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Announcements

•Midterm: Weds. March 11th
•HW 1: Coming out next Thursday

•Resources
•https://www.deeplearningbook.org/ : Solid intro to DL

•Class roadmap:

Thursday Jan. 20 Deep Learning II

Tuesday Feb. 3 Self-Supervised Learning

Thursday Feb. 5 Guest Lecture

Tuesday Feb. 10 Transformers and Attention I
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Outline

•Convolutional Neural Networks
•Motivation, convolutional layers, CNN architectures 
(mostly from last time)

•Sequence Models
•Recurrent neural networks, architecture, LSTMs, 
alternatives, training tricks

•Graph Models
•Data relationships, graph neural networks, graph 
convolutions
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How to classify 
Cats vs. dogs?

36M floats in a RGB 
image!



Cats vs. dogs?

~ 36M elements x 100 = ~3.6B parameters!

Output 

Hidden layer 
Input 

100 neurons

Fully Connected Networks (From Last Time)
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2-D Convolution
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Neural Networks: Convolution Layers

•Notation:
•X: nh x nw input matrix
•W: kh x kw kernel matrix 
•b : bias (a scalar)
•Y: () x () output matrix 

•As usual W, b are learnable parameters



Neural Networks: Convolution NNs

•Properties
• Input: volume ci x nh x nw (channels x height x width) 
•Hyperparameters: # of kernels/filters co, size kh x kw, stride sh x sw, 

zero padding ph x pw

•Output: volume co x mh x mw (channels x height x width)
•Parameters: kh x kw x ci per filter, total (kh x kw x ci) x co

Stanford CS 231n



Multiple Input Channels

• Have a kernel matrix for each channel, and then sum results 
over channels



Convolutional Layers: Channels

•How to integrate multiple channels?
•Have a kernel for each channel, and then sum results over channels

Tensor: generalization of matrix to higher dimensions

“Slices” of tensors



Multiple Output Channels

• No matter how many inputs channels, so far we always get 
single output channel

• We can have multiple 3-D kernels, each one generates an 
output channel 



Multiple Output Channels

• No matter how many inputs channels, so far we always get 
single output channel

• We can have multiple 3-D kernels, each one generates an 
output channel

• Input

• Kernels

• Output 



Multiple Input/Output Channels

• Each 3-D kernel may recognize a particular pattern

(Gabor 
filters)



Training a CNN

•Q: so we have a bunch of layers. How do we train?

•A: same as before. Apply softmax at the end, use backprop. 

softmax



CNN Architectures: AlexNet

•First of the major advancements: AlexNet

•Wins 2012 ImageNet competition

•Major trends: deeper, bigger LeNet



Evolution of CNNs

ImageNet competition (error rate)

Credit: Stanford CS 231n



Data Augmentation

Augmentation: transform + add new samples to dataset

•Transformations: based on domain

• Idea: build invariances into the model
•Ex: if all images have same alignment, model learns to use it

•Keep the label the same!



Data Augmentation: Examples

Examples of transformations for images
•Crop (and zoom)

•Color (change contrast/brightness)

•Rotations+ (translate, stretch, shear, etc)

Many more possibilities. Combine as well!

Q: how to deal with this at test time?

•A: transform, test, average



Break & Questions
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Tasks We Can Handle with NNs?

•Mostly talked about (1) so far
•Others: need a new kind of model



Neural Networks: Simple RNNs

•Classical RNN variant:

𝑠(𝑡−1) 𝑠(𝑡) 𝑠(𝑡+1)

𝑥(𝑡−1)
𝑥(𝑡) 𝑥(𝑡+1)

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑎(𝑡) = 𝑏 + 𝑊𝑠(𝑡−1) + 𝑈𝑥(𝑡) 

𝑠(𝑡) = tanh 𝑎 𝑡  

 𝑜(𝑡) = 𝑐 + 𝑉𝑠(𝑡)

 ො𝑦(𝑡) = softmax 𝑜 𝑡  

𝐿(𝑡) = CrossEntropy(𝑦 𝑡 , ො𝑦(𝑡)) 

𝑜(𝑡−1)
𝑜(𝑡) 𝑜(𝑡+1)

𝑉 𝑉 𝑉

𝐿(𝑡−1)
𝐿(𝑡) 𝐿(𝑡+1)

𝑦(𝑡−1)
𝑦(𝑡) 𝑦(𝑡+1)



•RNN: can write structure as:

•Long Short-Term Memory: deals with problem. Cell:

Neural Networks: LSTMs

Chris Olah



Neural Networks: Transformers

• Initial goal for an architecture: encoder-decoder
•Get rid of recurrence
•Replace with self-attention

•Architecture
•The famous picture you’ve seen
•Centered on self-attention blocks

Vaswani et al. ‘17
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Break & Questions



So far, all of our data consists of points
• Assume all are independent, “unrelated” in 

a sense

• Pretty common to have relationships 
between points
– Social networks: individuals related by friendship

– Biology/chemistry: bonds between compounds, 
molecules

– Citation networks: Scientific papers cite each 
other

Relationships in Data

Wiki



Graph Neural Networks: Motivations

•We’ll do this via “graph neural networks”

•Canonical dataset: citation networks. 
• Instances are scientific papers 
• Labels: subfield/genre
•Graphs: if a paper cites another, 
there’s an edge between them

Note: other features as well (text)

Leng



Graph Neural Networks: Approach

•Idea: want to use the graph information in our predictions. 

•Semi-supervised aspect: don’t need all the graph’s nodes 
to be labeled---use network to predict unlabeled nodes.
•We’ll see much more of this for foundation models!

•Traditional approach: GNNs keep hidden state at a node

Scarselli et al: “The graph neural network model”, 2009.

Node 
features

Edge 
features

Neighbor 
embedding at 
previous step

Node embedding 
at time step t



Improvements: Convolution GNNs

•How do we lift this convolution notion concept to graphs?

•Pixels: arranged as a very regular graph

•Want: allow more general configurations (less regular)

Zhou et al, Graph Neural Networks: A Review of Methods and Applications

Wu et al, A Comprehensive Survey on Graph Neural Networks



Have:

How should our new architecture look?
• Still want layers 

– linear transformation + non-linearity

• Now want to integrate neighbors

• Bottom: graph convolutional network

Graph Neural Networks (GCNs)

Parameters

Hidden Layer Representation 

Non-Linearity

Kipf and Welling: “Semi-Supervised Classification with Graph Convolutional Networks” Graph Mixing



Let’s examine the GCN architecture in more detail

Graph Convolutional Networks (GCN)

• Difference: “graph mixing” component

• At each layer, get representation at 
each node

• Combine node’s representation with 
neighboring nodes

• “Aggregate” and “Update” rules



Graph Convolutional Networks (GCNs)

•GCN two layer network has a very simple form:

Layer 1 
Weights

Layer 2 
Weights

Adjacency 
Matrix

Kipf and Welling: “Semi-Supervised Classification with Graph Convolutional Networks”
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