CS 639: Foundation Models
Transformers & Attention |

Fred Sala

University of Wisconsin-Madison

Feb. 10, 2026

Announcements

*Homework 1: delayed to this evening
*Bonus OH: Tomorrow (Weds) at 2:30-4:00 PM

*Resources

*https://jalammar.github.io/illustrated-transformer/ Very
nice resource for following along

*Class roadmap:

Thursday Feb. 12 Transformers and Attention Il

\

Tuesday Feb. 17 Architectures: Encoder-Only

Thursday Feb. 19 Architectures: Others

YaJy pue SiN4 Hels

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Outline

°Basic Attention

*Notions of attention, self-attention, basic attention layer,
QKV setup and intuition

*Additional Elements
* Multi-head attention, positional encodings

*Transformers
* Architecture, encoder and decoder setups

Outline

°Basic Attention

*Notions of attention, self-attention, basic attention layer,
QKV setup and intuition

History of Attention

*Recall our RNN: all the information had to go in the state s
* A fixed-length context vector

a® =ph+WstD + yx®
s® = tanh(a®)
0® =c+Vs®
$® = softmax(o?)
@ @ L® = CrossEntropy (y?, $(®)

History of Attention

Basic motivation: what if the fixed length context vector
is not enough

*Why?
* Words depend on each other =
* Dependencies are complex

agreement

on
European
Economic
Area
was
signed

in
August
1992
<end>

the

Zone

*Need: mechanism to help model economique

européenne

focus on the right “part” 2
été
signé

Lots of approaches from 2014 on en

aolt

* Bahdanau et al, 2014 1992

<end>

Bahdanau et al, 2014

Self-Attention: Motivation

Popularized from 2017 on...

*From bottom-up. Let’s design a basic layer.
* Intuition: dependencies within same sentence

The
The
The
The

The
The
The
The
The

The FBI is chasing a criminal on the run .

FBI is chasing a criminal on the run .

BEBI is chasing a criminal on the run .

FBI
FBI

FBI
FBI
FBI
FBI
FBI

18
1S
18
1S
1S
1S

1S

chasing a criminal on the run .
chasing a criminal on the run .

chasing a criminal on the run .
chasing a criminal on the run.

chasing a criminal em the run.

chasing @ criminal em the run.

chasing a criminal on the mn .

Chenget al, 2016

Layer. 5 § Attention:

The_
animal_
didn_

t

Cross_
the_
street_
because_

it_

was
tOO_
tire

Jay Alammar

d

Input - Input

A
\ 4

The_
animal_
didn_

t

Cross_
the_
street_
because_
it

was

too

tire
d

Building Layers

Recall how we built a convolutional layer
*We defined an operation (convolution)

*We decided how it should operate over the inputs (from
previous layer) to produce the layer’s outputs

*We’ll do the same to build an attention-based layer

*Input: vectors for words

Note: All visualizations are due to Jay Alammar

Excellent resource: https://jalammar.github.io/illustrated-transformer/

Word Embeddings

Terminology: related to representations

*Embeddings: fixed-dimensional vector for each word in our
vocabulary

* Really, for each “token”. First we’ll run a tokenizer to split up raw text
into tokens, then we’ll grab the embedding for each token

* Word2Vec: word co-occurrences €2 embedding distances

financigl (’w "'tb?.?’f term ;&m‘éﬂ r me.etlf?gt gD
|
scfﬂsgl'é'a& prgjesdyy holg heaghited
sqg. investment Ongon‘:lnt'k’ offic wgg fndnrrc% leave
e G g e R
Fepos. anw nt reS.t % chig joip internationg|
uk te
accorgshag prbg%?o annOUﬁ * alsop role a? back
market ock stro é appear mag ahead
Mgp ngap levg rec hragte” woman point nat gﬁglamg ‘d
ei a
S ﬁgurgUr vg i ﬁan‘tel ger
profgD I expect although gﬁlmﬁf leagt - e -
%‘? quartSEEn awarg 9ood withip “quyﬁ m C iggf
. ’ mdtecembe&mjwt; show MOVIE nam prﬁg ncg
aimitign %mger
H'sductlog soutg featurgso ff?era)rmadggerwer‘(end E}olympc»m“ a«;&m
es
Ist anl‘i)e lcagoes mc’;’ﬁ past Ieag Gt)sundax
um
aunc) igeaddy P UURY G g bacg pea

Self-Attention: Goals and Inputs

From bottom-up. Let’s design a basic layer.

