

CS 639: Foundation Models **Machine Learning: Review**

Fred Sala

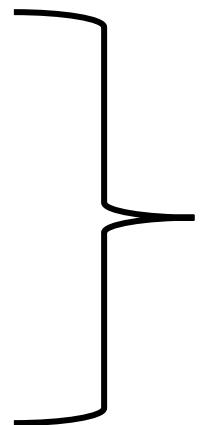
University of Wisconsin-Madison

Jan. 22, 2026

Announcements

- OH: Thurs 2:30-4:00 PM in Morgridge 5514
 - Starting **next week!**
- Resources
 - <https://mlstory.org/> : fun book by Hardt and Recht
- Class roadmap:

Thursday Jan. 22	ML Review
Tuesday Jan. 27	Deep Learning I
Thursday Jan. 20	Deep Learning II
Tuesday Feb. 3	Self-Supervised Learning



Mostly Review

Outline

- **General Supervised Learning Review**
 - Features, labels, function classes, training, generalization
- **Linear Models**
 - Parametrization, training, logistic regression
- **Neural Networks**
 - Perceptrons, setup, training, limitations, multilayer perceptrons, loss functions

Outline

- **General Supervised Learning Review**
 - Features, labels, function classes, training, generalization
- **Linear Models**
 - Parametrization, training, logistic regression
- **Neural Networks**
 - Perceptrons, setup, training, limitations, multilayer perceptrons, loss functions

Supervised Learning: Formal Setup

Problem setting

- Set of possible instances/points
- Unknown *target function*
 - Maps to output space

 \mathcal{X} $f : \mathcal{X} \rightarrow \mathcal{Y}$

- Set of *models*
 - a.k.a. *hypothesis/function* class

 $\mathcal{H} = \{h | h : \mathcal{X} \rightarrow \mathcal{Y}\}$

Get

- Training set of instances for unknown target function,

 $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})$

safe

poisonous

safe

Supervised Learning: Objects

Three types of sets

- Input space, output space, hypothesis class

$$\mathcal{X}, \mathcal{Y}, \mathcal{H}$$

- Examples:

- Input space: feature vectors $\mathcal{X} \subseteq \mathbb{R}^d$

- Output space:

- Binary

$$\mathcal{Y} = \{-1, +1\}$$

safe poisonous

- Continuous

$$\mathcal{Y} \subseteq \mathbb{R}$$

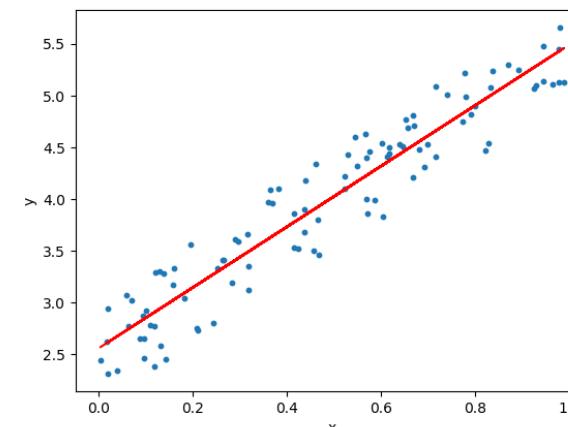
13.23°

Output Space: Classification vs. Regression

Choices of \mathcal{Y} have special names:

- Discrete: “**classification**”. The elements of \mathcal{Y} are **classes**
 - Note: doesn’t have to be binary

- Continuous: “**regression**”
 - Example: linear regression
 - There are other types...

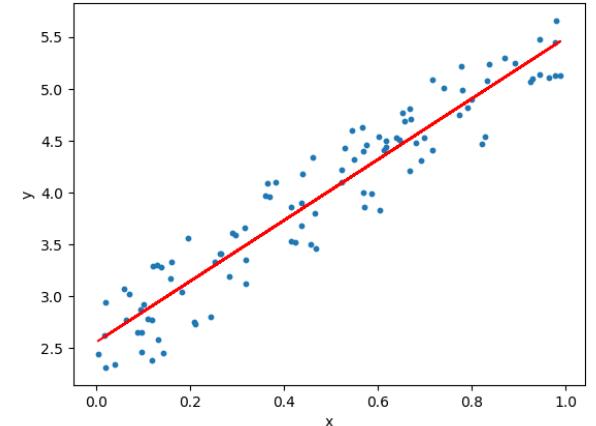


Hypothesis/Function Classes

We talked about \mathcal{X}, \mathcal{Y} what about \mathcal{H} ?

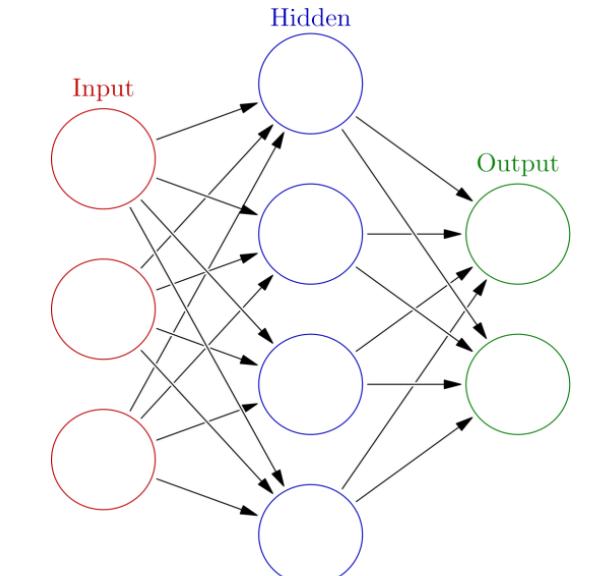
- Pick specific class of models. Ex: **linear models**:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_d x_d$$



- Ex: **feedforward neural networks**

$$f^{(k)}(x) = \sigma(W_k^T f^{(k-1)}(x)))$$



- **Parameters:** θ, w .

Training The Model

- Training/learning: get data, make the model match that data
- So, get

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})$$

- Modify f until $f(x^{(i)})$ is close to $y^{(i)}$
 - But our real goal is to make sure we are good at predicting **new** data (not in our training set)
 - This is **generalization**

Training The Model

Modify f until $f(x^{(i)})$ is close to $y^{(i)}$ \rightarrow **how?**

- Need some way to measure “close”. We’ll use a function called a **loss** (call it ℓ)
- Loss represents how “bad” our model is. We’ll minimize it (i.e., tweak the parameters of f)

$$\min_{\theta} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i)$$

Best parameters
= best function f

Training The Model

Modify f until $f(x^{(i)})$ is close to $y^{(i)}$ \rightarrow **how?**

- Choose a loss. Minimize it w.r.t. its parameters
 - Ex: linear models:

Best parameters
= best function f

$$\min_{\theta} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i)$$

Linear model
class f

$$= \frac{1}{n} \sum_{i=1}^n \ell(\theta_0 + x_i^T \theta, y_i)$$

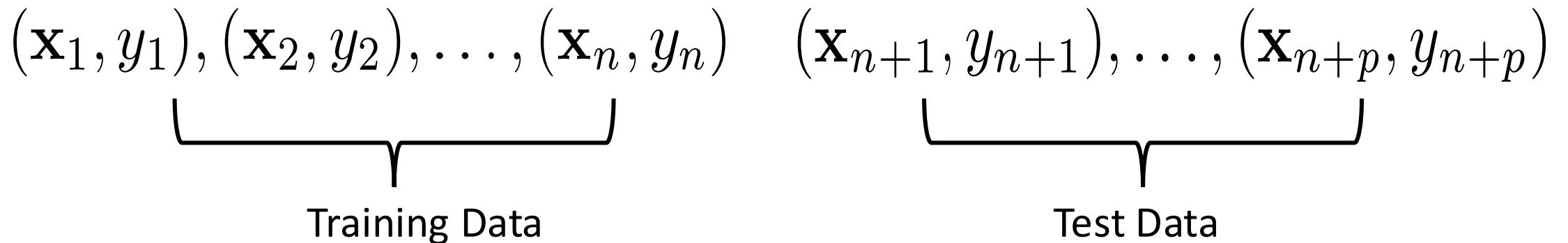
$$= \frac{1}{n} \sum_{i=1}^n (\theta_0 + x_i^T \theta - y_i)^2$$

Square loss

Train vs Test

Now we've trained, have some f parametrized by θ

- Train loss is small $\rightarrow f$ predicts most x_i correctly
- How does f do on points not in training set? **“Generalizes”?**
- To evaluate this, reserve a **test** set. Do **not** train on it!



Break & Questions

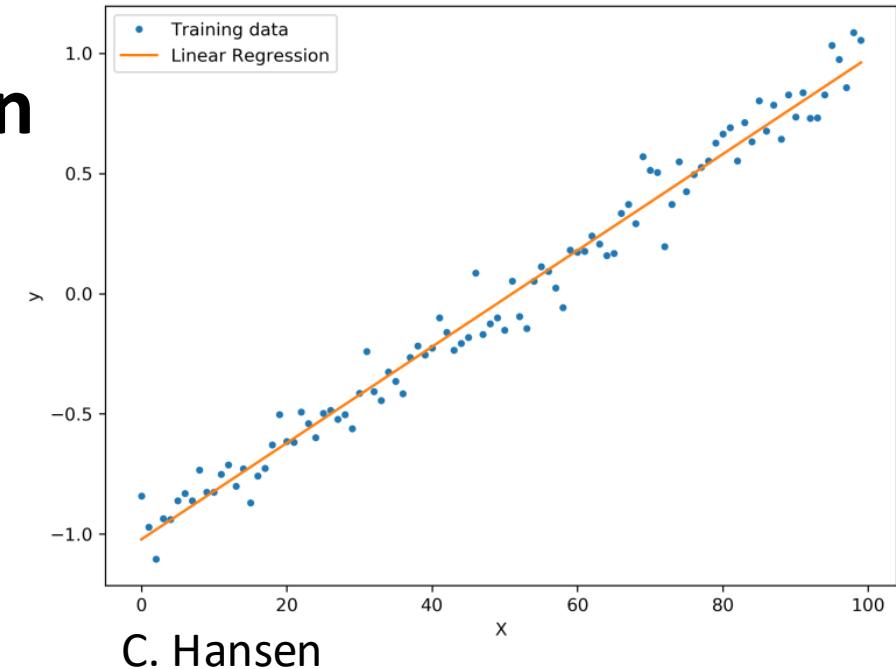
Outline

- **General Supervised Learning Review**
 - Features, labels, function classes, training, generalization
- **Linear Models**
 - Parametrization, training, logistic regression
- **Neural Networks**
 - Perceptrons, setup, training, limitations, multilayer perceptrons, loss functions

Back to Linear Models

Simplest type of model. Let's do **regression**

- **Inputs:** $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$
 - x 's are vectors, y 's are scalars.
 - “Linear”: predict a linear combination of x components + intercept



$$f(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_d x_d = \theta_0 + \mathbf{x}^T \boldsymbol{\theta}$$

- **Want:** parameters $\boldsymbol{\theta}$

Linear Regression Setup

Problem Setup

- Goal: figure out how to minimize square loss
- Let's organize it. Train set $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$
 - Since $f(x) = \theta_0 + x^T \theta$, use a notational trick by augmenting feature vector with a constant dimension of 1:
$$x = \begin{bmatrix} 1 \\ x \end{bmatrix}$$
- Then, with this one more dimension we can write (θ contains θ_0 now)

$$f(x) = x^T \theta$$

Linear Regression Setup

Problem Setup

- Train set $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$
- Take train features and build a $n \times (d+1)$ matrix, and make y a vector:

$$X = \begin{bmatrix} \mathbf{x}_1^T \\ \dots \\ \mathbf{x}_n^T \end{bmatrix} \quad y = \begin{bmatrix} y_1 \\ \dots \\ y_n \end{bmatrix}$$

- Then, the loss we seek to minimize is

$$\frac{1}{n} \|X\theta - y\|^2$$

Finding The Estimated Parameters

Have our loss: $\frac{1}{n} \|X\theta - y\|^2$

- Could optimize it with SGD, or other optimization approaches
 - This is what we'll do to **train our models**
- But the minimum also has a closed-form solution

Hat: indicates an
estimate / a
learned quantity

$$\hat{\theta} = (X^T X)^{-1} X^T y$$

Not always
invertible...

