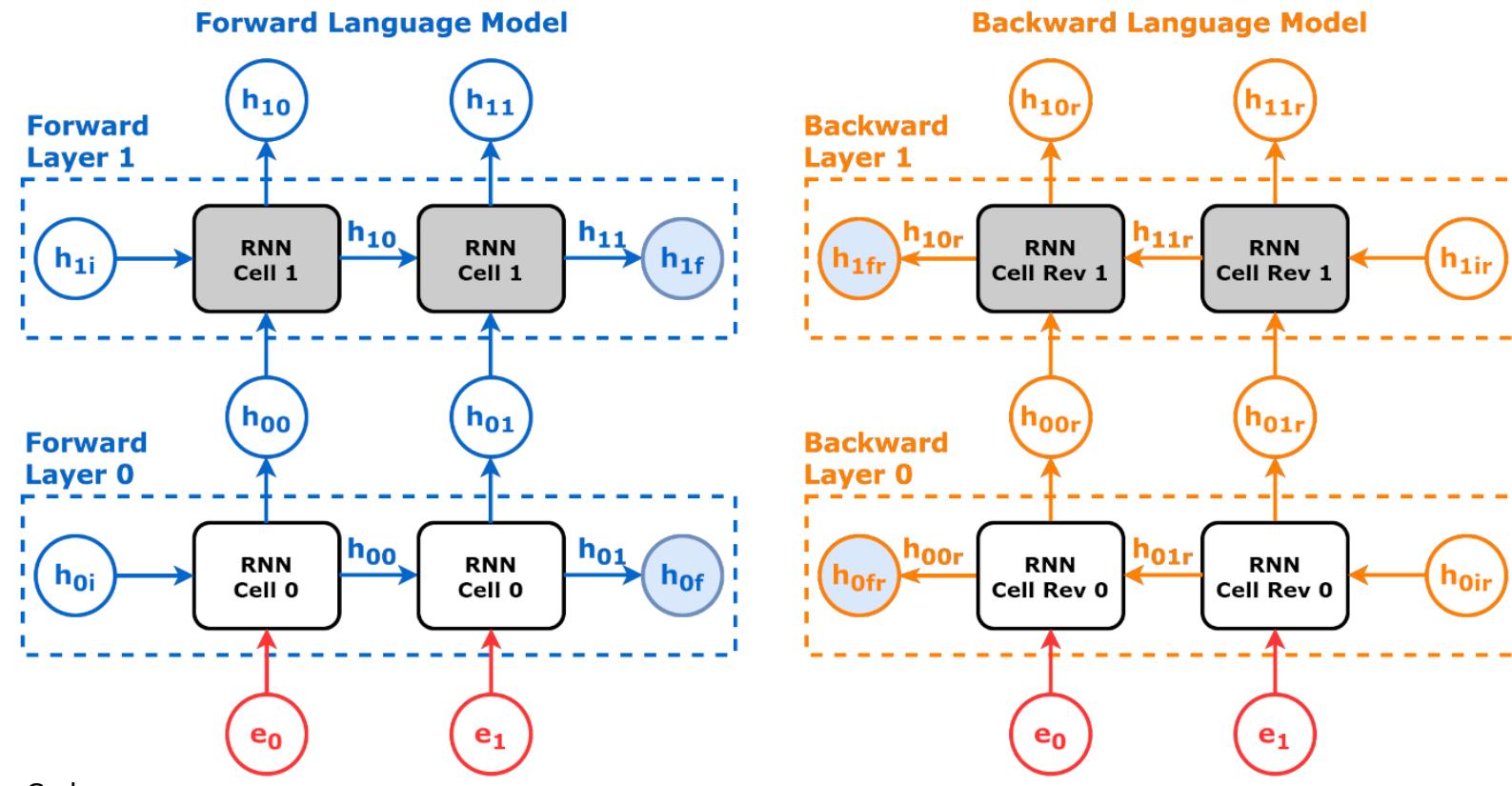


• Machine Learning	• Computation and Language
• Neural and Evolutionary Computing	• Computer Vision and Pattern Recognition
• Learning	• Artificial Intelligence

3. Word Embeddings and Language Models

Solution: Contextual word embeddings

- **Idea:** Plug into a model to obtain the embedding, and include the context
- **ELMO embeddings:**



