

CS 639: Foundation Models Architectures II

Fred Sala

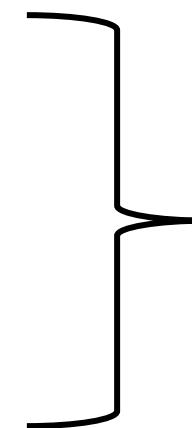
University of Wisconsin-Madison

Feb. 19, 2026

Announcements

- Midterm: **March 11, 5:40 pm - 7:20 pm**
 - Location: **Ingraham Hall, Room B10**
- Homework 1: due Tues!
 - HW 2: coming out on Tues
- Class roadmap:

Thursday Feb. 19	Architectures: Others
Tuesday Feb. 24	Attention Variants
Thursday Feb. 26	Multimodal Architectures I
Tuesday March 3	Multimodal Architectures II



Outline

- **Finish up last time: Encoder-only models**
 - Example: BERT, architecture, multitask training, fine-tuning
- **Decoder-only Models**
 - Example: GPT, architecture, basic functionality, properties of new models

Outline

- **Finish up last time: Encoder-only models**
 - Example: BERT, architecture, multitask training, fine-tuning
- **Decoder-only Models**
 - Example: GPT, architecture, basic functionality, properties of new models

Why Encoder-Decoder?

Wanted two things for translation:

- 1) **Outputs** in natural language
- 2) Tight alignment with **input**

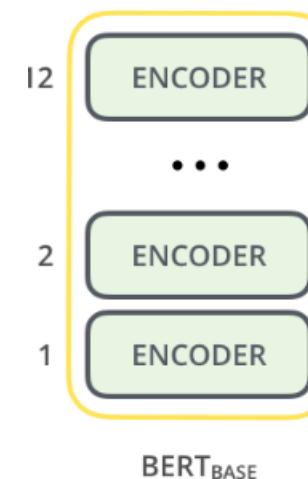
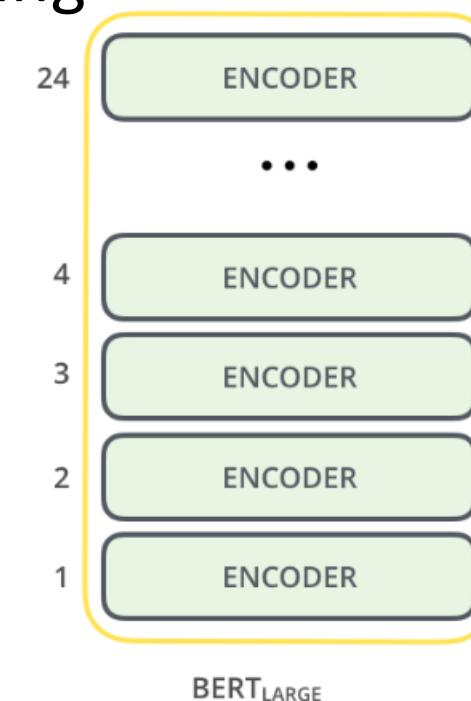
What happens if we relax these?

1. Encoder-only models
2. Decoder-only models

Encoder-Only Models: BERT

Let's get rid of the first part

- 1) Outputs in natural language
- 2) Tight alignment with **input**
- So **not** a generative model → get representations
 - Like we talked about in self-supervised learning
- Rip away decoders
 - Just stack encoders



Interlude: Contextual Embeddings

Q: Why is it called “BERT”?

- **A:** In a sense, follows up ELMo

- **Story:**

- **2013:** “Dense” word embeddings
(Word2Vec, Glove)
- **Downside:** fixed representations per word
 - “Bank”: building or riverside?
- **Need:** contextual representations
 - Using language model-like techniques
 - **2018:** ELMo, BERT
 - **ELMo:** uses LSTMs, BERT uses transformers

Highlights

1. Nearest neighbors

The Euclidean distance (or cosine similarity) between two word vectors provides an effective method for measuring the linguistic or semantic similarity of the corresponding words. Sometimes, the nearest neighbors according to this metric reveal rare but relevant words that lie outside an average human's vocabulary. For example, here are the closest words to the target word *frog*:

o. <i>frog</i>	
1. <i>frogs</i>	
2. <i>toad</i>	
3. <i>litoria</i>	
4. <i>leptodactylidae</i>	
5. <i>rana</i>	
6. <i>lizard</i>	
7. <i>eleutherodactylus</i>	

<https://nlp.stanford.edu/projects/glove/>

Interlude: Contextual Embeddings

Q: Why is it called “BERT”?

