CS 639: Foundation Models
Transformers & Attention |

Fred Sala

University of Wisconsin-Madison

Feb. 10, 2026




Announcements

*Homework 1: delayed to this evening
*Bonus OH: Tomorrow (Weds) at 2:30-4:00 PM

*Resources

*https://jalammar.github.io/illustrated-transformer/ Very
nice resource for following along

*Class roadmap:

Thursday Feb. 12 Transformers and Attention Il

\

Tuesday Feb. 17 Architectures: Encoder-Only

Thursday Feb. 19 Architectures: Others
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Outline

°Basic Attention

*Notions of attention, self-attention, basic attention layer,
QKV setup and intuition

*Additional Elements
* Multi-head attention, positional encodings

*Transformers
* Architecture, encoder and decoder setups
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History of Attention

*Recall our RNN: all the information had to go in the state s
* A fixed-length context vector

a® =ph+WstD + yx®
s® = tanh(a®)
0® =c+Vs®
$® = softmax(o?)
@ @ L® = CrossEntropy (y?, $(®)




History of Attention

Basic motivation: what if the fixed length context vector
is not enough

*Why?
* Words depend on each other =
* Dependencies are complex
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Self-Attention: Motivation

Popularized from 2017 on...

*From bottom-up. Let’s design a basic layer.
* Intuition: dependencies within same sentence
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Building Layers

Recall how we built a convolutional layer
*We defined an operation (convolution)

*We decided how it should operate over the inputs (from
previous layer) to produce the layer’s outputs

*We’ll do the same to build an attention-based layer

*Input: vectors for words

Note: All visualizations are due to Jay Alammar

Excellent resource: https://jalammar.github.io/illustrated-transformer/



Word Embeddings

Terminology: related to representations

*Embeddings: fixed-dimensional vector for each word in our
vocabulary

* Really, for each “token”. First we’ll run a tokenizer to split up raw text
into tokens, then we’ll grab the embedding for each token

* Word2Vec: word co-occurrences €2 embedding distances
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Self-Attention: Goals and Inputs

From bottom-up. Let’s design a basic layer.

*Two criteria

* Transform incoming word vectors,
* Enable interactions between words

*Input: vectors for words




Self-Attention: Retrieval Intuition

*How should we design the interactions?
* Analogy: search
“Which restaurants near me are open at 9:00 pm?”
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Self-Attention: Query, Key, Value Vectors

* Transform incoming word vectors,
* Enable interactions between words

* Get our query, value vectors via weight matrices: linear
transformations! Input
Embedding LT T[] [T T 1]
Objects: Queries o+ [T a1
Query
Keys [TT1] [T 1]
Value

Values D:l:‘ D:':I



Self-Attention: Score Functions

Have query, value vectors
* Next, get our score

Q1

\ J \ J

Query

I

Score 0.3

* Lots of things we could do --- simpler is usually better!
* Dot product qq* 2 =

* Then we’ll do softmax



Self-Attention: Scoring and Scaling

* Transform incoming word vectors,
* Enable interactions between words

* Get our query, value vectors via weight

matrices: linear transformations! input
* Compute scores
Embedding
Objects: Queries
Keys
Query
Values

Value




Self-Attention: Putting it Together

* Have query, value vectors via
weight matrices: linear
transformations!

* Have softmax score outputs (focus)
* Add up the values!
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Self-Attention: Matrix Formulas

* Have query, value vectors via weight matrices: linear transformations!
* Have softmax score outputs (focus)
* Add up the values!

Objects: Q — XWQ; — X : V = XWV

Query

Value

. e T)
Attention (@), /1, V) = softmax ( V

IVQ T
Attention(Q, /1, V) = softmax (X — XT) vV



Break & Questions



Outline

*Additional Elements
* Multi-head attention, positional encodings



Self-Attention: Multi-head

This is great but will we capture everything in one?
* Do we use just 1 kernel in CNNs? No!
* Do it many times in parallel: multi-headed attention. Concatenate outputs



Self-Attention: Positional Encodings

Almost have a full layer designed.
* One annoying issue: so far, order of words (position) doesn’t matter!
* Solution: add positional encodings

PFE (pos,2iy = sin(pos/ 100002/ ol
PE(pos,2i+1) = cos(pos /100002 dmesr)
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Self-Attention: Positional Encodings

PE (pos,2iy = sin(pos/ 100002%/ Aol
PFE(pos,2i+1) = cos(pos/ 1()()()02i/dmode1)

Why these mysterious formulas? Want properties:

* Consistent encoding
* Smooth

* Linearity across positions

* Alternating sin and cos: can multiply by rotation matrix to
obtain shifts

https://huggingface.co/blog/designing-positional-encoding



Self-Attention: Modern Positional Encodings

These sinusoidal embeddings were defined in the original
Transformers paper,

» Added once (as we saw) prior to the first layer

Many new variants of positional encodings that behave
slightly differently

252
* Example: multiplicative instead of additive chased
* Popular: Rotary Positional Encoding (RoPE)

* Note: perform in every attention layer

m
-0.019

https://huggingface.co/blog/designing-positional-encoding



Break & Questions
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*Transformers
* Architecture, encoder and decoder setups



Transformers: Model Architecture

*Initial goal for an architecture: encoder-decoder

* Get rid of recurrence
* Replace with self-attention
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Transformers: Architecture

*Sequence-sequence model with stacked encoders/decoders:
* For example, for French-English translation:

am a student
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Transformers: Architecture

*Sequence-sequence model with stacked encoders/decoders:
* What’s inside each encoder/decoder unit?

* Focus encoder first: pretty simple! 2 components:
* Self-attention block
* Fully-connected layers (i.e., an MLP)
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Transformers: Inside an Encoder

*Let’s take a look at the encoder. Two components:
e 1. Self-attention layer (covered this)
*2. “Independent” feedforward nets
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Transformers: More Tricks

*Recall a big innovation for ResNets: residual connections
* And also layer normalizations
* Apply to our encoder layers
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Transformers: Inside a Decoder

*Let’s take a look at the decoder. Three components:
e 1. Self-attention layer (covered this)
2. Encoder-decoder attention (same, but K, V come from encoder)
*3. “Independent” feedforward nets

t

Feed Forward J

4

Encoder-Decoder Attention

4

Self-Attention

1.

Yo YR

_




Transformers: Last Layers

*Next let’s look at the end. Similar to a CNN,

Which word in our vocabulary

*1. Linear Iayer is associated with this index? alil
*2. Softmax

Get the index of the cell
with the highest value

(argmax)
o log_probs HEN J4"J [TTTTTTTTITT) [ .
Get probabilities of s
Words ( Softmax )
*
logits 1 1 I I I O I o
0 12345 . vocab_size
*
( Linear )
*

Decoder stack output L1



Transformers: Putting it All Together

\What does the full architecture look like?
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Transformers: The Rest

*Next time: we’ll talk about
* How to use it (i.e., outputs)
* How to train it
* How to rip it apart and build other models with it.
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