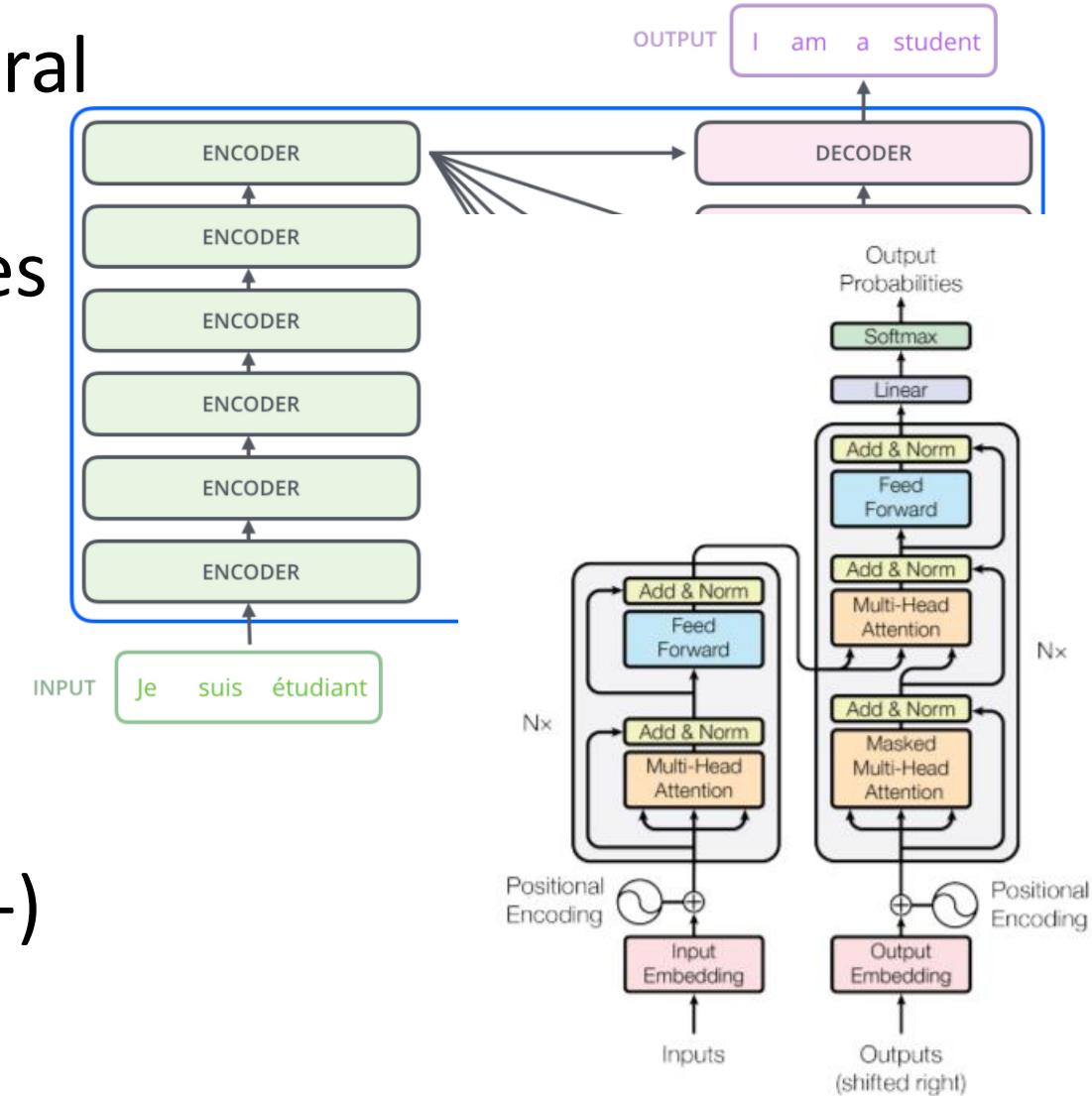
3. Word Embeddings and Language Models

So far: embeddings, which are general (whether static or contextual)

- What about deep learning advances for specific tasks?

Translation: critical task

- New architecture: ***Transformers*** (2017)
- Uses ideas around attention (2014-)