- **A:** In a sense, follows up ELMo

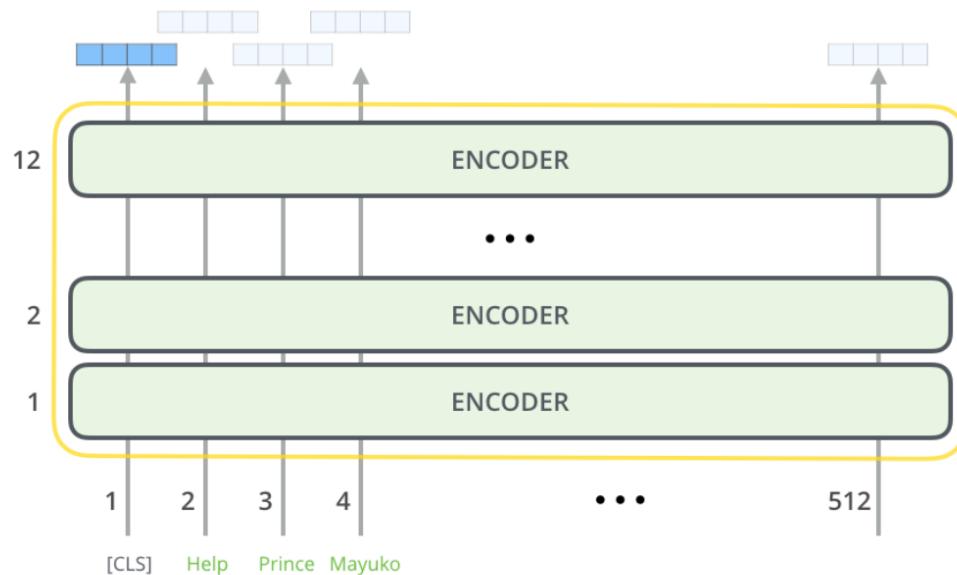
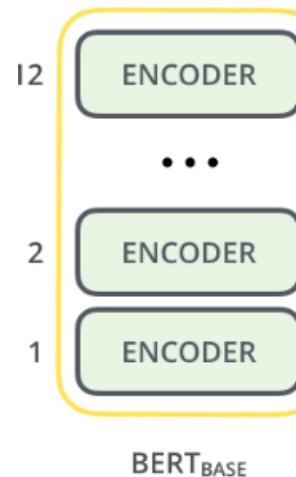
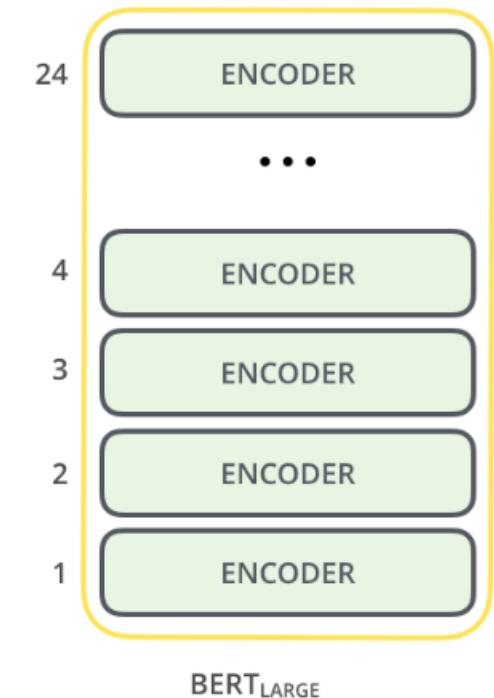
BERT acronym:

- Bidirectional Encoder Representations from Transformers.
- ERT should make sense,
- Bidirectional: no causal masks, look at both sides of a word!
- Captured in self-attention block

BERT: Forward Pass

BERT architecture

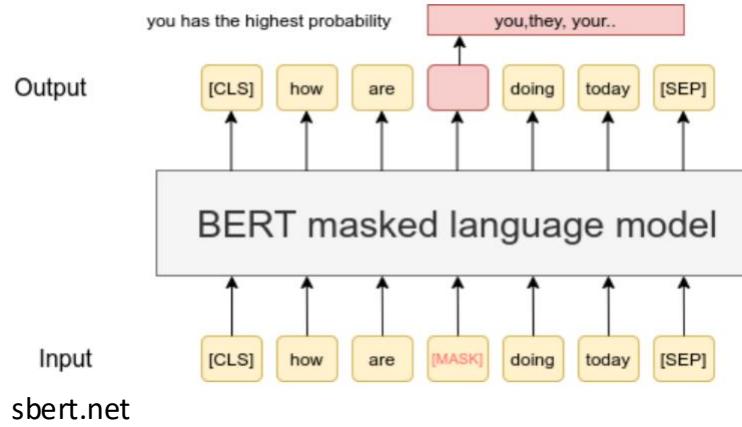
- Rip away decoders
 - Just stack encoders



