CS 639: Foundation Models
Architectures Il

Fred Sala

University of Wisconsin-Madison

Feb. 19, 2026

Announcements

Midterm: March 11, 5:40 pm - 7:20 pm
*Location: Ingraham Hall, Room B10

*Homework 1: due Tues!
*HW 2: coming out on Tues

*Class roadmap:

__

Tuesday Feb. 24 Attention Variants
Thursday Feb. 26 Multimodal Architectures |
Tuesday March 3 Multimodal Architectures Il)

Y24y pue SN ‘SINTT

Outline

*Finish up last time: Encoder-only models
*Example: BERT, architecture, multitask training, fine-tuning

*Decoder-only Models

Example: GPT, architecture, basic functionality, properties
of new models

Outline

*Finish up last time: Encoder-only models
*Example: BERT, architecture, multitask training, fine-tuning

Why Encoder-Decoder?

Wanted two things for translation:
1) Outputs in natural language
2) Tight alignment with input

What happens if we relax these?
1. Encoder-only models
2. Decoder-only models

Encoder-Only Models: BERT

Let’s get rid of the first part

2) Tight alignment with input
*So not a generative model - get representations
* Like we talked about in self-supervised learning

24 [ENCODER]

*Rip away decoders

* Just stack encoders 2 | encooer | s
3 (ENCODER

2 [ENCODER J 2 " ENCODER

1 [ENCODER] 1 " ENCODER

BERTB;\S.E BERTLARGE

Interlude: Contextual Embeddings
W

Q: Why is it called “BERT”?
*A: In a sense, follows up ELMo

*Story:
«2013: “Dense” word embeddings
(Word2Vec, Glove)
* Downside: fixed representations per word
* “Bank”: building or riverside?
* Need: contextual representations o

* Using language model-like techniques
* 2018: ELMo, BERT
e ELMo: uses LSTMs, BERT uses transformers

https://nlp.stanford.edu/projects/glove/

Interlude: Contextual Embeddings
W

Q: Why is it called “BERT”?
*A: In a sense, follows up ELMo

BERT acronym:

 Bidirectional Encoder Representations from
Transformers.

* ERT should make sense,

* Bidirectional: no causal masks, look at both
sides of a word!

e Captured in self-attention block

BERT: Forward Pass

BERT architecture

*Rip away decoders
 Just stack encoders

12 (ENCODER) 12 [ENCODER J

L LN]
2 (ENCODER]
2 ENCODER
1 [ENCODER)
1 [ENCODER J

1 2 3 4 eee 512

BERTgase

24

ENCODER

ENCODER

ENCODER

ENCODER

ENCODER

BERTarGe

BERT: Training

Training is more interesting!
* Pretraining. Then fine-tuning on task of interest

*Back to self-supervised learning!

[°

*Two tasks for pretraining.

G T TN T[SE] M M,
you has the highest probability th
Output [CLS]| | how | are || | doing | | today [SEP] BERT
A

I A A =] [wl=l=] [&
A A A A A A

BERT masked language model
T T T T T T T [CLS] | | Tok 1 Tok N | [[SEP] || Tok 1 Tok N

lnput [CLS] how are doing | today @ [SEP]
Sbert'net First Sentence Second Sentence

scaler.com

1. Masked Language Modeling 2. Next Sentence Prediction

BERT: Training Task 1

Masked Language Modeling Task
* Use [MASK] token for word to be predicted

*Which words to mask?
* Original paper: 15% of words at random

° But... Of these " you has the highest probability T you,they, your
utpu [CLS] | how are | | doing | today [SEP]
* 10% of the time, no [MASK], flip word randomly NEEEEEE
* 10% of the time leave word unchanged BERT masked language model

[A N

Input [CLS] how are doing | today @ [SEP]
sbert.net

BERT: Training Task 2

Next sentence prediction

 Several ways of doing this, but basically binary
classification

e Another self-supervision task
* Later turned out that this is not strictly necessary!

*Place a sentence, then a candidate 29 sentence

» Use [SEP] token to distinguish 2 sentences

* Predict if it’s indeed the next sentence
* Setup: 50% of sentences are indeed next,
* Other 50% are random sentences we picked

[CLS]

Tok 1 Tok N

[SEP] || To

First Sentence

scaler.com

BERT: Training Details

Where do we get our training data?

