CS 639: Foundation Models
Course Overview
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Logistics: Lecture Location

*In-person in Chemistry S413
* Will have slides
* Occasionally whiteboard for derivations.

*Planning to record---final decision TBD.




Logistics: Enrollment

* Currently at capacity, approx. 200 students

* Some folks on waitlist may not make it in
* Decent chance many of the waitlist folks will

*Sorry ® ... will be offered again




Logistics: Teaching Team

Instructor: Fred Sala
* Location: 5514 Morgridge Hall
e Office Hours: TBD

TAs: Dyah Adila, Sonia Cromp, Samuel Guo, Akshat Singhal,
Yichen Wang

* Location: Morgridge Huddle Room B2576

* Office Hours: Calendar

* Note: times possibly subject to change


https://calendar.google.com/calendar/u/0/r?cid=NTc2NjEwNzUwOTc3NjVhMDlhMDUxYzMzNjczOTQ0NDQxZjEzZTA1NDdkYjRmMGZhODE3MmNmNzIzZDA3ZjE3OEBncm91cC5jYWxlbmRhci5nb29nbGUuY29t

Logistics: Content

Three locations:

* 1. Course website:
https://pages.cs.wisc.edu/~fredsala/cs639/

2. Piazza. https://piazza.com/wisc/spring2026/d11c
* access code: introtofm
* Preferred for questions!

*3. Canvas



https://pages.cs.wisc.edu/~fredsala/cs639/
https://pages.cs.wisc.edu/~fredsala/cs639/
https://pages.cs.wisc.edu/~fredsala/cs639/
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Lecture 1: Introduction and Class Overview

Lecture 13: Multimodal Architectures II

Tuesday Apr. 7

Thursday Apr. 9
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16

Tuesday Apr. 21
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23

Tuesday Apr.
28

Thursday Apr.
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Course Content / Schedule

Models

Lecture 21: Evaluation I: Metrics and
Benchmarks

Lecture 22: Evaluation II

Lecture 23: Scaling I: Laws, MoEs and More

Lecture 24: Scaling II: Test-time Scaling

Lecture 25: Agents [

Lecture 26: Agents I1

Lecture 27: Applications: FMs for Science &
Medicine

Lecture 28: Future Areas

« DeepSeek-R1

« On the Opportunities and Risks of Foundation

« SAM 2
« MMMU

HELM
MMLU
MMLU-Pro

LLM-as-a-Judge: MT-Bench & Chatbot Arena
G-Eval: NLG Evaluation using LLMs

Scaling Laws for Neural Language Models
Switch Transformers
GLaM: Efficient Scaling of Language Models

Compute-Optimal Large Language Models

ReAct: Reasoning + Acting
Toolformer

AgentBench
WebArena
Voyager

Med-PaLM 2
ClimaX

AT Index Report



Logistics: Lecture Formats

Most class sessions:

*Type 1: Lectures
* Mostly slides, some whiteboard
* Will take some breaks, 1-2 during the lecture
* Can ask questions---during lecture and breaks

*Type 2: Guest Lectures
 More info later

eCombination of these two.



Logistics: Assighments & Grades

Homeworks:
*6 or so, worth 50% total

* Posted after class; due when class starts on due date. About 2
weeks given for each one

* Combination of conceptual, implementation, calculation

In-class quizzes:
* Using Top Hat, for bonus points

Midterm
* Worth 20%. More info coming soon. (Note: no final exam).

Final Project:
* 30% total, groups of 5-10; proposal midway. More info soon!



Class Setup: Reading

No overall textbook

* | will post useful notes, primers, papers
* See schedule page

* We don’t expect you to read everything--
-many of the posted content is long

* But, it’s often useful to find relevant pieces
and ask questions about them

* Expect new papers (submitted during
the timeframe of the class)




Class Setup: Background

More on this at the end of class, but

*Basic ML
* A few review lectures coming up soon

*Technical components:
*Linear Algebra

* Calculus
* Probability

Note: this class is partially conceptual and partially technical



Class Setup: Goals

Two goals:

*Become acquainted with how to use large
pretrained/language/foundation models

*Understanding the technical underpinnings of these models
and why they work

Note: if you are only interested in a very broad overview of
ML, then CS 540 or 760 might be a better choice.



Class Setup: Goals Il

Mini-goals:
*Understanding research

*Big picture/ML ecosystem

e Intuition around modern
ML paradigms




LAV ;;’-Md

e "

Break & Questions



What Is a Foundation Model?

Task Al |Task B| [Task C| Task-

o O e
Three Historical Trends
* Brief introduction, more to come, but can — Shared
explain some of why and what —
* FMs start being developed in ~2018-2020 ). Ray

1. Multitask models (old!)

2. Pretrained models and fine-tuning
(2015 onwards )

3. Word embeddings and language
models (2013 onwards)

I Embeddings for arXiv papers (6 ML categories)

O OOOOMRMRNCMON «

Lo et al ‘19.

He et al ‘16.



1. Multitask Models: What’s a Task?

A little bit of terminology: in ML we build a model f to solve a
task T. We train f on data pertaining to the task

*Example: mushroom safety classification.

*f must take in a mushroom image and predict {safe, poisonous}
* Training data:

(=), y), (@), 5), .