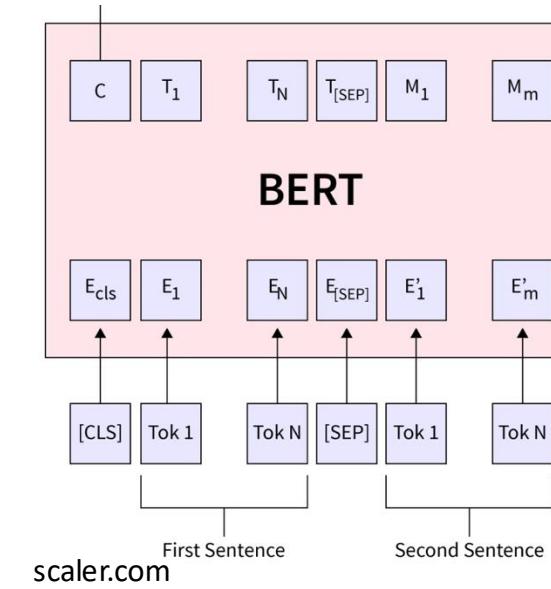
BERT: Training

Training is more interesting!

- Pretraining. Then fine-tuning on task of interest
- Back to **self-supervised learning!**
- Two tasks for pretraining.



1. Masked Language Modeling

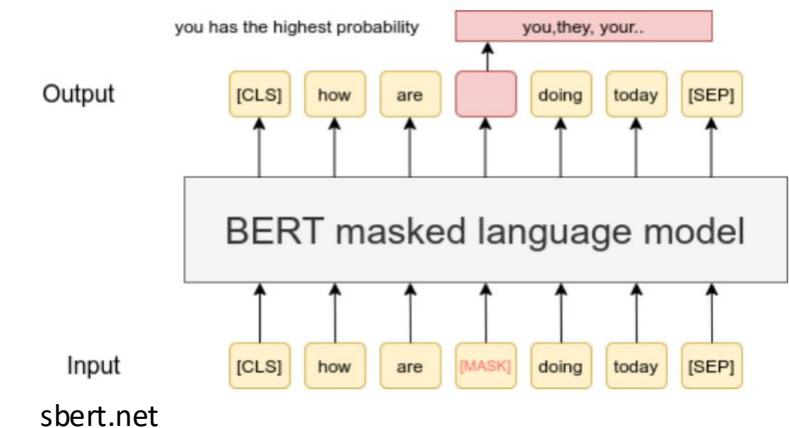


2. Next Sentence Prediction

BERT: Training Task 1

Masked Language Modeling Task

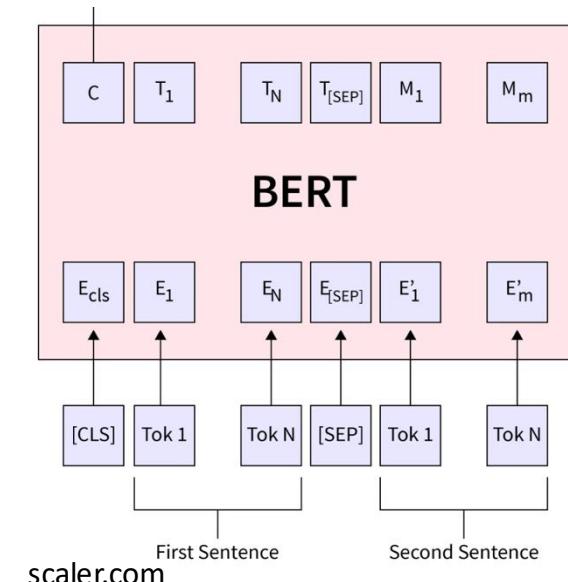
- Use [MASK] token for word to be predicted
- Which words to mask?
 - Original paper: 15% of words at random
 - But... of these
 - 10% of the time, no [MASK], flip word randomly
 - 10% of the time leave word unchanged



BERT: Training Task 2

Next sentence prediction

- Several ways of doing this, but basically binary classification
- Another self-supervision task
 - Later turned out that this is not strictly necessary!
- Place a sentence, then a candidate 2nd sentence
 - Use [SEP] token to distinguish 2 sentences
 - Predict if it's indeed the next sentence
 - Setup: 50% of sentences are indeed next,
 - Other 50% are random sentences we picked