* We need a bunch of raw text, since our two objectives are
masked token prediction + next sentence prediction

*BooksCorpus (800M words)

*English Wikipedia (2,500M words)
* We’ll get a lot larger than these as we go...

* Some filtering: "Wikipedia we extract only the text passages
and ignore lists, tables, and headers”... (Devlin et al ‘18).

BERT: Fine-Tuning

Once we’re done pretraining, we can fine-tune
* This is now supervised learning again!

KSP Mask LM Mask LM \
i > 13
(e)7 e) -
BERT
E[CLS] E1 EN E[SEP] E1’ EM’

- - LI

— {7
! [TokN 1([SEP] 1[Tok1] [TokM]
KMasked Sentence A Masked Sentence B

Devlinet al ‘18

Unlabeled Sentence A and B Pair

Pre-training

Start/End Spam

a*—a——

[Ty J[Tiser)][L J

=
- BERT
E[CLSI E1 EN E[SEP] E1, EMl
—1/_\r g L L L L
[CLS] Tok 1

(Toll(N N [SEP] ”mm 1 m

Question
\\\ Question Answer Pair

_'_1

Paragraph /

a*

Fine-Tuning

Break & Questions

Outline

*Decoder-only Models

Example: GPT, architecture, basic functionality, properties
of new models

Decoder-Only Models: GPT

Let’s get rid of the first part

1) Outputs in natural language

*Rip away encoders
e Just stack decoders

GPI-2

SMALL
12(DECODER
1 (DECODER

j

Model Dimensionality: 768

GPT-2

EXTRA
LARGE
G PT_ 2 a8 DECODER 3\
LARGE
G pT‘ 2 Cs (DECODER)\
MEDIUM 6 (DECODER)
rza(DECODER j\ 5 (DECODER)
a(DECODER) a(DECODER)
3 (DECODER) 3 (DECODER)
2 (DECODER 2 DECODER) 2 DECODER)
N /
k‘ ¢ DECODER) '\1 C DECODER)j \1 (DECODER)j

Model Dimensionality: 1024

Model Dimensionality: 1280

Model Dimensionality: 1600

Decoder-Only Models: GPT

Let’s get rid of the first part
1) Outputs in natural language

*Let’s handle this acronym as well: GPT

* Generative (i.e., a language model that generates rich
content, as opposed to representations or predictions)
* Unlike BERT!
* Pretrained
* Like BERT!

* Transformers (also like BERT)

Quick Interlude: Language Models

What's a “language model”?

*Basic idea: use probabilistic models to assign a
probability to a sentence W

P(W) = P(wy,wa,...,w,) or P(wWyext|wr, ws...)

*We mostly care about the latter: gives us a distribution

to sample next word (or next token) - e

Zero-order approximation FEIEYVICQSGHYD
QPAAMEBZAACIBZLEIQD

OCRO HLO RGWR NMIELWIS EULL

Y : : I First-order approximation NBNESEBYA TH EET ALHENHTTPA
Mmaodaeils will also do tnis: DORTTA XA BRI

ON IE ANTSOUTINYS ARE T INCTORE
ST BE S DEAMY ACHIN D [LONASIVE
TUCOOWE AT TEASONARE FUSO TIZIN

IN NO IST LAT WHEY CRATICT
FROURE BIRS GROCID PONDENOME

*But idea’s much older: Shannon’s example B

Third-order approximation OF DEMONSTURES OF THE REPTAGIN
1S REGOACTIONA OF CRE
REPRESENTING AND SPEEDILY 1S AN
GOOD APT OR COME CAN DIFFERENT
] NATURAL HERE HE THE A IN CAME
First-order wor d approximation

THE TO OF TO EXPERT GRAY COME TO

FURNISHES THE LINE MESSAGE HAD
BE THESE

Decoder-Only Models: GPT

Rip away encoders
* Just stack decoders
e Use causal masking! NB: not a mask token like in BERT