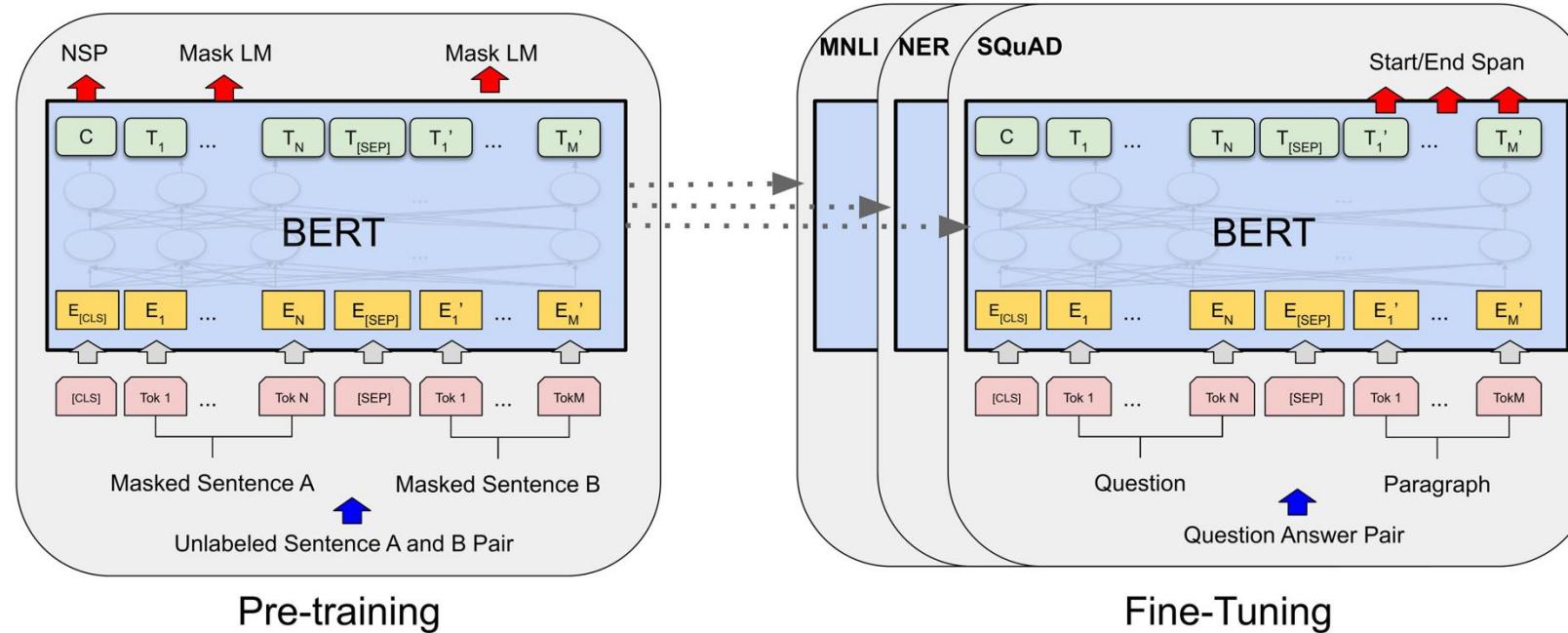


3. Word Embeddings and Language Models

So far:

- Contextual embeddings (ELMO)
- Translation via Transformers architecture

Combine to ***BERT***, perhaps the first modern foundation model

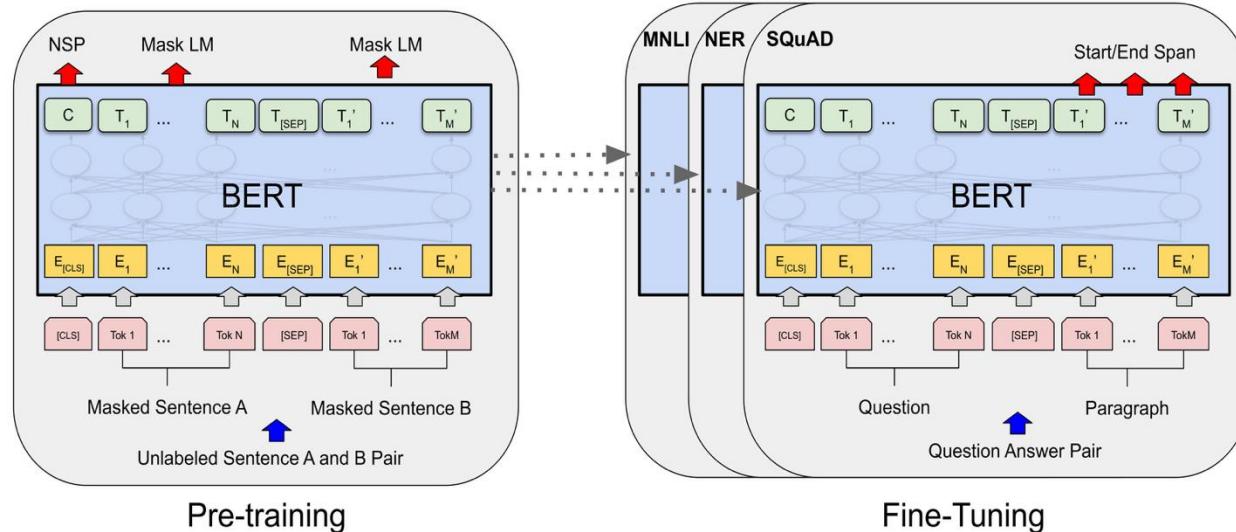


3. Word Embeddings and Language Models

Combine to **BERT**, perhaps the first modern foundation model

- (1) **multitask**: same model can do QA, named entity recognition, etc.
- (2) **pretrained** (on Wikipedia!) and **fine-tuned** per task
- (3) works by producing **word embeddings**

Combines all **three trends**!



3. Word Embeddings and Language Models

What about language models?

- Similar idea: replace older architecture language models with new Transformer architecture
- Ex: **GPT** (**G**enerative **P**retrained **T**ransformer)
 - **Generative**: produces rich outputs (sentences and more, not just predictions)
 - **Pretrained**: as we've seen
 - **Transformer**: uses the Transformer architecture
- In all cases, pretrain on massive text corpora
 - All the way back to static embeddings, use all of Wikipedia!

Summary

Modern foundation models

- Build on old ideas about multitask learning,
- Are large-scale and pretrained on massive data, then specialized
 - Dating back to vision models from mid 2010s
- First heavily scaled for NLP applications, building on ideas on
 - Powerful contextual word embeddings
 - New architectures suitable for text (and beyond)