BERT: Training Details

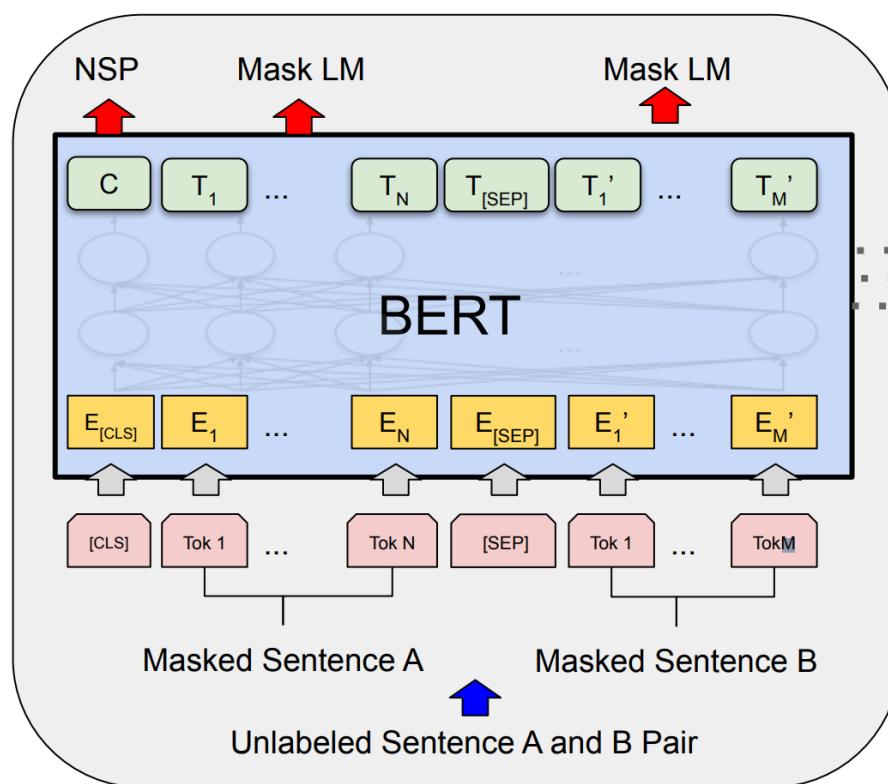
Where do we get our training data?

- We need a bunch of raw text, since our two objectives are **masked token prediction + next sentence prediction**
- BooksCorpus (800M words)
- English Wikipedia (2,500M words)
 - We'll get a lot larger than these as we go...
 - Some filtering: "Wikipedia we extract only the text passages and ignore lists, tables, and headers"... (Devlin et al '18).

BERT: Fine-Tuning

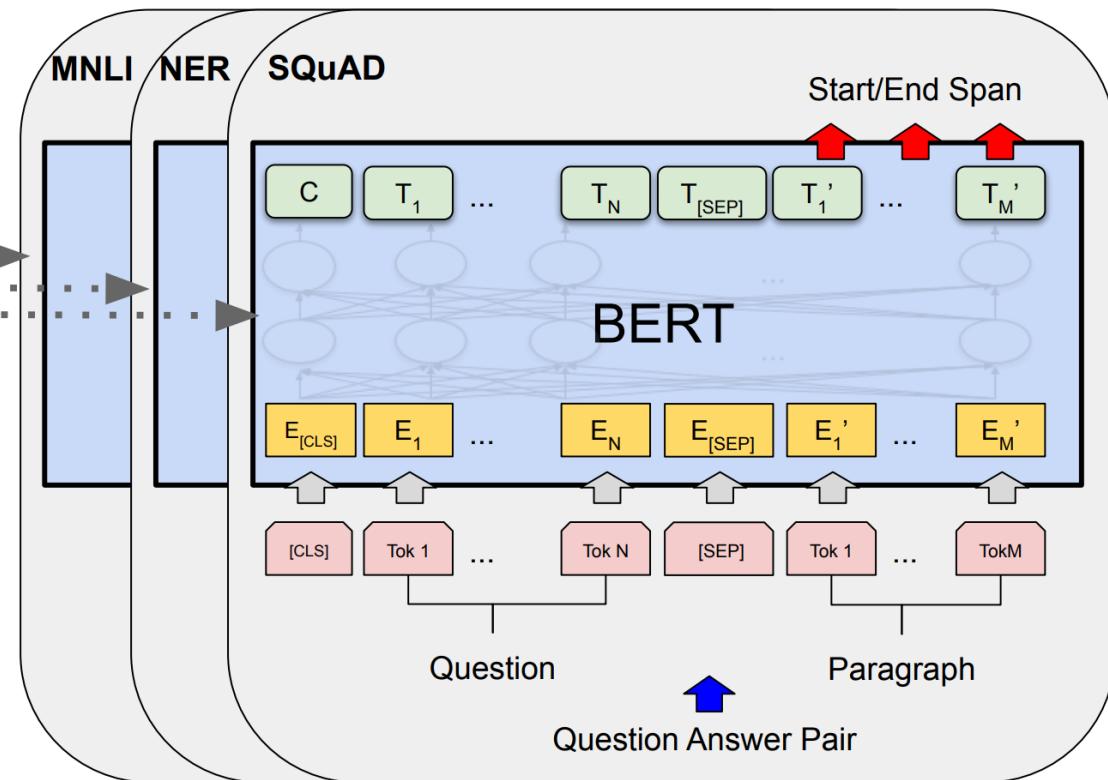
Once we're done pretraining, we can fine-tune

- This is now supervised learning again!