N
DECODER
DECODER o)
J = -
©
Positional > >
Encodings =
—4 a) | .
. : X o
Positional encoding for token #1
+
Token embedding of <s> r i
<S> EEEN

PyLessons

Attention

Query

fromm Decoder

weights

Decoder-Only Models: GPT

Rip away encoders
 Just stack decoders

* Decoders: get rid of cross-attention aspects (masked self-

attention only)

DECODER
(Feed Forward Neural Network)
[I @ Masked Self-Attention]
DECODER

C

Feed Forward Neural Network

(e @

Masked Self-Attention

U

robot

Y

Key, Value
Y

Y

PyLessons

Attention

Query
fromm Decoder

weights

Decoder-Only Models: GPT

Autoregressive next token prediction mechanism:
* Plug in your current token, get next token
* Once you decode next token, plug it back in

The

‘ o] thing

\ i DECODER i

| DEC

| DEC :
DECODER |

(DECODER)
<s> _ v,

<S> The

1 2 3 4 5 6 7 8 1024

From GPT2 to GPT3

Mainly make things larger!
* Why? Scaling produces emergent behaviors... more soon!
* 96 decoder blocks (getting very tall)
* Context size: 2048
* 175 billion parameters in total (800GB!)

Training dat.‘ GPT-3 training datal'l:°
Dataset # tokens Proportion
within training
Common Crawl 410 billion 60%
WebText2 19 billion 22%
Books1 12 billion 8%
Books2 55 billion 8%
Wikipedia 3 billion 3% Brown et al 20

https://en.wikipedia.org/wiki/GPT-3

Open Source: Llama 3.1

Mainly make things larger! Note: multiple model sizes:

8B 70B 405B
Layers 32 80 126
Model Dimension 4,096 8192 16,384
FFN Dimension 14,336 28,672 53,248
Attention Heads 32 64 128
Key/Value Heads 8 8 8
Peak Learning Rate 3x107* 15x107* 8x107°
Activation Function SwiGLU
Vocabulary Size 128,000
Positional Embeddings RoPE (6 = 500, 000)

Dubey et al 24

Open Source: Llama 3.1

Some improvements for Llama 3.1:

*“We use an attention mask that prevents self-attention
between different documents within the same sequence”

*“ogrouped query attention (GQA,; Ainslie et al. (2023)) with 8
key-value heads to improve inference speed...”

Multi-head Grouped-query Multi-query

Values

~Qoubueo goug 0

‘I

~-{0000000 00O0ODOD DOODOADD oecaos

Ainslie et al ‘23

}____

Open Source: Llama 3.1

Some improvements for Llama 3.1:

*“We use an attention mask that prevents self-attention
between different documents within the same sequence”

*“ogrouped query attention (GQA,; Ainslie et al. (2023)) with 8
key-value heads to improve inference speed...”

*“We use a vocabulary with 128K tokens. Our token
vocabulary combines 100K tokens from the tiktoken3
tokenizer with 28K additional tokens to better support non-

English languages”

Zhao et al '21

Thank You!

	Slide 1: CS 639: Foundation Models Architectures II
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: Why Encoder-Decoder?
	Slide 6: Encoder-Only Models: BERT
	Slide 7: Interlude: Contextual Embeddings
	Slide 8: Interlude: Contextual Embeddings
	Slide 9: BERT: Forward Pass
	Slide 10: BERT: Training
	Slide 11: BERT: Training Task 1
	Slide 12: BERT: Training Task 2
	Slide 13: BERT: Training Details
	Slide 14: BERT: Fine-Tuning
	Slide 15: Break & Questions
	Slide 16: Outline
	Slide 17: Decoder-Only Models: GPT
	Slide 18: Decoder-Only Models: GPT
	Slide 19: Quick Interlude: Language Models
	Slide 20: Decoder-Only Models: GPT
	Slide 21: Decoder-Only Models: GPT
	Slide 22: Decoder-Only Models: GPT
	Slide 23: From GPT2 to GPT3
	Slide 24: Open Source: Llama 3.1
	Slide 25: Open Source: Llama 3.1
	Slide 26: Open Source: Llama 3.1
	Slide 27: Thank You!