*Two criteria

* Transform incoming word vectors,
* Enable interactions between words

*Input: vectors for words

Self-Attention: Retrieval Intuition

*How should we design the interactions?
* Analogy: search
“Which restaurants near me are open at 9:00 pm?”

\) \)
| 1
Query Value
\)

Obijects: '
Score 0.3

Query

Value Ft P R
Score 0.7 - A

-

Self-Attention: Query, Key, Value Vectors

* Transform incoming word vectors,
* Enable interactions between words

* Get our query, value vectors via weight matrices: linear
transformations! Input
Embedding LT T[] [T T 1]
Objects: Queries o+ [T a1
Query
Keys [TT1] [T 1]
Value

Values D:l:‘ D:':I

Self-Attention: Score Functions

Have query, value vectors
* Next, get our score

Q1

\ J \ J

Query

I

Score 0.3

* Lots of things we could do --- simpler is usually better!
* Dot product qq* 2 =

* Then we’ll do softmax

Self-Attention: Scoring and Scaling

* Transform incoming word vectors,
* Enable interactions between words

* Get our query, value vectors via weight

matrices: linear transformations! input
* Compute scores
Embedding
Objects: Queries
Keys
Query
Values

Value

Self-Attention: Putting it Together

* Have query, value vectors via
weight matrices: linear
transformations!

* Have softmax score outputs (focus)
* Add up the values!

Objects:

Query

Value

Input

Embedding
Queries
Keys
Values
Score

Divide by 8 (Vd;.)

g1

qr *

q. [T
[T 1]
L[]

g ka2 =

Self-Attention: Matrix Formulas

* Have query, value vectors via weight matrices: linear transformations!
* Have softmax score outputs (focus)
* Add up the values!

Objects: Q — XWQ; — X : V = XWV

Query

Value

. e T)
Attention (@), /1, V) = softmax (V

IVQ T
Attention(Q, /1, V) = softmax (X — XT) vV

Break & Questions

Outline

*Additional Elements
* Multi-head attention, positional encodings

Self-Attention: Multi-head

This is great but will we capture everything in one?
* Do we use just 1 kernel in CNNs? No!
* Do it many times in parallel: multi-headed attention. Concatenate outputs

Self-Attention: Positional Encodings

Almost have a full layer designed.
* One annoying issue: so far, order of words (position) doesn’t matter!
* Solution: add positional encodings

PFE (pos,2iy = sin(pos/ 100002/ ol
PE(pos,2i+1) = cos(pos /100002 dmesr)

.
ocation |ndex POSITIONAL 1 1 084 [XUGE 054 1 (XTI 0.0002| -0.42 [
ENCODING

- - -

EMBEDDINGS LI LT] HER [[]

INPUT

Self-Attention: Positional Encodings

PE (pos,2iy = sin(pos/ 100002%/ Aol
PFE(pos,2i+1) = cos(pos/ 1()()()02i/dmode1)

Why these mysterious formulas? Want properties:

* Consistent encoding
* Smooth

* Linearity across positions

* Alternating sin and cos: can multiply by rotation matrix to
obtain shifts

https://huggingface.co/blog/designing-positional-encoding

Self-Attention: Modern Positional Encodings

These sinusoidal embeddings were defined in the original
Transformers paper,

» Added once (as we saw) prior to the first layer

Many new variants of positional encodings that behave
slightly differently

252
* Example: multiplicative instead of additive chased
* Popular: Rotary Positional Encoding (RoPE)

* Note: perform in every attention layer

m
-0.019

https://huggingface.co/blog/designing-positional-encoding

Break & Questions

Outline

*Transformers
* Architecture, encoder and decoder setups

Transformers: Model Architecture

*Initial goal for an architecture: encoder-decoder

* Get rid of recurrence
* Replace with self-attention

—

(
Add & Norm

\
Feed
Forward

l’ﬂ‘ $ov2 o
J |

22
Probabiities

Linear

g N
l Add & Norm I‘-\

Feed
Forward

I

Multi-Head
Attention

2

Add & Norm

. N> Add & Norm -
* Architecture CEe| ([
Attention Attention
* You may have seen this picture = e W e =i
* Centered on self-attention blocks ot (O L@ posiion