**“Normal
Equations”**

Linear Regression → Classification?

What if we want the same idea, but y is 0 or 1?

- Need to convert the $\theta^T x$ to a probability in $[0,1]$

$$p(y = 1|x) = \frac{1}{1 + \exp(-\theta^T x)}$$

1 ← Logistic function

Why does this work?

- If $\theta^T x$ is really big, $\exp(-\theta^T x)$ is really small $\rightarrow p$ close to 1
- If really negative \exp is huge $\rightarrow p$ close to 0

“Logistic Regression”

Break & Questions

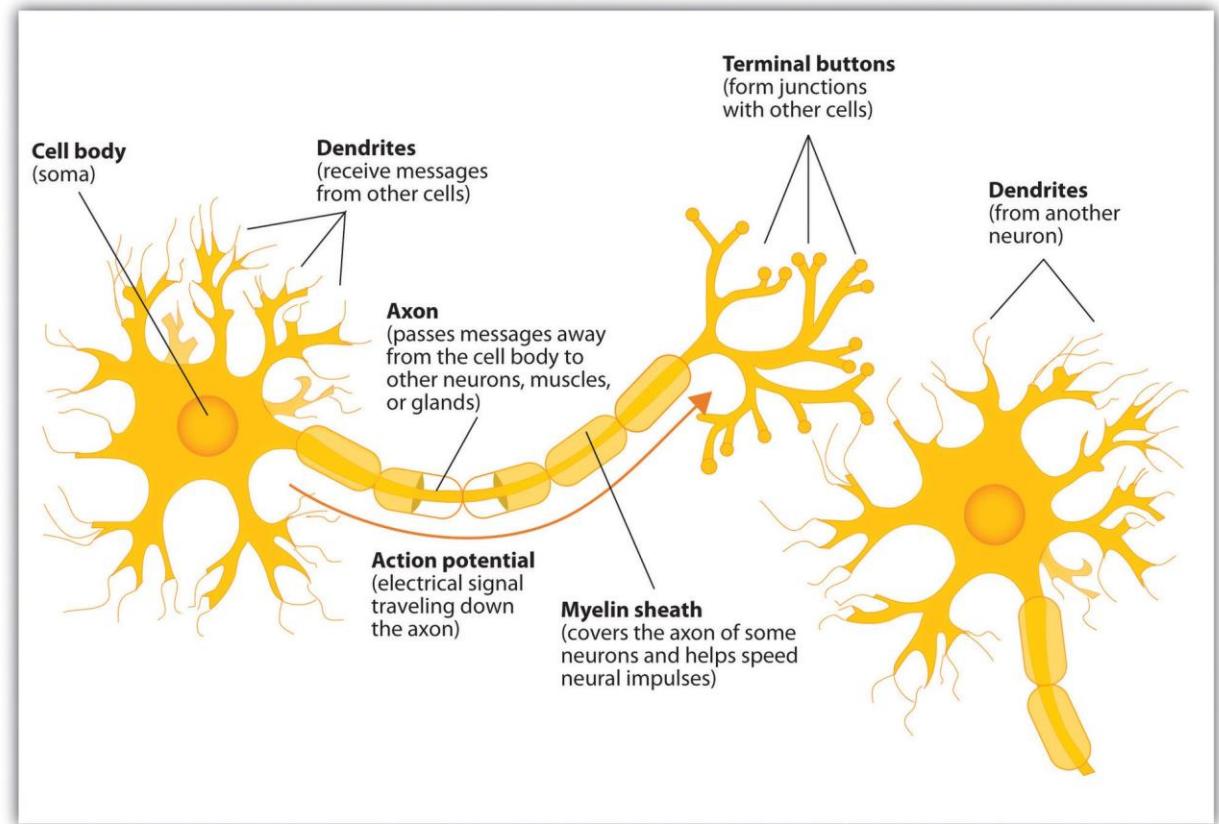
Outline

- **General Supervised Learning Review**
 - Features, labels, function classes, training, generalization
- **Linear Models**
 - Parametrization, training, logistic regression
- **Neural Networks**
 - Perceptrons, setup, training, limitations, multilayer perceptrons, loss functions

Neural Networks

- (Loosely) inspired by human brains
- Networks of **simple** and **homogenous** units

(wikipedia)

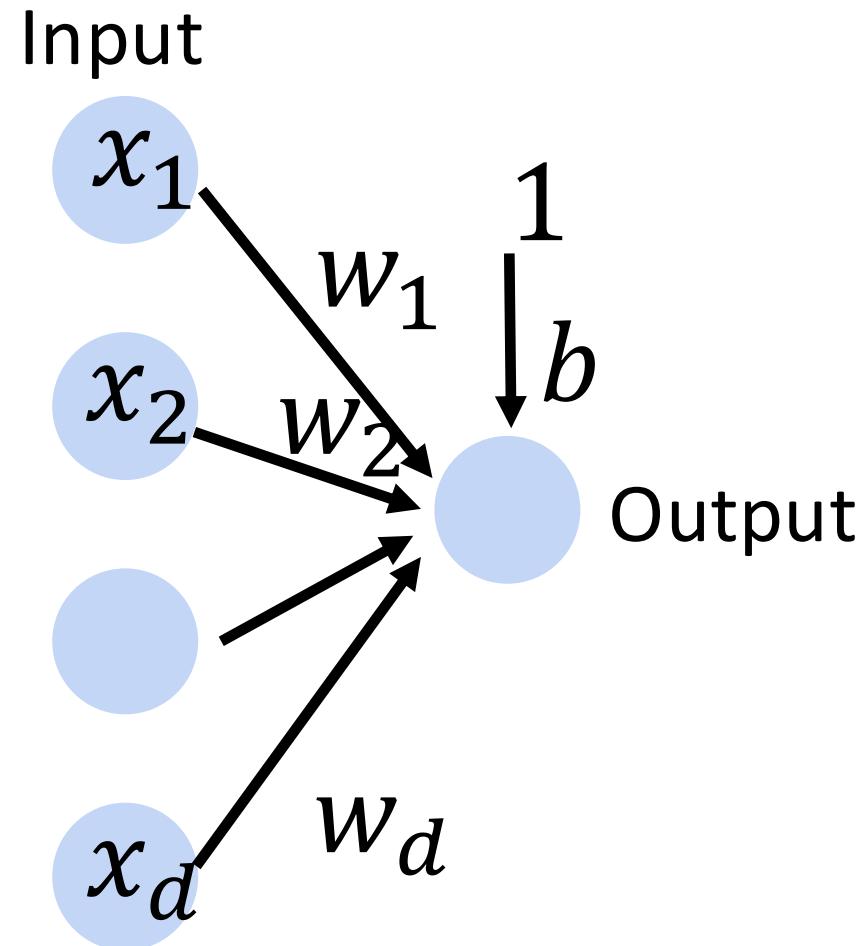


Linear Perceptron

- Given input \mathbf{x} , weight \mathbf{w} and bias b , perceptron outputs:

$$f = \langle \mathbf{w}, \mathbf{x} \rangle + b$$

Cats vs. dogs?



Perceptron

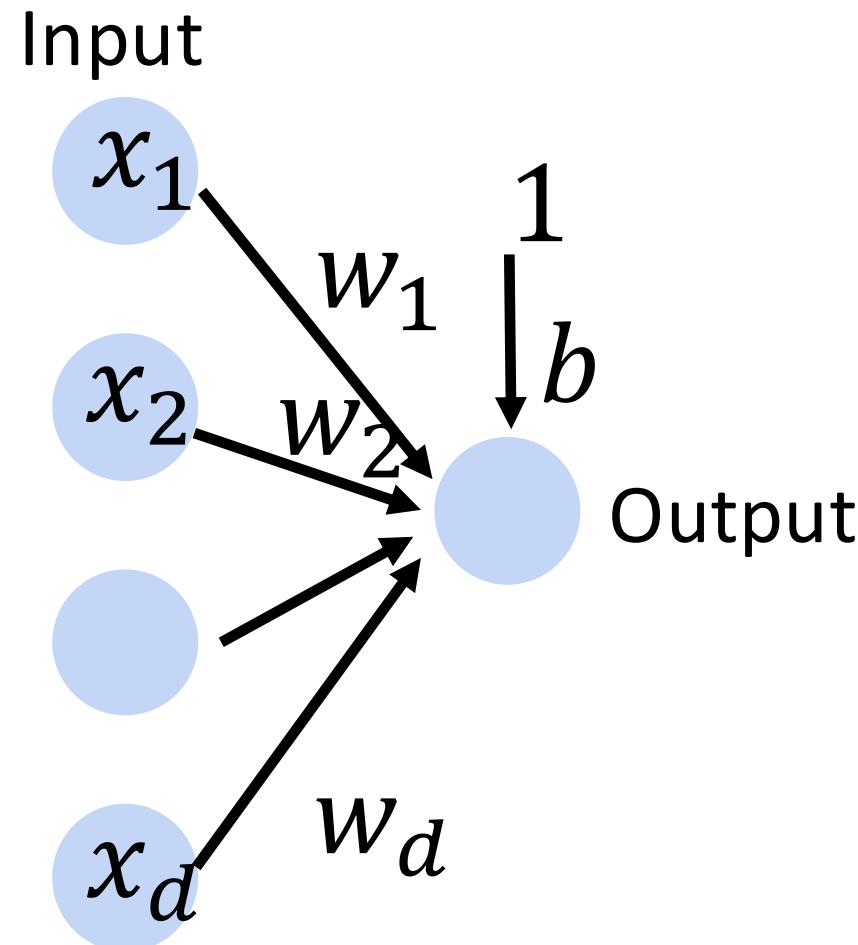
- Given input \mathbf{x} , weight \mathbf{w} and bias b , perceptron outputs:

$$o = \sigma(\langle \mathbf{w}, \mathbf{x} \rangle + b)$$

$$\sigma(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$$

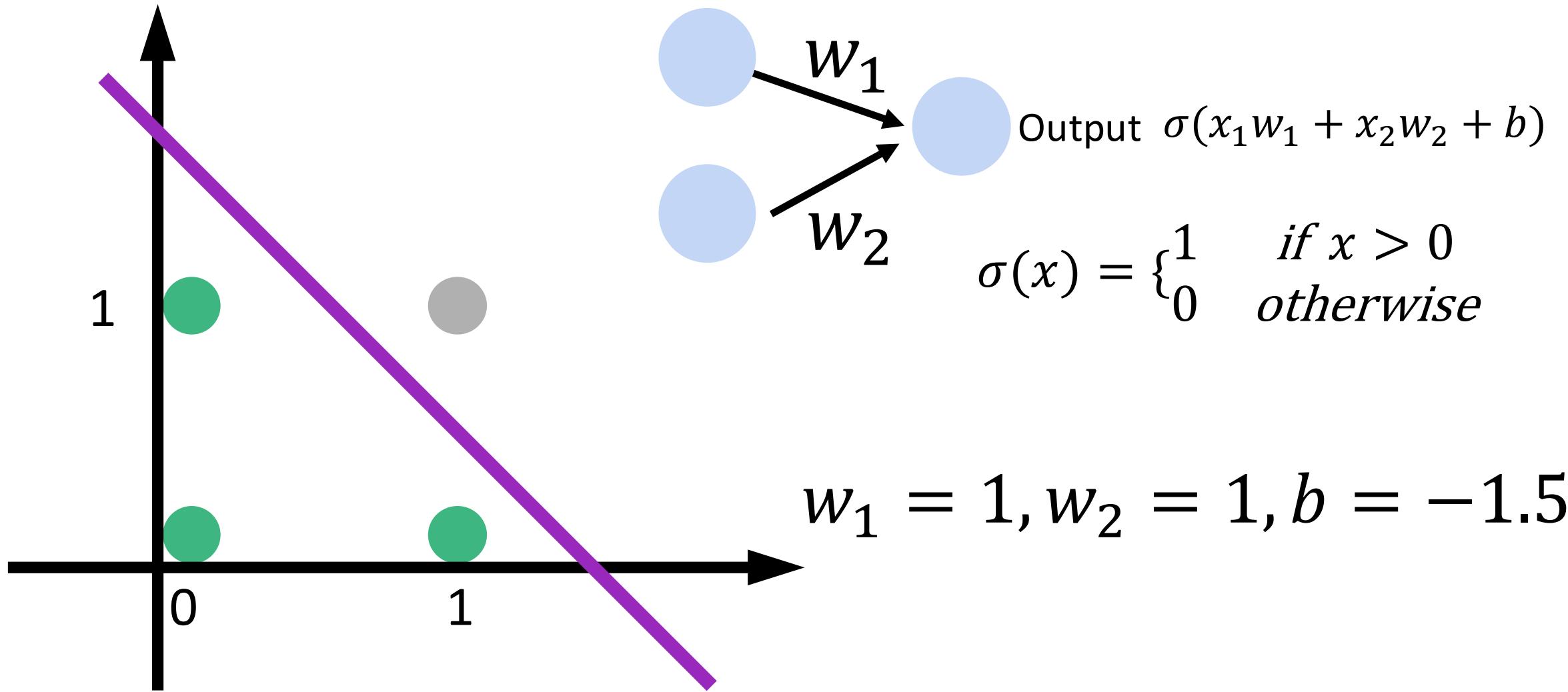
Activation function

Cats vs. dogs?