Pre-training

Devlin et al '18



Fine-Tuning

Break & Questions

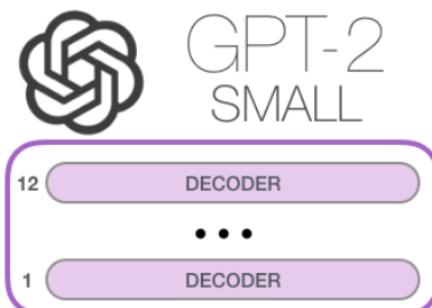
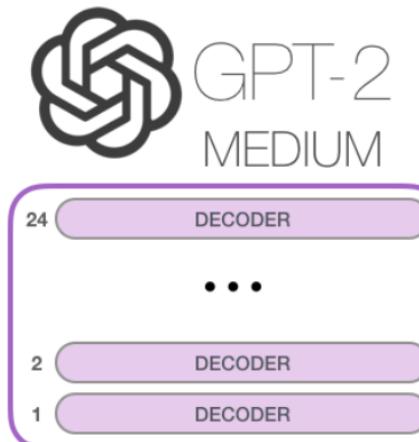
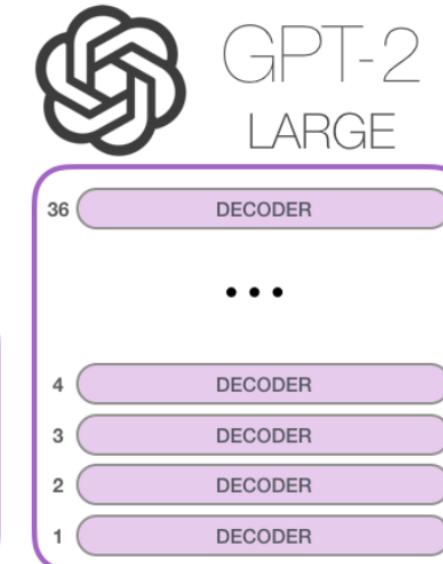
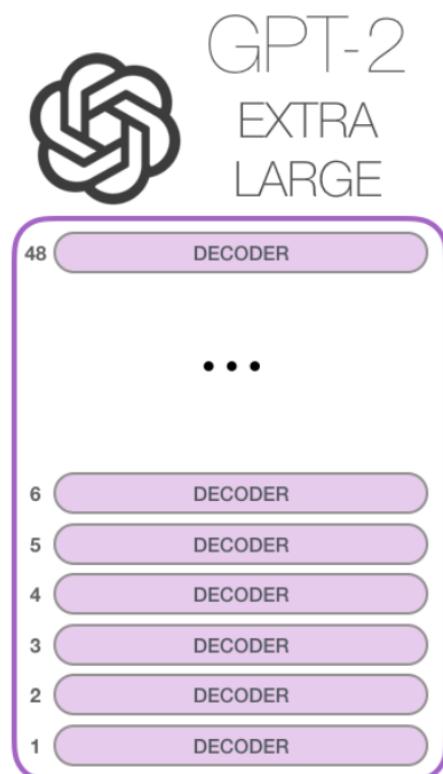
Outline

- Finish up last time: Encoder-only models
 - Example: BERT, architecture, multitask training, fine-tuning
- **Decoder-only Models**
 - Example: GPT, architecture, basic functionality, properties of new models

Decoder-Only Models: GPT

Let's get rid of the first part

- 1) **Outputs** in natural language
- 2) Tight alignment with **input**
- Rip away encoders
 - Just stack decoders



Decoder-Only Models: GPT

Let's get rid of the first part

- 1) **Outputs** in natural language
- 2) Tight alignment with **input**
- Let's handle this acronym as well: **GPT**
 - Generative (i.e., a language model that generates rich content, as opposed to representations or predictions)
 - Unlike BERT!
 - Pretrained
 - Like BERT!
 - Transformers (also like BERT)

Quick Interlude: Language Models

What's a “language model”?