\We can train different models to do different tasks



1. Multitask Models: Handling Multiple Tasks

A little bit of terminology: in ML we build a model f to solve a
task T. We train f on data pertaining to the task

\We can train different models to do different tasks

*Example:

*T, is a mushroom safety classification task; train f,;
*T, is a potato safety classification task; train f,

poisonous




1. Multitask Models: An Alternative

Idea: Given tasks T, ..., T, rather than training k separate
models, train a common base and task-specific “heads”

*Related to transfer learning
* Why? If tasks are related, there’s
Task Al |[Task B| |Task C| Task-

e Common information ; T e
- |
* Equivalent to more data ayers

Differences (vs. modern FMs) i Shared
«Usually fixed tasks T aers
*Train on data from all tasks (limited)

J. Ray



2. Pretraining and Fine-tuning

Motivation: Training from scratch is expensive. Why?

*What are the ingredients for a model? We need

Hardware



2. Pretraining and Fine-tuning

Motivation: Training from scratch is expensive. QA\:'
*Deep learning revolution (2010-). Each factor gg Q;;w
changes... e

* Larger datasets (for example, ImageNet)

 Larger hardware resources (GPUs, multiple GPUs)

* Produces larger models
* LeNet: 60 thousand. AlexNet: 60 million.

* Much of 2010-2015 CV research builds larger and
larger CNNs, so training costs T



2. Pretraining and Fine-tuning

Motivation: Training from scratch is expensive.

* Much of 2010-2015 CV research builds larger
and larger CNNs, so training costs T

*Example: very deep residual networks (ResNets)
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2. Pretraining and Fine-tuning

Motivation: Training from scratch is expensive.

Idea: pretrain a single model on a dataset
*Then fine-tune to adapt to downstream task
*Ex: pretrained ResNets on ImageNet (2015-)

Issues:

*Other data modalities/domains? Could build
ImageNet analogue, but expensive

*eads to self-supervised training (2016-)
* No labels needed! Ex: SimCLR, DINO, lots more
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3. Word Embeddings and Language Models

Motivation: Deep learning advances —
can they be applied to NLP?

Embeddings for arXiv papers (6 ML categories)

Three areas of application:

1. General: word embeddings
2. Specific: translation tasks
3. Specific: language modeling tasks

- Machine Learning - Computation and Language
Neural and Evolutionary Computing - Computer Vision and Pattern Recognition
- Learning - Artificial Intelligence

Lo et al ‘19.



3. Word Embeddings and Language Models

Motivation: Can we learn, in advance, structured
representations of words?

*Then plug into language-specific neural networks (LSTMs,
etc)

Embedding Space

*First step: word embeddings (2013-

dog
2016): Glove, Word2Vec, etc. - ———
cat
* Transform words into vectors
] puppy Word2Vec)| 12 0.9 13 11 11
e Can use as input to a neural network -
* A form of representation learning = 1o | |13 |07 | 07|l




3. Word Embeddings and Language Models

Motivation: Can we learn, in advance,
structured representations of words?
] o Embeddings for arXiv papers (6 ML categories)
*Then plug into language-specific neural
networks (LSTMs, etc)? L

*First step: word embeddings (2013-
2016): Glove, Word2Vec, etc.

*Issues: static. No context used for
words like “bank” that have multiple A
m ea n i n gs ‘ thzsraiT:r:-: aETtiJrI]L?tionary Computing Ez$]23:::i(\jll;lsi?:>r:1dal;1a<:lng:?t?e?n Recognition

Lo et al ‘19.



3. Word Embeddings and Language Models

Solution: Contextual word embeddings

*ldea: Plug into a model to obtain the
embedding, and include the context

) ELMO embeddings: Forward Language Model




3. Word Embeddings and Language Models

So far: embeddings, which are genera

:

ENCODER

(whether static or contextual)
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*What about deep learning advances
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*New architecture: Transformers
(2017)

*Uses ideas around attention (2014-)
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3. Word Embeddings and Language Models

So far:

e Contextual embeddings (ELMO)

*Translation via Transformers architecture

Combine to BERT, perhaps the first modern foundation model
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Devlin et al. ‘18



3. Word Embeddings and Language Models

Combine to BERT, perhaps the first modern foundation model

(1) multitask: same model can do QA, named entity
recognition, etc.

*(2) pretrained (on Wikipedia!) and fine-tuned per task
*(3) works by producing word embeddings

ﬁp Mask LM Mai LM \ MNLI MAD Start/End Spax
i * 4t —6——

L T
Combines all three trends! il T e
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Masked Sentence A Masked Sentence B Question Paragraph
* *
\\ Unlabeled Sentence A and B Pair / \Q\ Question Answer Pair J
Pre-training Fine-Tuning

Devlinetal. ‘18



3. Word Embeddings and Language Models

What about language models?

*Similar idea: replace older architecture language models with
new Transformer architecture

*Ex: GPT (Generative Pretrained Transformer)

* Generative: produces rich outputs (sentences and more, not just
predictions)

* Pretrained: as we’ve seen
 Transformer: uses the Transformer architecture

*In all cases, pretrain on massive text corpora
* All the way back to static embeddings, use all of Wikipedia!



Summary

Modern foundation models
*Build on old ideas about multitask learning,
*Are large-scale and pretrained on massive data, then
specialized
* Dating back to vision models from mid 2010s
*First heavily scaled for NLP applications, building on ideas on

* Powerful contextual word embeddings
* New architectures suitable for text (and beyond)
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