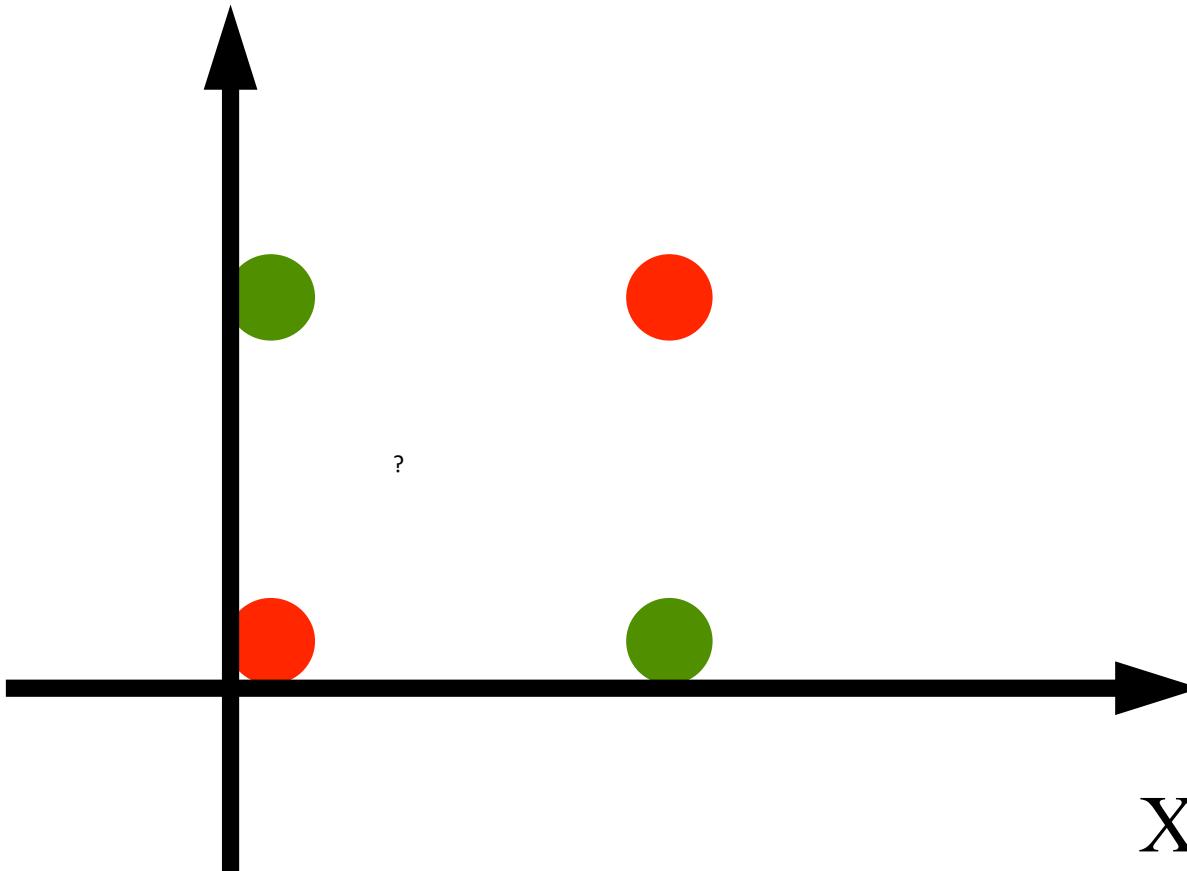
Learning AND function using perceptron

The perceptron can learn an AND function



The limited power of a single neuron

The perceptron cannot learn an **XOR** function
(neurons can only generate linear separators)



$$x_1 = 1, x_2 = 1, y = 0$$

$$x_1 = 1, x_2 = 0, y = 1$$

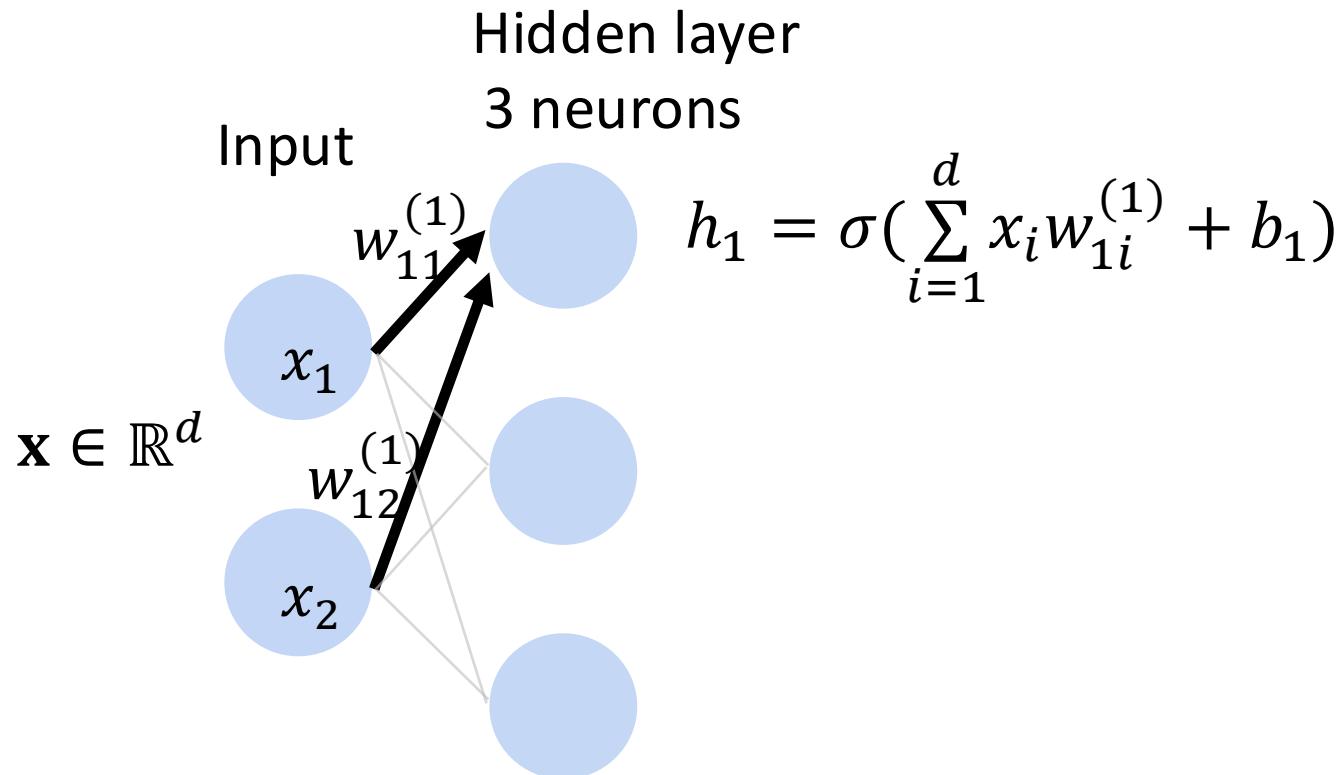
$$x_1 = 0, x_2 = 1, y = 1$$

$$x_1 = 0, x_2 = 0, y = 0$$

$$\text{XOR}(x_1, x_2) = (x_1 \wedge \neg x_2) \vee (\neg x_1 \wedge x_2)$$

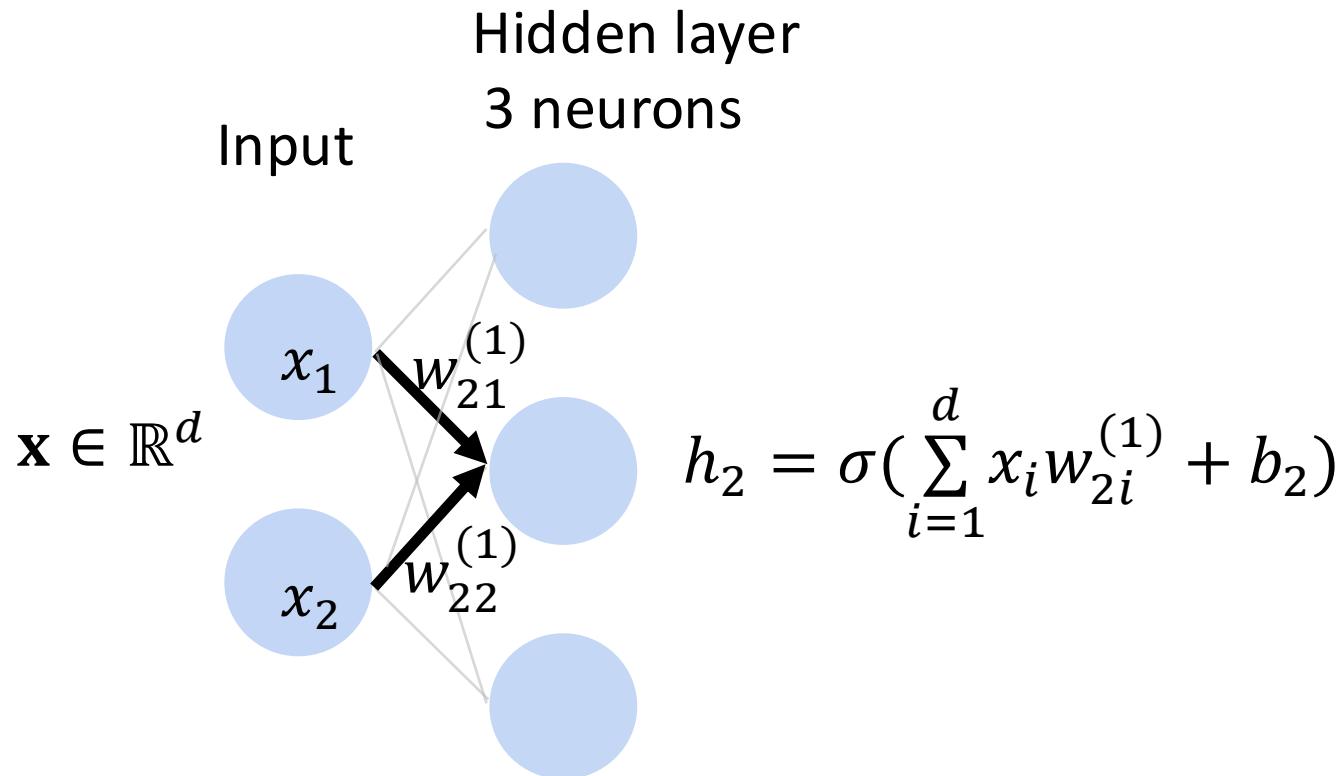
Multi-layer perceptron: Example

- Standard way to connect Perceptrons
- Example: 1 hidden layer, 1 output layer, depth = 2