- Basic idea: use probabilistic models to assign a probability to a sentence W

$$P(W) = P(w_1, w_2, \dots, w_n) \text{ or } P(w_{\text{next}} | w_1, w_2 \dots)$$

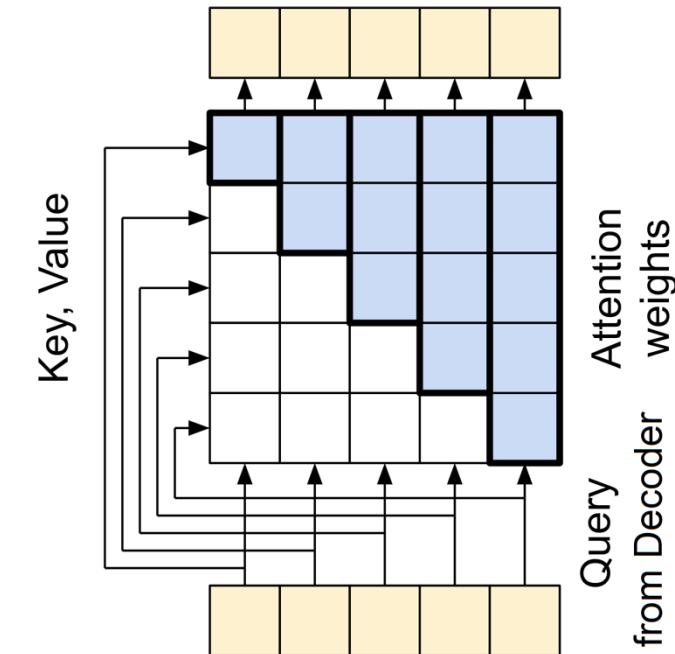
- We mostly care about the latter: gives us a **distribution to sample next word** (or next token)
- GPT models will also do this!
 - But idea's much older: Shannon's example

Zero-order approximation	XFOML RXKHRJFFJUJ ALPWXFWJXYJ FFJEYVJCQSGHYD QPAAMKBZAACIBZLKJQD
First-order approximation	OCRO HLO RGWR NMIELWIS EU LL NBNSESBYATHEEIALHENHTTPA OOBTTVA NAH BRL
Second-order approximation	ONIEANTSOUTINYSARETINCTORE STBE SDEAMYACHIN DILONASIVE TUCOOWEATTEASONAREFUSOTIZIN ANDYTOBESEACECTISBE
Third-order approximation	INNOISTLATWHEYCRATIC FROUREBIRSGROCIDPONDENOME OFDEMONSTURESOFREPTAGIN ISREGOACTIONOFCRE
First-order word approximation	REPRESENTINGANDSPEEDILYISAN GOODAPTORCOMECANDIFFERENT NATURALHEREHETHEAINCAME THETOFTOEXPERTGRAYCOME TO FURNISHESTHELINEMESSAGEHAD BETHESSE

Decoder-Only Models: GPT

Rip away encoders

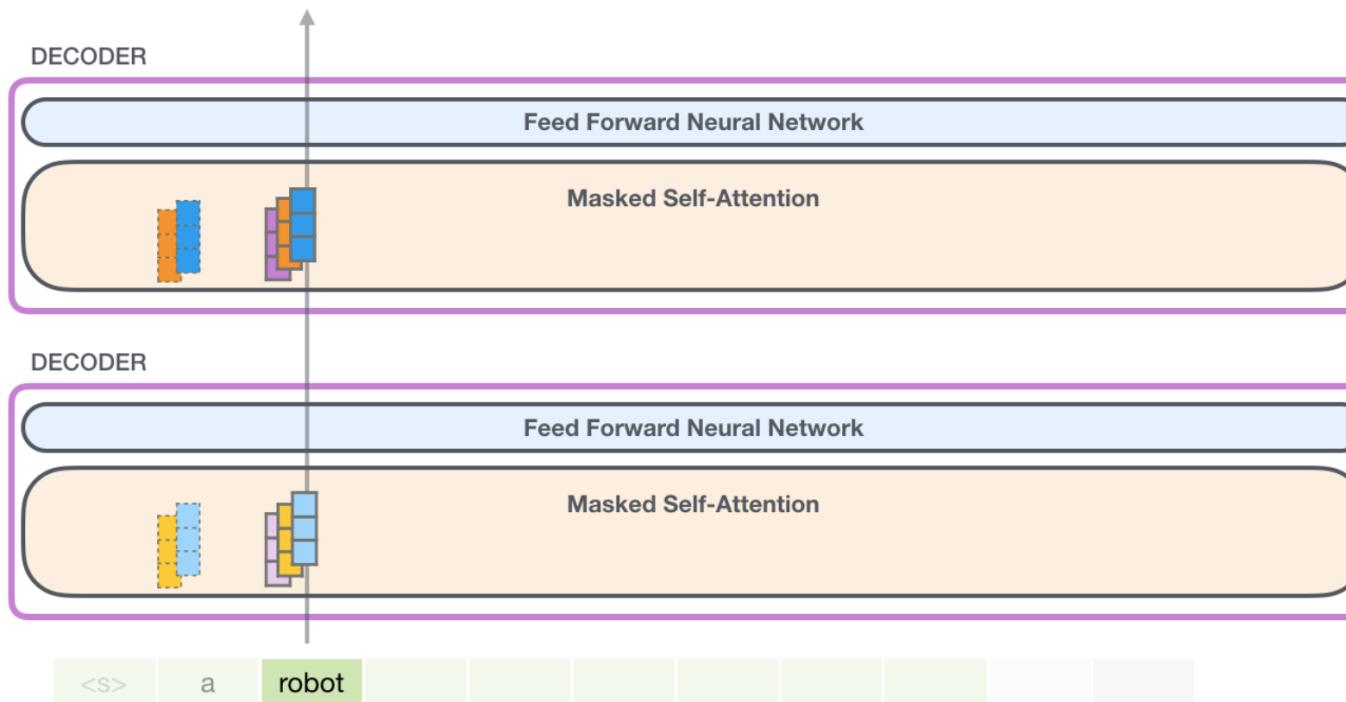
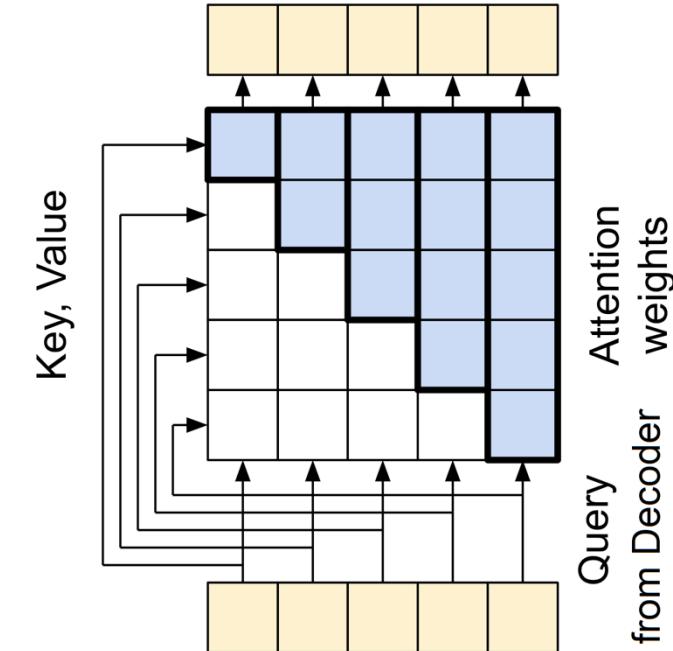
- Just stack decoders
- Use causal masking! NB: not a *mask token* like in BERT



