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Announcements

Midterm: March 11, 5:40 pm - 7:20 pm
*Location: Ingraham Hall, Room B10

*Homework 1: due Tues!
*HW 2: coming out on Tues

*Class roadmap:

__

Tuesday Feb. 24 Attention Variants
Thursday Feb. 26 Multimodal Architectures |
Tuesday March 3 Multimodal Architectures Il )
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Outline

*Finish up last time: Encoder-only models
*Example: BERT, architecture, multitask training, fine-tuning

*Decoder-only Models

Example: GPT, architecture, basic functionality, properties
of new models
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*Finish up last time: Encoder-only models
*Example: BERT, architecture, multitask training, fine-tuning



Why Encoder-Decoder?

Wanted two things for translation:
1) Outputs in natural language
2) Tight alignment with input

What happens if we relax these?
1. Encoder-only models
2. Decoder-only models




Encoder-Only Models: BERT

Let’s get rid of the first part

2) Tight alignment with input
*So not a generative model - get representations
* Like we talked about in self-supervised learning
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Interlude: Contextual Embeddings
W

Q: Why is it called “BERT”?
*A: In a sense, follows up ELMo

*Story:
«2013: “Dense” word embeddings
(Word2Vec, Glove)
* Downside: fixed representations per word
* “Bank”: building or riverside?
* Need: contextual representations o

* Using language model-like techniques
* 2018: ELMo, BERT
e ELMo: uses LSTMs, BERT uses transformers

https://nlp.stanford.edu/projects/glove/



Interlude: Contextual Embeddings
W

Q: Why is it called “BERT”?
*A: In a sense, follows up ELMo

BERT acronym:

 Bidirectional Encoder Representations from
Transformers.

* ERT should make sense,

* Bidirectional: no causal masks, look at both
sides of a word!

e Captured in self-attention block



BERT: Forward Pass

BERT architecture

*Rip away decoders
 Just stack encoders
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BERT: Training

Training is more interesting!
* Pretraining. Then fine-tuning on task of interest

*Back to self-supervised learning!
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*Two tasks for pretraining.
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1. Masked Language Modeling 2. Next Sentence Prediction



BERT: Training Task 1

Masked Language Modeling Task
* Use [MASK] token for word to be predicted

*Which words to mask?
* Original paper: 15% of words at random

° But... Of these " you has the highest probability T you,they, your
utpu [CLS] | how are | | doing | today [SEP]
* 10% of the time, no [MASK], flip word randomly NEEEEEE
* 10% of the time leave word unchanged BERT masked language model
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BERT: Training Task 2

Next sentence prediction

 Several ways of doing this, but basically binary
classification

e Another self-supervision task
* Later turned out that this is not strictly necessary!

*Place a sentence, then a candidate 29 sentence

» Use [SEP] token to distinguish 2 sentences

* Predict if it’s indeed the next sentence
* Setup: 50% of sentences are indeed next,
* Other 50% are random sentences we picked
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BERT: Training Details

Where do we get our training data?

* We need a bunch of raw text, since our two objectives are
masked token prediction + next sentence prediction

*BooksCorpus (800M words)

*English Wikipedia (2,500M words)
* We’ll get a lot larger than these as we go...

* Some filtering: "Wikipedia we extract only the text passages
and ignore lists, tables, and headers”... (Devlin et al ‘18).



BERT: Fine-Tuning

Once we’re done pretraining, we can fine-tune
* This is now supervised learning again!
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Break & Questions



Outline

*Decoder-only Models

Example: GPT, architecture, basic functionality, properties
of new models



Decoder-Only Models: GPT

Let’s get rid of the first part

1) Outputs in natural language

*Rip away encoders
e Just stack decoders
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Decoder-Only Models: GPT

Let’s get rid of the first part
1) Outputs in natural language

*Let’s handle this acronym as well: GPT

* Generative (i.e., a language model that generates rich
content, as opposed to representations or predictions)
* Unlike BERT!
* Pretrained
* Like BERT!

* Transformers (also like BERT)



Quick Interlude: Language Models

What's a “language model”?

*Basic idea: use probabilistic models to assign a
probability to a sentence W

P(W) = P(wy,wa,...,w,) or P(wWyext|wr, ws...)

*We mostly care about the latter: gives us a distribution

to sample next word (or next token) - e
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Decoder-Only Models: GPT

Rip away encoders
* Just stack decoders
e Use causal masking! NB: not a mask token like in BERT

N
DECODER
DECODER o)
J = -
©
Positional > >
Encodings =
—4 a) | .
. : X o
Positional encoding for token #1
+
Token embedding of <s> r i
<S> EEEN

PyLessons

Attention

Query

fromm Decoder

weights



Decoder-Only Models: GPT

Rip away encoders
 Just stack decoders

* Decoders: get rid of cross-attention aspects (masked self-

attention only)
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Decoder-Only Models: GPT

Autoregressive next token prediction mechanism:
* Plug in your current token, get next token
* Once you decode next token, plug it back in

The
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From GPT2 to GPT3

Mainly make things larger!
* Why? Scaling produces emergent behaviors... more soon!
* 96 decoder blocks (getting very tall)
* Context size: 2048
* 175 billion parameters in total (800GB!)

Training dat.‘ GPT-3 training datal'l:°
Dataset # tokens Proportion
within training
Common Crawl 410 billion 60%
WebText2 19 billion 22%
Books1 12 billion 8%
Books2 55 billion 8%
Wikipedia 3 billion 3% Brown et al 20

https://en.wikipedia.org/wiki/GPT-3



Open Source: Llama 3.1

Mainly make things larger! Note: multiple model sizes:

8B 70B 405B
Layers 32 80 126
Model Dimension 4,096 8192 16,384
FFN Dimension 14,336 28,672 53,248
Attention Heads 32 64 128
Key/Value Heads 8 8 8
Peak Learning Rate 3x107* 15x107* 8x107°
Activation Function SwiGLU
Vocabulary Size 128,000
Positional Embeddings RoPE (6 = 500, 000)

Dubey et al 24




Open Source: Llama 3.1

Some improvements for Llama 3.1:

*“We use an attention mask that prevents self-attention
between different documents within the same sequence”

*“ogrouped query attention (GQA,; Ainslie et al. (2023)) with 8
key-value heads to improve inference speed...”

Multi-head Grouped-query Multi-query

Values
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Ainslie et al ‘23
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Open Source: Llama 3.1

Some improvements for Llama 3.1:

*“We use an attention mask that prevents self-attention
between different documents within the same sequence”

*“ogrouped query attention (GQA,; Ainslie et al. (2023)) with 8
key-value heads to improve inference speed...”

*“We use a vocabulary with 128K tokens. Our token
vocabulary combines 100K tokens from the tiktoken3
tokenizer with 28K additional tokens to better support non-

English languages”

Zhao et al '21




Thank You!
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