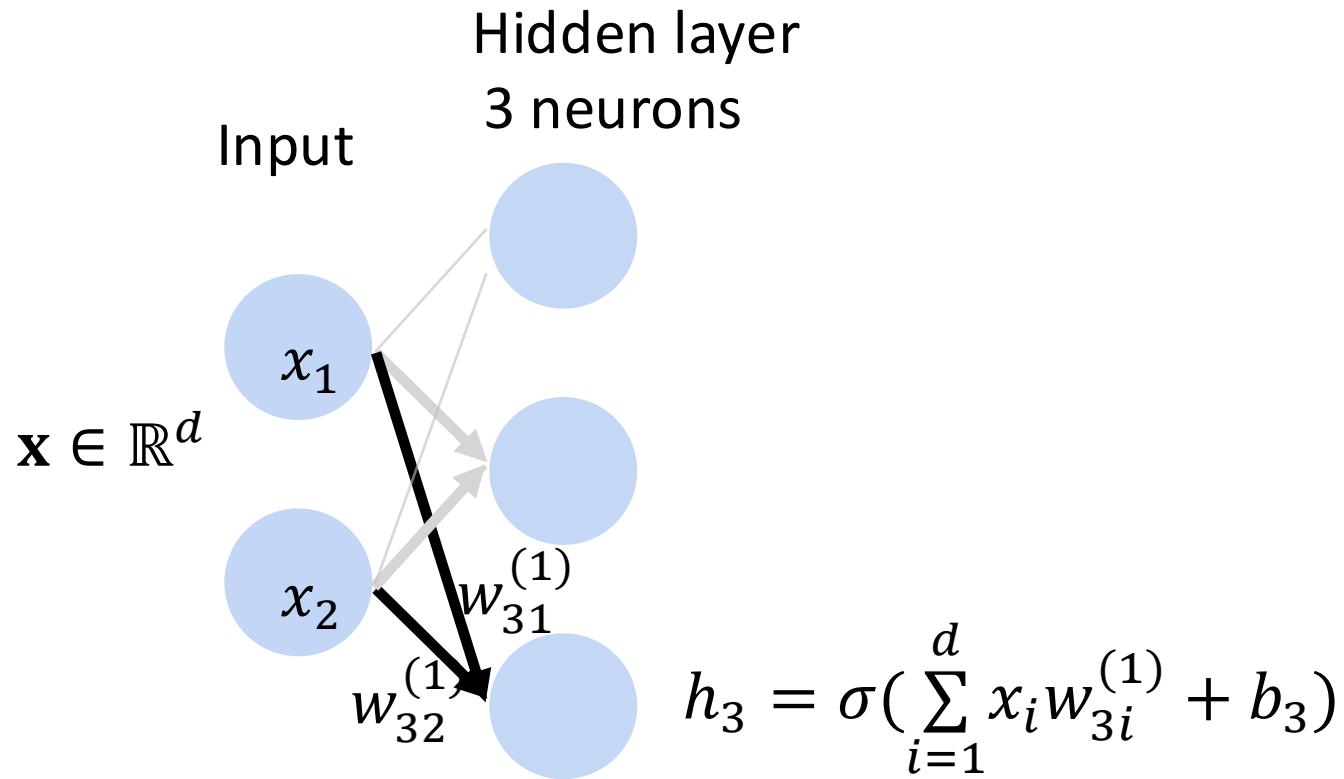
Multi-layer perceptron: Example

- Standard way to connect Perceptrons
- Example: 1 hidden layer, 1 output layer, depth = 2



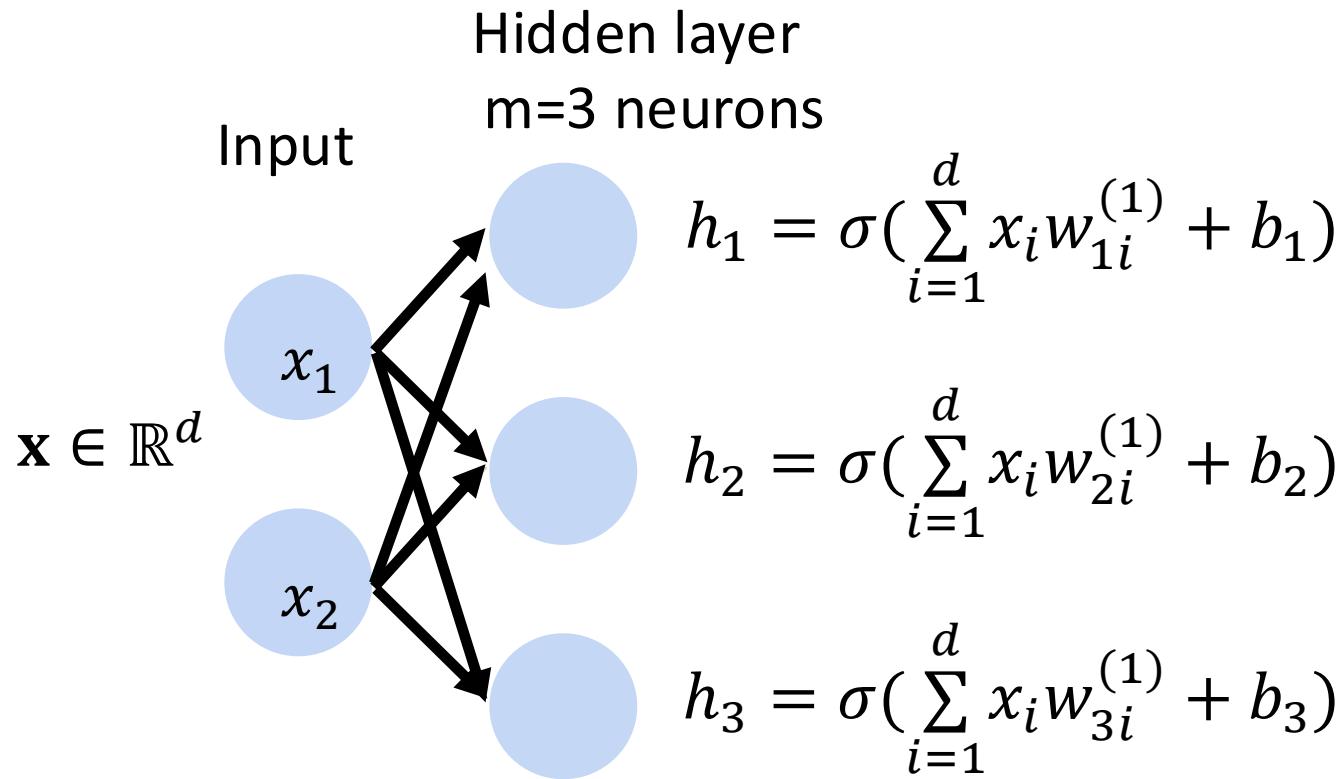
Multi-layer perceptron: Example

- Standard way to connect Perceptrons
- Example: 1 hidden layer, 1 output layer, depth = 2



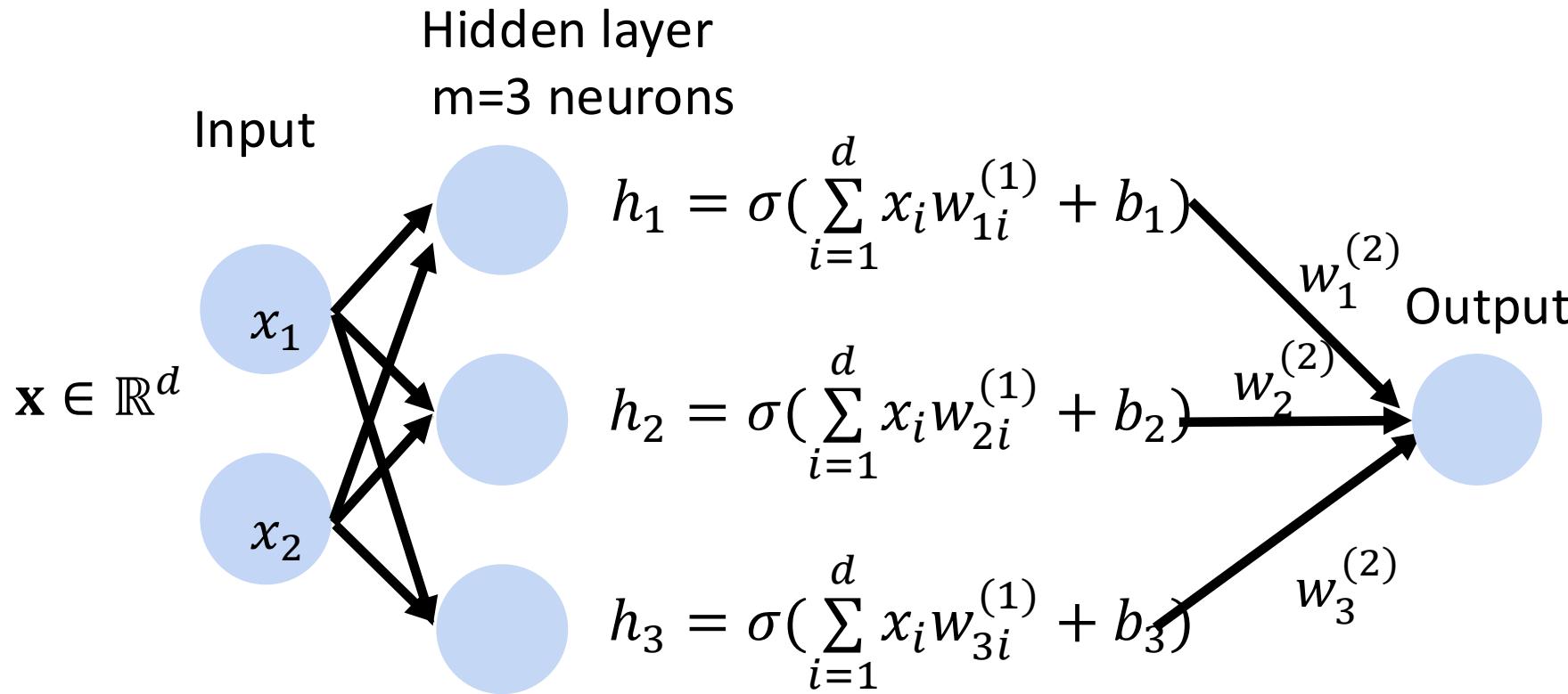
Multi-layer perceptron: Example

- Standard way to connect Perceptrons
- Example: 1 hidden layer, 1 output layer, depth = 2



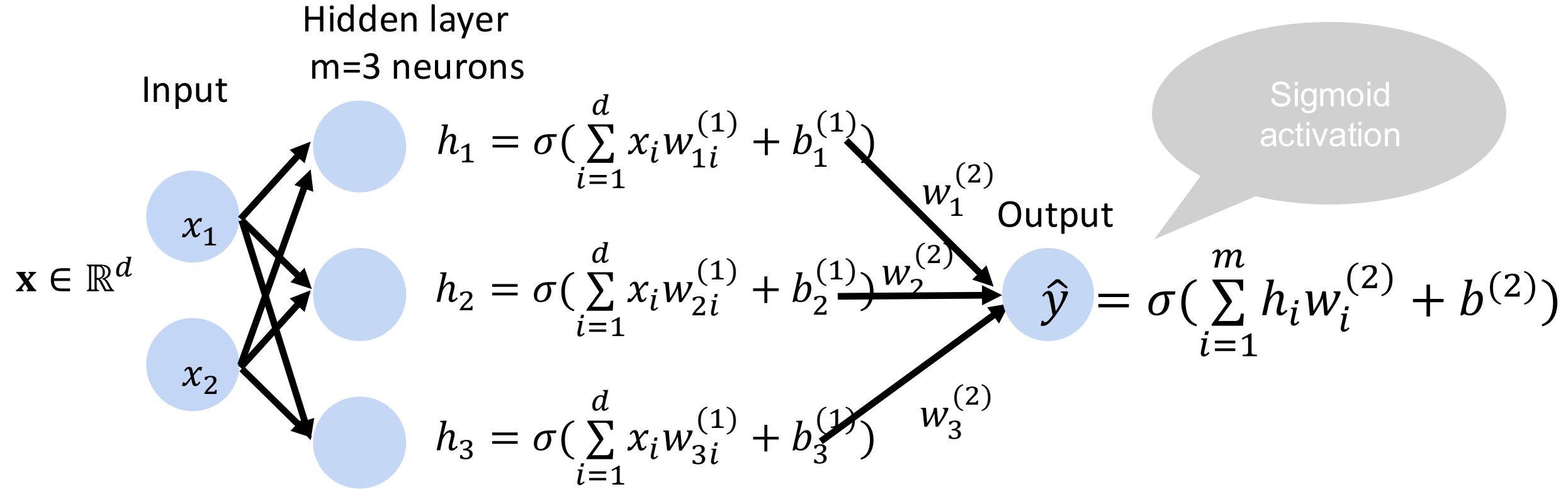
Multi-layer perceptron: Example

- Standard way to connect Perceptrons
- Example: 1 hidden layer, 1 output layer, depth = 2



