
CS 639: Foundation Models
Transformers & Attention I

Fred Sala

University of Wisconsin-Madison

Feb. 12, 2026

Announcements

•Homework 1: out!
•Due 2 weeks from release

•Resources
•https://jalammar.github.io/illustrated-transformer/ Very
nice resource for following along

•Class roadmap:

Thursday Feb. 12 Transformers and Attention II

Tuesday Feb. 17 Architectures: Encoder-Only

Thursday Feb. 19 Architectures: Others

Tuesday Feb. 24 Attention Variants

LLM
s, FM

s an
d

 A
rch

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Outline

•Review From Last Time Basic Attention
•Self-attention, basic attention layer, QKV setup and
intuition

•Additional Elements
•Multi-head attention, positional encodings

•Full architecture
•Encoder layer, decoder layer, full original Transformer
architecture (2017)

Outline

•Review From Last Time Basic Attention
•Self-attention, basic attention layer, QKV setup and
intuition

•Additional Elements
•Multi-head attention, positional encodings

•Full architecture
•Encoder layer, decoder layer, full original Transformer
architecture (2017)

Building Layers

Recall how we built a convolutional layer

•We defined an operation (convolution)

•We decided how it should operate over the inputs (from
previous layer) to produce the layer’s outputs

•We’ll do the same to build an attention-based layer

•Input: vectors for words

Note: All visualizations are due to Jay Alammar

Excellent resource: https://jalammar.github.io/illustrated-transformer/

Self-Attention: Goals and Inputs

From bottom-up. Let’s design a basic layer.

•Two criteria
•Transform incoming word vectors,
•Enable interactions between words

• Input: vectors for words

Self-Attention: Retrieval Intuition

•How should we design the interactions?
•Analogy: search
“Which restaurants near me are open at 9:00 pm?”

Query Key

Score 0.3

Value

Score 0.7

Objects:

Query
Key
Value

Self-Attention: Query, Key, Value Vectors

•Transform incoming word vectors,
•Enable interactions between words

• Get our query, key, value vectors via weight matrices: linear
transformations!

Objects:

Query
Key
Value

Self-Attention: Score Functions

Have query, key, value vectors

• Next, get our score

• Lots of things we could do --- simpler is usually better!

• Dot product

• Then we’ll do softmax

Query Key

Score 0.3

Self-Attention: Scoring and Scaling

•Transform incoming word vectors,
•Enable interactions between words

• Get our query, key, value vectors via weight
matrices: linear transformations!

• Compute scores

Objects:

Query
Key
Value

Self-Attention: Putting it Together

• Have query, key, value vectors via
weight matrices: linear
transformations!

• Have softmax score outputs (focus)

• Add up the values!

Objects:

Query
Key
Value

Self-Attention: Matrix Formulas

• Have query, key, value vectors via weight matrices: linear transformations!

• Have softmax score outputs (focus)

• Add up the values!

Objects:

Query
Key
Value

Note: softmax is applied to the
rows of this matrix!

Break & Questions

Outline

•Review From Last Time Basic Attention
•Self-attention, basic attention layer, QKV setup and
intuition

•Additional Elements
•Multi-head attention, positional encodings

•Full architecture
•Encoder layer, decoder layer, full original Transformer
architecture (2017)

Self-Attention: Multi-head

This is great but will we capture everything in one?

• Do we use just 1 kernel in CNNs? No!

• Do it many times in parallel: multi-headed attention. Concatenate outputs

Self-Attention: Positional Encodings

Almost have a full layer designed.

• One annoying issue: so far, order of words (position) doesn’t matter!

• Solution: add positional encodings

Location index

Self-Attention: Positional Encodings

Why these mysterious formulas? Want properties:

• Consistent encoding

• Smooth

• Linearity across positions
• Alternating sin and cos: can multiply by rotation matrix to

obtain shifts

https://huggingface.co/blog/designing-positional-encoding

These sinusoidal embeddings were defined in the original
Transformers paper,

• Added once (as we saw) prior to the first layer

Many new variants of positional encodings that behave
slightly differently

• Example: multiplicative instead of additive

• Popular: Rotary Positional Encoding (RoPE)