Decoder-Only Models: GPT

Rip away encoders

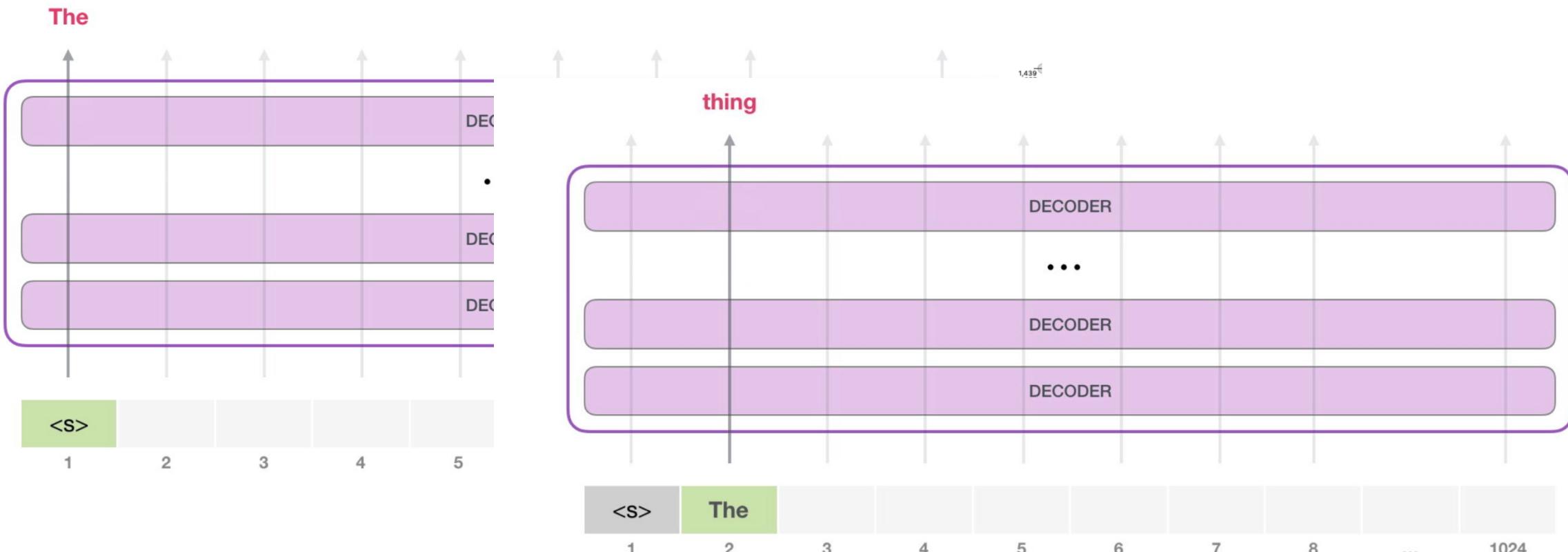
- Just stack decoders
- Decoders: get rid of **cross-attention** aspects (masked self-attention only)