Multi-layer perceptron: Example

- Standard way to connect Perceptrons
- Example: 1 hidden layer, 1 output layer, depth = 2

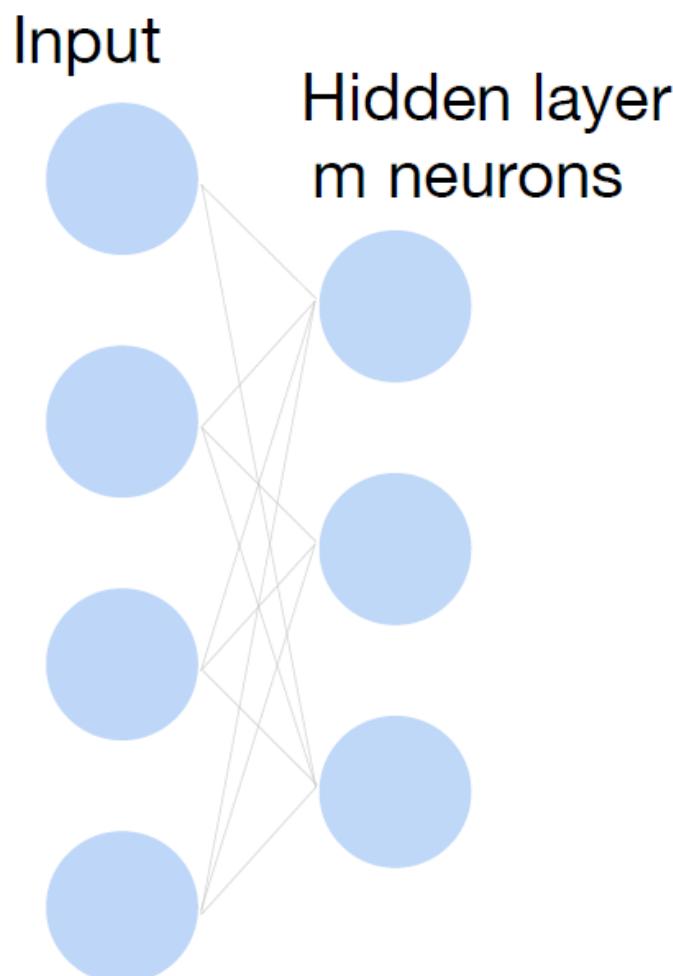


Multi-layer perceptron: Matrix Notation

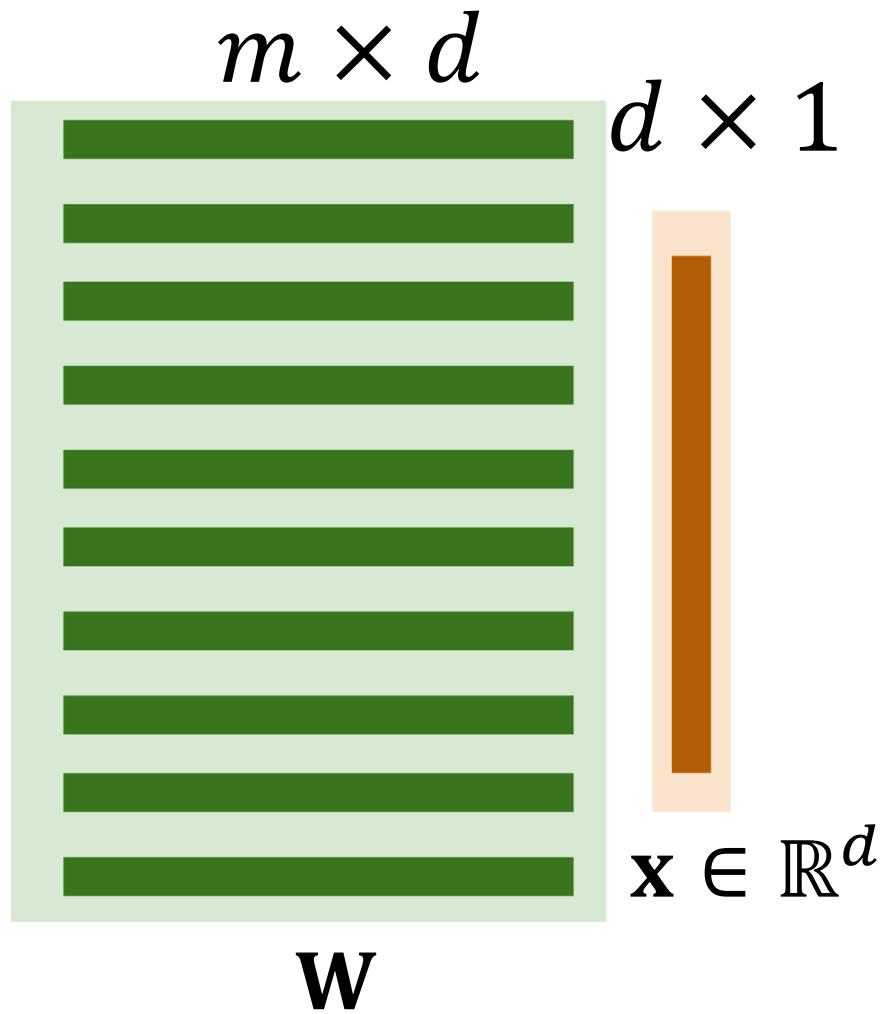
- Input $\mathbf{x} \in \mathbb{R}^d$
- Hidden $\mathbf{W}^{(1)} \in \mathbb{R}^{m \times d}, \mathbf{b}^{(1)} \in \mathbb{R}^m$
- Intermediate output

$$\mathbf{h} = \sigma(\mathbf{W}^{(1)}\mathbf{x} + \mathbf{b}^{(1)})$$

$$\mathbf{h} \in \mathbb{R}^m$$

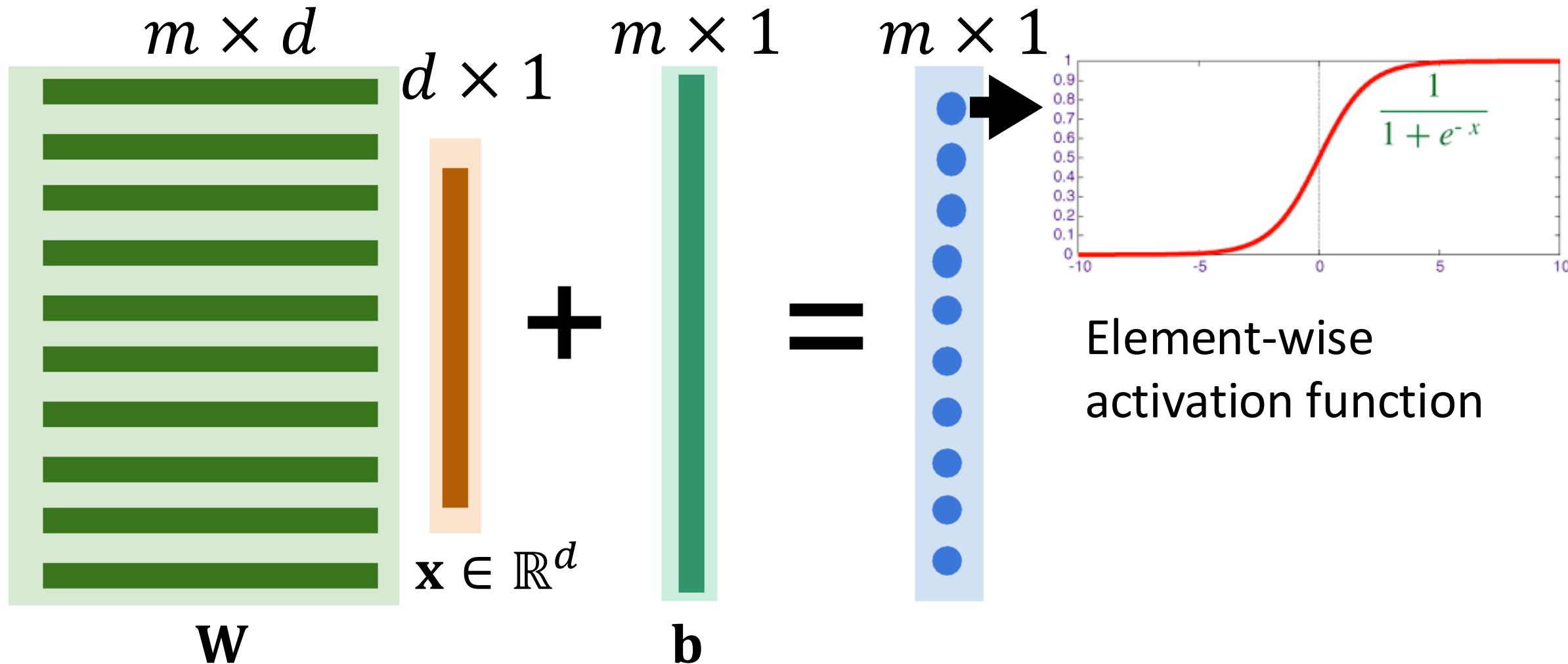


Multi-layer perceptron: Matrix Notation



Multi-layer perceptron: Matrix Notation

Key elements: linear operations + Nonlinear activations

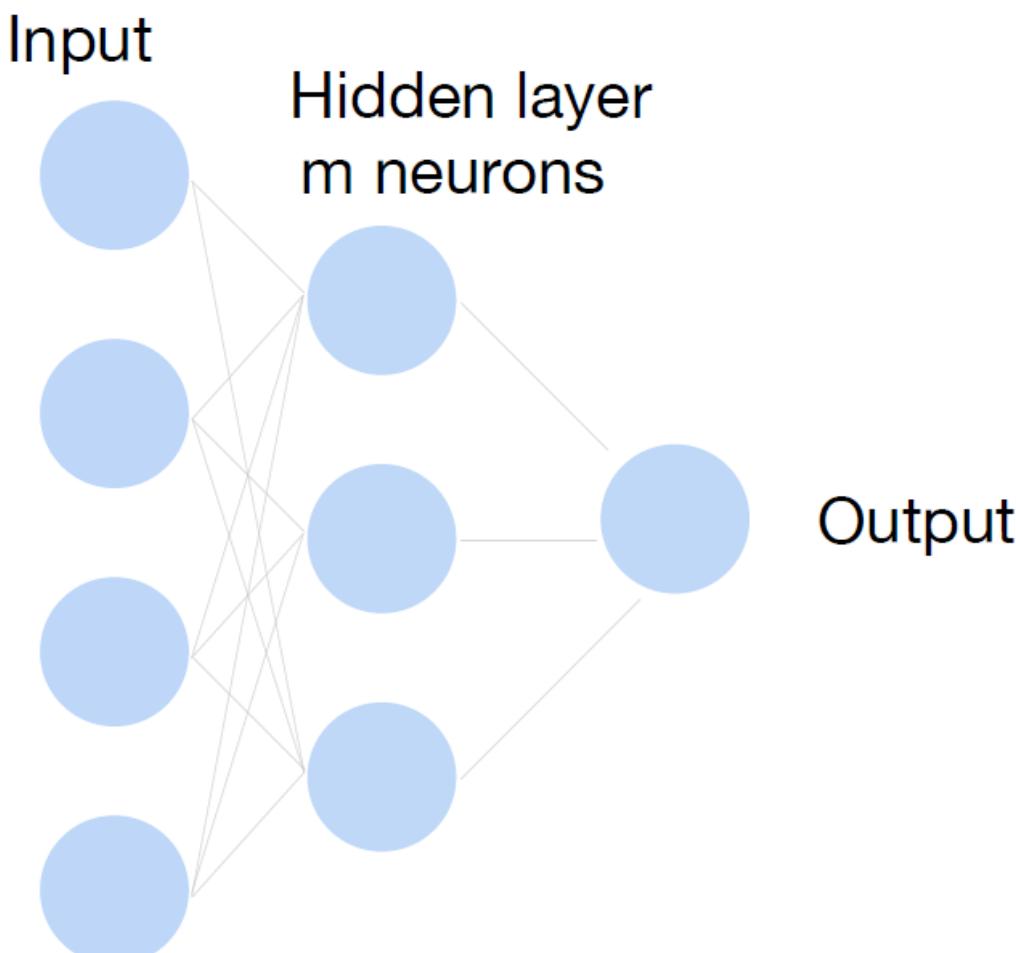


Multi-layer perceptron: Matrix Notation

- Input $\mathbf{x} \in \mathbb{R}^d$
- Hidden $\mathbf{W}^{(1)} \in \mathbb{R}^{m \times d}, \mathbf{b}^{(1)} \in \mathbb{R}^m$
- Intermediate output