Vaswani et al. ‘17

Input
Embedding

Transformers: Architecture

*Sequence-sequence model with stacked encoders/decoders:
* For example, for French-English translation:

am a student

3

(r A r 3)
ENCODER o DECODER
\ J \ J
i 4
s ~ r B
ENCODER DECODER
\, J \ J
5 A
a) 8 Y
ENCODER DECODER
. J \ J
[y L)
4 B r)
ENCODER DECODER
\ J \ J
4 4
s ~ - 1
ENCODER DECODER
\ J \ J
4 4
4) a 3
ENCODER DECODER
. J \ J
4 g,

Transformers: Architecture

*Sequence-sequence model with stacked encoders/decoders:
* What’s inside each encoder/decoder unit?

* Focus encoder first: pretty simple! 2 components:
* Self-attention block
* Fully-connected layers (i.e., an MLP)

t t

Feed Forward J

2

t

Feed Forward]

A —

Encoder-Decoder Attention J

Self-Attention

Y)
—J
}
()

N[N7 N

Self-Attention

t t t

Transformers: Inside an Encoder

*Let’s take a look at the encoder. Two components:
e 1. Self-attention layer (covered this)
*2. “Independent” feedforward nets

t t
[]
Feed Forward Feed Forwar: d
Neural Network Neural Network
t t
| .
t t
[Self-Attention]
t t

Transformers: More Tricks

*Recall a big innovation for ResNets: residual connections
* And also layer normalizations
* Apply to our encoder layers

¢ %

,-b(Add & Normalize)
: B B
. (Feed Forward) (Feed Forward)
AR ——— A-----cccccccccnannn A
,-p(Add & Normalize)
: B B
E (Self-Attention)
F’Eﬁ?&%ﬁ‘ﬁé(l) (1)
x1 [x2 [

Thinking Machines

Transformers: Inside a Decoder

*Let’s take a look at the decoder. Three components:
e 1. Self-attention layer (covered this)
2. Encoder-decoder attention (same, but K, V come from encoder)
*3. “Independent” feedforward nets

t

Feed Forward J

4

Encoder-Decoder Attention

4

Self-Attention

1.

Yo YR

_

Transformers: Last Layers

*Next let’s look at the end. Similar to a CNN,

Which word in our vocabulary

*1. Linear Iayer is associated with this index? alil
*2. Softmax

Get the index of the cell
with the highest value

(argmax)
o log_probs HEN J4"J [TTTTTTTTITT) [.
Get probabilities of s
Words (Softmax)
*
logits 1 1 I I I O I o
0 12345 . vocab_size
*
(Linear)
*

Decoder stack output L1

Transformers: Putting it All Together

\What does the full architecture look like?

]

'

['

' 1]

1 '

» R e e e el e e e e e e AT AT

POSITIONAL
ENCODING

x [T T 1] [T 1]

Thinking Machines

Transformers: The Rest

*Next time: we’ll talk about
* How to use it (i.e., outputs)
* How to train it
* How to rip it apart and build other models with it.

	Slide 1: CS 639: Foundation Models Transformers & Attention I
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: History of Attention
	Slide 6: History of Attention
	Slide 7: Self-Attention: Motivation
	Slide 8: Building Layers
	Slide 9: Word Embeddings
	Slide 10: Self-Attention: Goals and Inputs
	Slide 11: Self-Attention: Retrieval Intuition
	Slide 12: Self-Attention: Query, Key, Value Vectors
	Slide 13: Self-Attention: Score Functions
	Slide 14: Self-Attention: Scoring and Scaling
	Slide 15: Self-Attention: Putting it Together
	Slide 16: Self-Attention: Matrix Formulas
	Slide 17: Break & Questions
	Slide 18: Outline
	Slide 19: Self-Attention: Multi-head
	Slide 20: Self-Attention: Positional Encodings
	Slide 21: Self-Attention: Positional Encodings
	Slide 22: Self-Attention: Modern Positional Encodings
	Slide 23: Break & Questions
	Slide 24: Outline
	Slide 25: Transformers: Model Architecture
	Slide 26: Transformers: Architecture
	Slide 27: Transformers: Architecture
	Slide 28: Transformers: Inside an Encoder
	Slide 29: Transformers: More Tricks
	Slide 30: Transformers: Inside a Decoder
	Slide 31: Transformers: Last Layers
	Slide 32: Transformers: Putting it All Together
	Slide 33: Transformers: The Rest