• Note: perform in every attention layer

Self-Attention: Modern Positional Encodings

https://huggingface.co/blog/designing-positional-encoding

Break & Questions

Outline

•Review From Last Time Basic Attention
•Self-attention, basic attention layer, QKV setup and
intuition

•Additional Elements
•Multi-head attention, positional encodings

•Full architecture
•Encoder layer, decoder layer, full original Transformer
architecture (2017)

Vaswani et al. ‘17

Transformers: Model Architecture

• Initial goal for an architecture: encoder-decoder
•Get rid of recurrence
•Replace with self-attention

•Architecture
•You may have seen this picture
•Centered on self-attention blocks

Interlude: Encoder-Decoder Models

•Translation tasks: natural encoder-decoder architecture

• Intuition:

Transformers: Architecture

•Sequence-sequence model with stacked encoders/decoders:
•For example, for French-English translation:

Transformers: Architecture

•Sequence-sequence model with stacked encoders/decoders:
•What’s inside each encoder/decoder unit?

•Focus encoder first: pretty simple! 2 components:
• Self-attention block

• Fully-connected layers (i.e., an MLP)

Transformers: Inside an Encoder

•Let’s take a look at the encoder. Two components:
•1. Self-attention layer (covered this)
•2. “Independent” feedforward nets

• Note: same MLP (often 2-layer) at every position

Transformers: More Tricks

•Recall a big innovation for ResNets: residual connections
•And also layer normalizations
•Apply to our encoder layers

Transformers: Inside a Decoder

•Let’s take a look at the decoder. Three components:
•1. Self-attention layer (covered this)
•2. Encoder-decoder attention (same, but K, V come from encoder)
•3. “Independent” feedforward nets

Transformers: Cross-Attention

•Why encoder-decoder attention ?
•Recall: same as before, but K, V come from encoder
•Actually more traditional, but… intuition:

• Key term 1
• Key term 2
• Key term 3
• Key term 4…

Transformers: Decoder Masking

•One more interesting bit!
•At the decoder level, self-attention changes a bit:
•Masked instead: block future words from being attended to

• Sorta obvious for inference (test-time), but important in training
• How to mask? Add −∞ before softmax

Transformers: Last Layers

•Next let’s look at the end. Similar to a CNN,

•1. Linear layer
•2. Softmax

Get probabilities of
words

Transformers: Putting it All Together

•What does the full architecture look like?

Transformers: Training

•Data: standard datasets (WMT English-German)
•Note: supervised task. Soon: switch to self-supervised
•~5 million pairs of sentences for this dataset
•Training procedure not special: cross-entropy loss, Adam optimizer

Transformers: The Rest

•Next time: we’ll talk about
•How to use it (i.e., outputs)
•How to train it in various other ways (not supervised!)
•How to rip it apart and build other models with it.

	Slide 1: CS 639: Foundation Models Transformers & Attention I
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: Building Layers
	Slide 6: Self-Attention: Goals and Inputs
	Slide 7: Self-Attention: Retrieval Intuition
	Slide 8: Self-Attention: Query, Key, Value Vectors
	Slide 9: Self-Attention: Score Functions
	Slide 10: Self-Attention: Scoring and Scaling
	Slide 11: Self-Attention: Putting it Together
	Slide 12: Self-Attention: Matrix Formulas
	Slide 13: Break & Questions
	Slide 14: Outline
	Slide 15: Self-Attention: Multi-head
	Slide 16: Self-Attention: Positional Encodings
	Slide 17: Self-Attention: Positional Encodings
	Slide 18: Self-Attention: Modern Positional Encodings
	Slide 19: Break & Questions
	Slide 20: Outline
	Slide 21: Transformers: Model Architecture
	Slide 22: Interlude: Encoder-Decoder Models
	Slide 23: Transformers: Architecture
	Slide 24: Transformers: Architecture
	Slide 25: Transformers: Inside an Encoder
	Slide 26: Transformers: More Tricks
	Slide 27: Transformers: Inside a Decoder
	Slide 28: Transformers: Cross-Attention
	Slide 29: Transformers: Decoder Masking
	Slide 30: Transformers: Last Layers
	Slide 31: Transformers: Putting it All Together
	Slide 32: Transformers: Training
	Slide 33: Transformers: The Rest