$$\mathbf{h} = \sigma(\mathbf{W}^{(1)}\mathbf{x} + \mathbf{b}^{(1)})$$

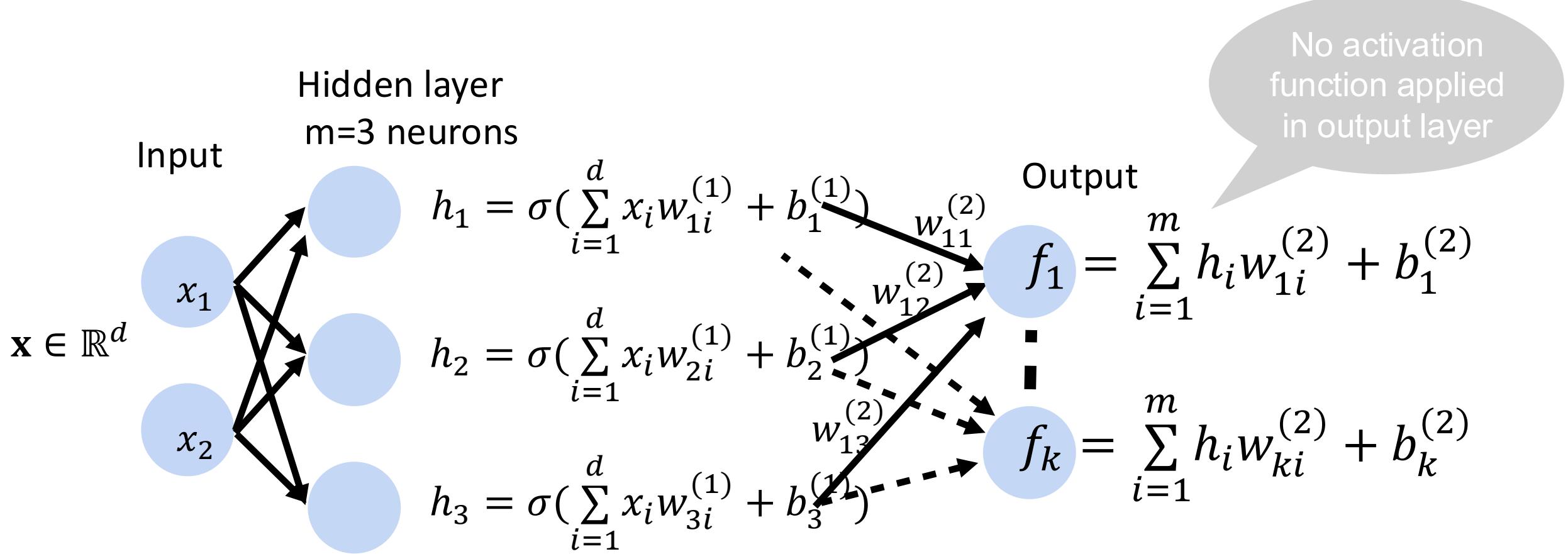
$$\hat{y} = \sigma(\mathbf{w}^{(2)}\mathbf{h} + \mathbf{b}^{(2)})$$



Neural network for k-way classification

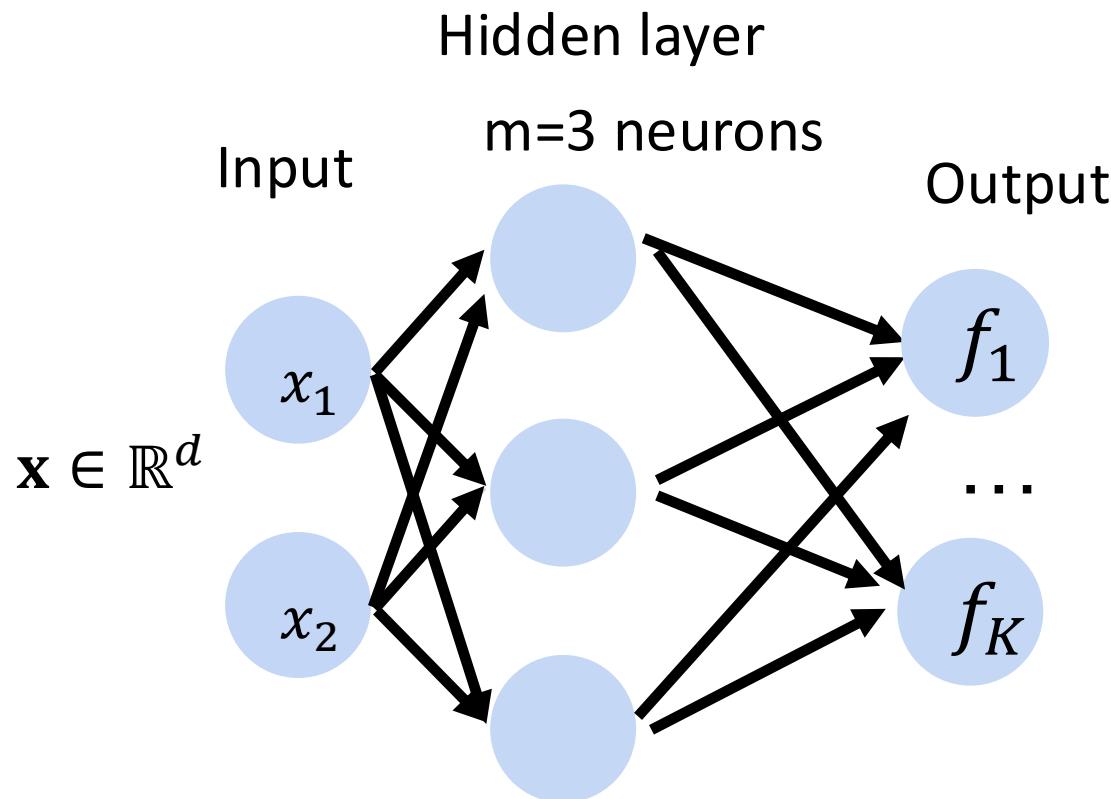
- K outputs in the final layer

Multi-class classification (e.g., ImageNet with K=1000)



Softmax

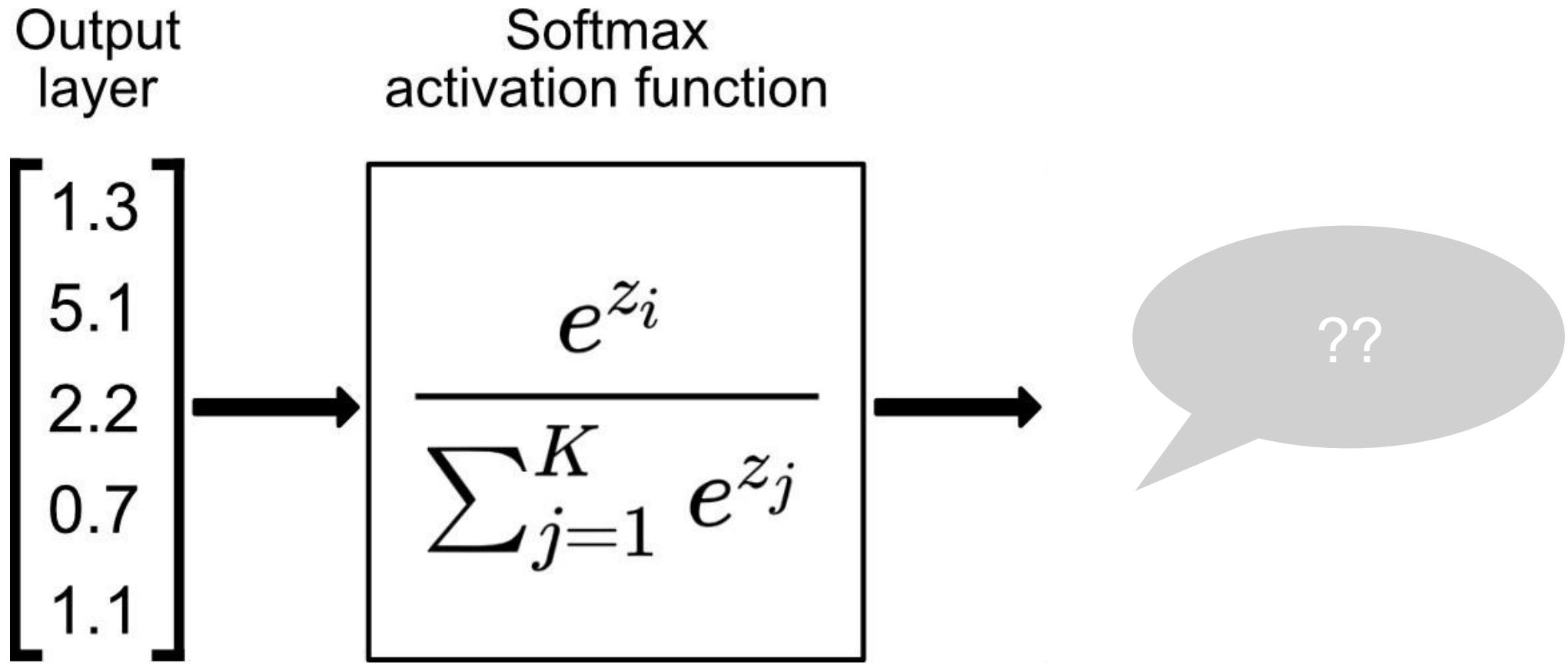
Turns outputs f into probabilities (sum up to 1 across K classes)



$$\begin{aligned} p(y|\mathbf{x}) &= \text{softmax}(f) \\ &= \frac{\exp(f_y(\mathbf{x}))}{\sum_{k=1}^K \exp(f_k(\mathbf{x}))} \end{aligned}$$