Decoder-Only Models: GPT

Autoregressive next token prediction mechanism:

- Plug in your current token, get next token
- Once you decode next token, plug it back in



From GPT2 to GPT3

Mainly make things larger!

- Why? **Scaling** produces emergent behaviors... more soon!
- 96 decoder blocks (getting very tall)
- Context size: **2048**
- 175 billion parameters in total (800GB!)

Training data

GPT-3 training data^{[1]:9}

Dataset	# tokens	Proportion within training
Common Crawl	410 billion	60%
WebText2	19 billion	22%
Books1	12 billion	8%
Books2	55 billion	8%
Wikipedia	3 billion	3%

<https://en.wikipedia.org/wiki/GPT-3>

Brown et al '20

Open Source: Llama 3.1

Mainly make things larger! Note: multiple model sizes:

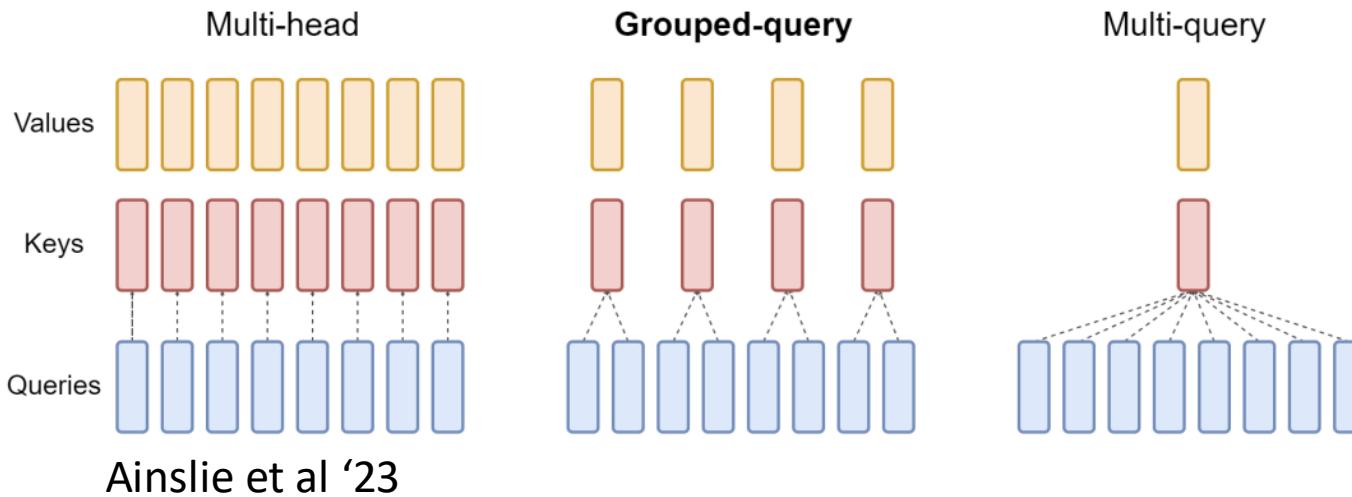
	8B	70B	405B
Layers	32	80	126
Model Dimension	4,096	8192	16,384
FFN Dimension	14,336	28,672	53,248
Attention Heads	32	64	128
Key/Value Heads	8	8	8
Peak Learning Rate	3×10^{-4}	1.5×10^{-4}	8×10^{-5}
Activation Function		SwiGLU	
Vocabulary Size		128,000	
Positional Embeddings		RoPE ($\theta = 500,000$)	

Dubey et al '24

Open Source: Llama 3.1

Some improvements for Llama 3.1:

- “We use an attention mask that **prevents self-attention between different documents** within the same sequence”
- “**grouped query attention** (GQA; Ainslie et al. (2023)) with 8 key-value heads to improve inference speed...”



o et al '21

Open Source: Llama 3.1

Some improvements for Llama 3.1:

- “We use an attention mask that **prevents self-attention between different documents** within the same sequence”
- “**grouped query attention** (GQA; Ainslie et al. (2023)) with 8 key-value heads to improve inference speed...”
- “We use a **vocabulary with 128K tokens**. Our token vocabulary combines 100K tokens from the tiktoken3 tokenizer with 28K additional tokens to better support non-English languages”

Zhao et al '21

Thank You!