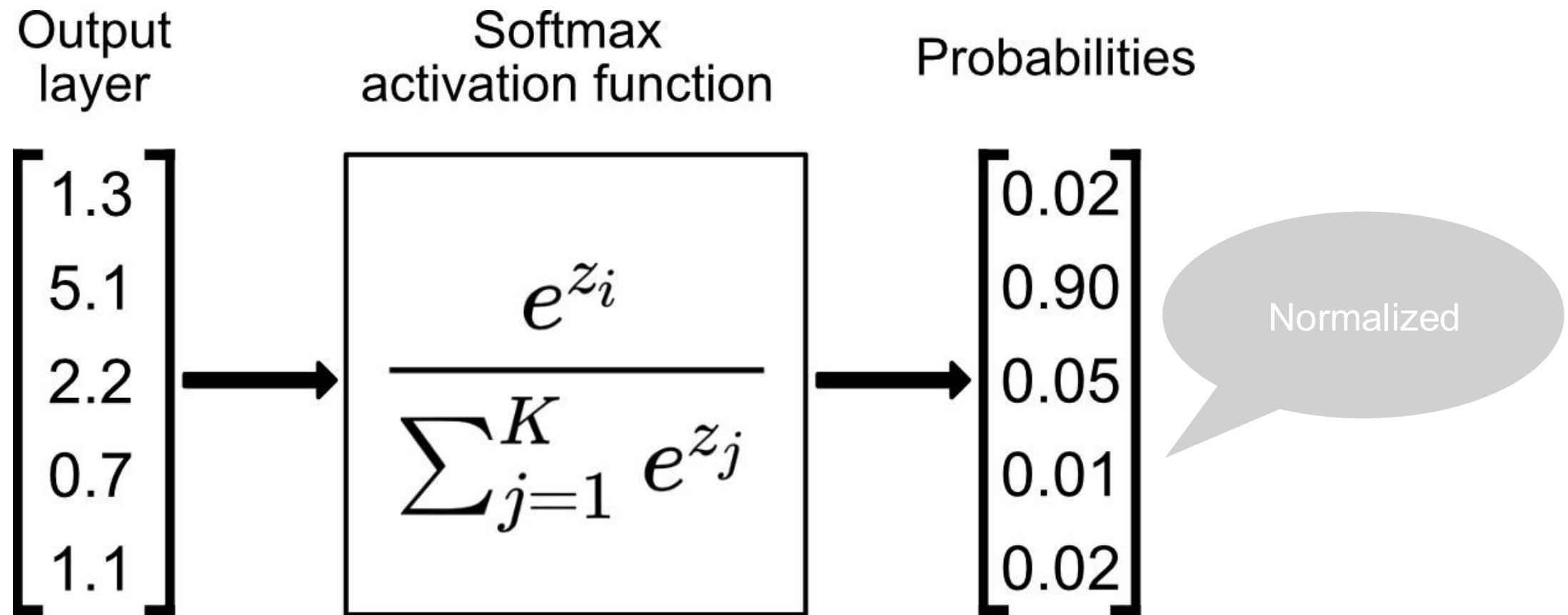
Softmax

Turns outputs f into probabilities (sum up to 1 across K classes)



Softmax

Turns outputs f into probabilities (sum up to 1 across K classes)



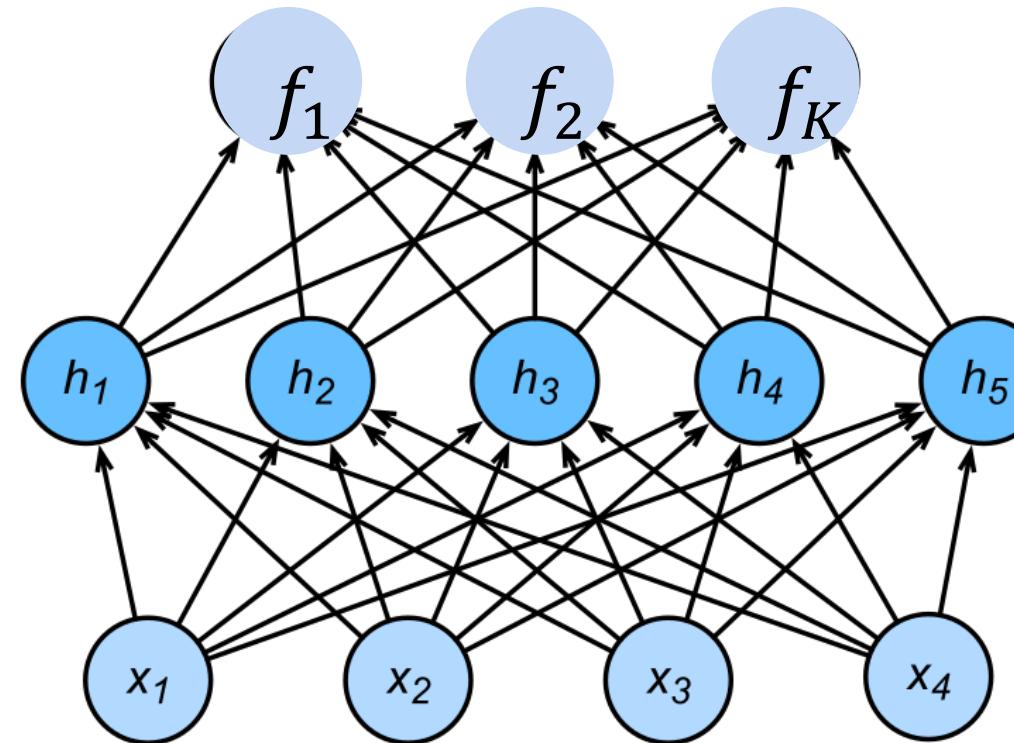
More complicated neural networks

$$p_1, p_2, \dots, p_K = \text{softmax}(f_1, f_2, \dots, f_K)$$

Output layer

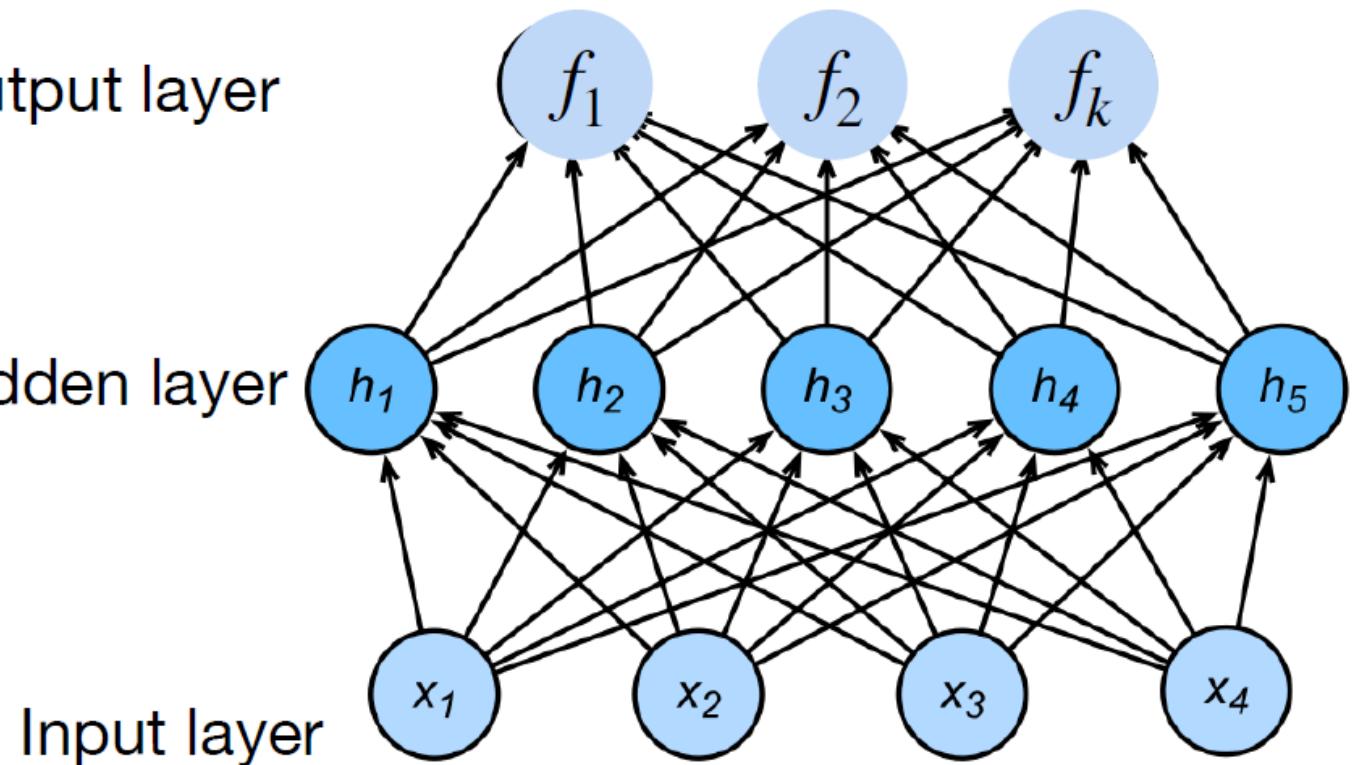
Hidden layer

Input layer



More complicated neural networks

- Input $\mathbf{x} \in \mathbb{R}^d$
- Hidden $\mathbf{W}^{(1)} \in \mathbb{R}^{m \times d}, \mathbf{b}^{(1)} \in \mathbb{R}^m$

$$\mathbf{h} = \sigma(\mathbf{W}^{(1)}\mathbf{x} + \mathbf{b}^{(1)})$$
$$\mathbf{f} = \mathbf{W}^{(2)}\mathbf{h} + \mathbf{b}^{(2)}$$
$$\mathbf{p} = \text{softmax}(\mathbf{f})$$
$$p_1, p_2, \dots, p_K = \text{softmax}(f_1, f_2, \dots, f_K)$$


More complicated neural networks: multiple hidden layers

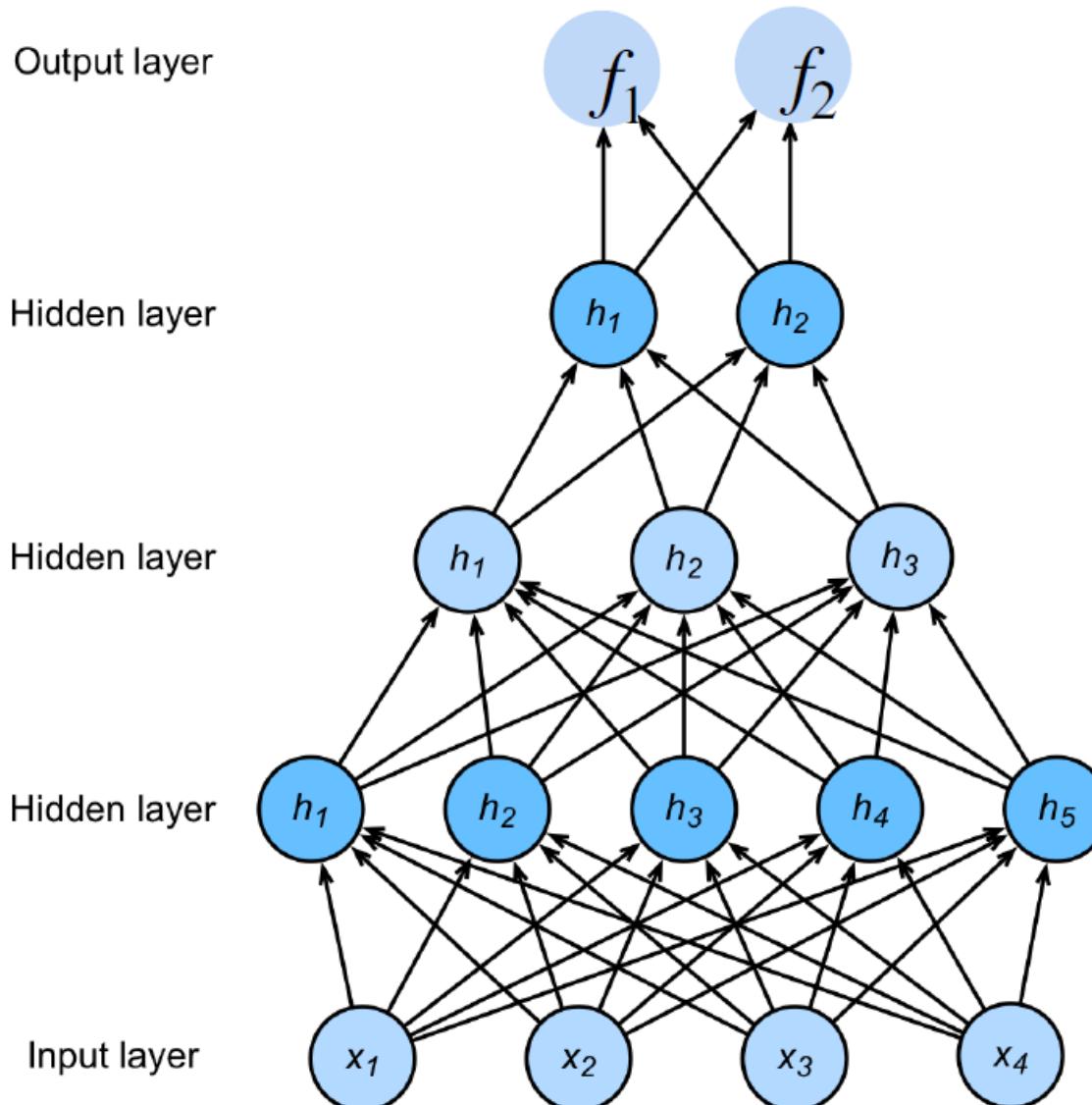
$$\mathbf{h}_1 = \sigma(\mathbf{W}^{(1)} \mathbf{x} + \mathbf{b}^{(1)})$$

$$\mathbf{h}_2 = \sigma(\mathbf{W}^{(2)} \mathbf{h}_1 + \mathbf{b}^{(2)})$$

$$\mathbf{h}_3 = \sigma(\mathbf{W}^{(3)} \mathbf{h}_2 + \mathbf{b}^{(3)})$$

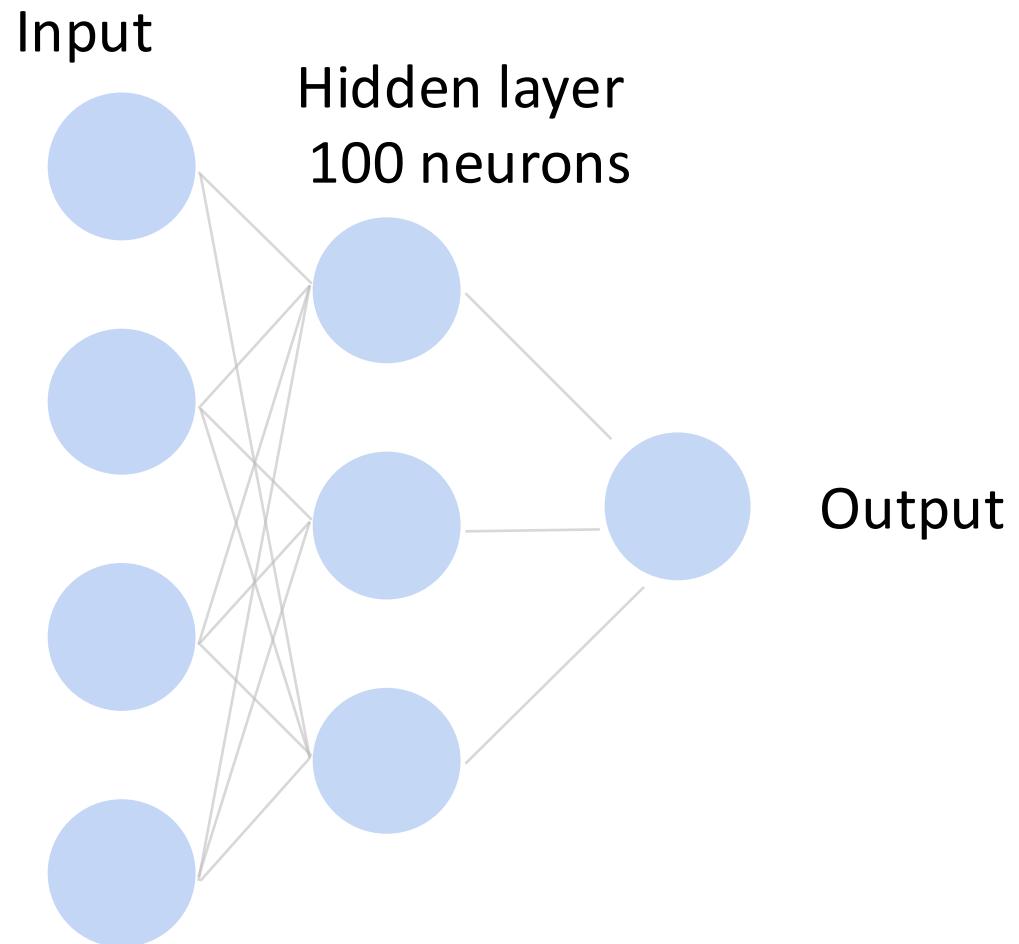
$$\mathbf{f} = \mathbf{W}^{(4)} \mathbf{h}_3 + \mathbf{b}^{(4)}$$

$$\mathbf{p} = \text{softmax}(\mathbf{f})$$



How to train a neural network?

Classify cats vs. dogs



How to train a neural network? Binary classification

$\mathbf{x} \in \mathbb{R}^d$ One training data point in the training set D

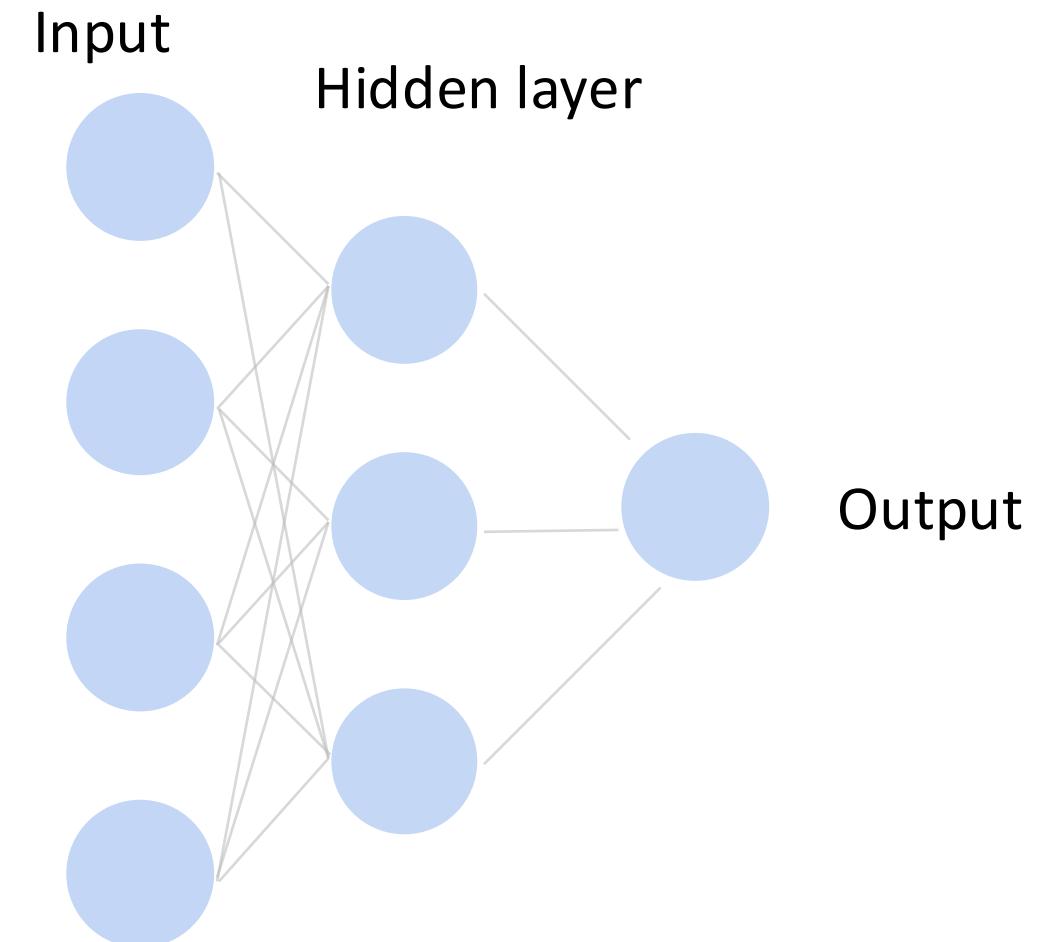
$\hat{y} \in [0,1]$ Model output for example \mathbf{x}

(This is a function of all weights W : $\hat{y} = g(W)$)

y Ground truth label for example \mathbf{x}

Learning by matching the output to the label

**We want $\hat{y} \rightarrow 1$ when $y = 1$,
and $\hat{y} \rightarrow 0$ when $y = 0$**



How to train a neural network? Binary classification

Loss function: $\frac{1}{|D|} \sum_{(\mathbf{x}, y) \in D} \ell(\mathbf{x}, y)$

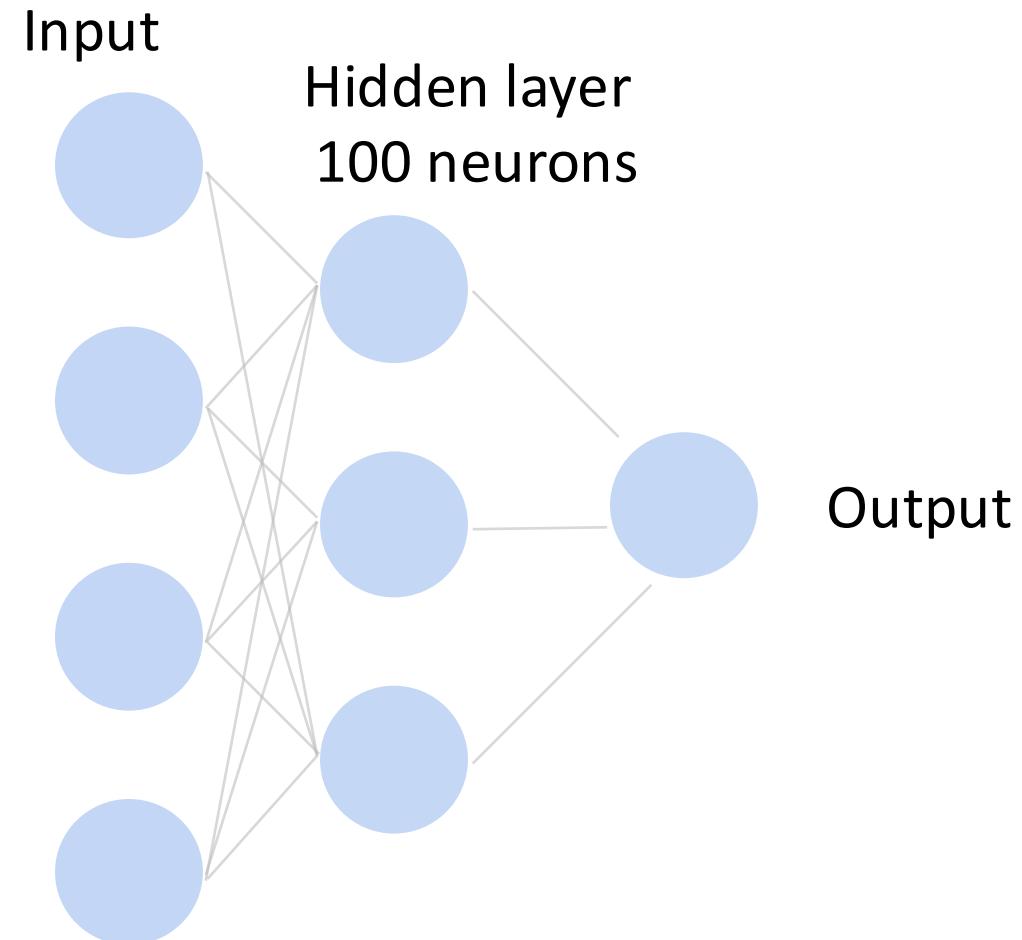
Per-sample loss:

$$\ell(\mathbf{x}, y) = -y \log(\hat{y}) - (1 - y) \log(1 - \hat{y})$$

Negative log likelihood

Also known as **binary cross-entropy loss**

- We'll use all the time for LLMs



How to train a neural network? Multiclass

Loss function: $\frac{1}{|D|} \sum_{(\mathbf{x}, y) \in D} \ell(\mathbf{x}, y)$

Per-sample loss:

$$\ell(\mathbf{x}, y) = \sum_{k=1}^K -Y_k \log p_k = -\log p_y$$

where Y is one-hot encoding of y

Also known as **cross-entropy loss** or **softmax loss**

