

CS 639: Foundation Models **Transformers & Attention I**

Fred Sala

University of Wisconsin-Madison

Feb. 12, 2026

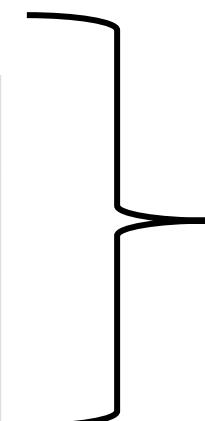
Announcements

- **Homework 1: out!**
 - Due 2 weeks from release

- **Resources**

- <https://jalammar.github.io/illustrated-transformer/> Very nice resource for following along
- Class roadmap:

Thursday Feb. 12	Transformers and Attention II
Tuesday Feb. 17	Architectures: Encoder-Only
Thursday Feb. 19	Architectures: Others
Tuesday Feb. 24	Attention Variants



Outline

- **Review From Last Time Basic Attention**
 - Self-attention, basic attention layer, QKV setup and intuition
- **Additional Elements**
 - Multi-head attention, positional encodings
- **Full architecture**
 - Encoder layer, decoder layer, full original Transformer architecture (2017)

Outline

- **Review From Last Time Basic Attention**
 - Self-attention, basic attention layer, QKV setup and intuition
- **Additional Elements**
 - Multi-head attention, positional encodings
- **Full architecture**
 - Encoder layer, decoder layer, full original Transformer architecture (2017)

Building Layers

Recall how we built a convolutional layer

- We defined an operation (**convolution**)
- We decided how it should operate over the inputs (from previous layer) to produce the layer's outputs
- We'll do the same to build an attention-based layer

- **Input:** vectors for words

Note: All visualizations are due to Jay Alammar

Self-Attention: Goals and Inputs

From bottom-up. Let's design a basic layer.

- Two criteria
 - *Transform* incoming word vectors,
 - Enable *interactions* between words
- Input: vectors for words

Self-Attention: Retrieval Intuition

- How should we design the interactions?

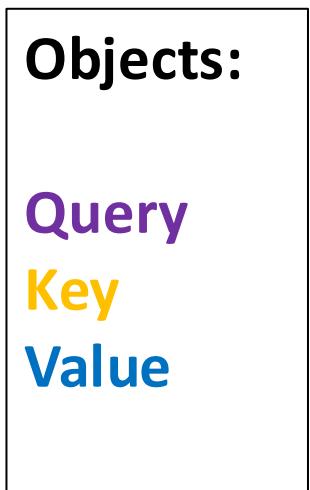
- Analogy: **search**

“Which restaurants near me are open at 9:00 pm?”

Query

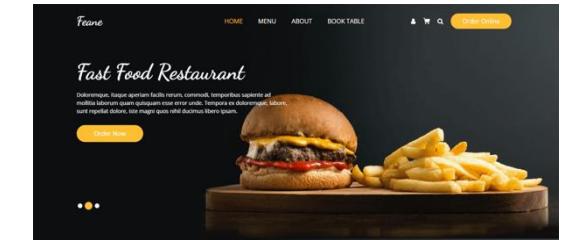
Key

Value



Score 0.3

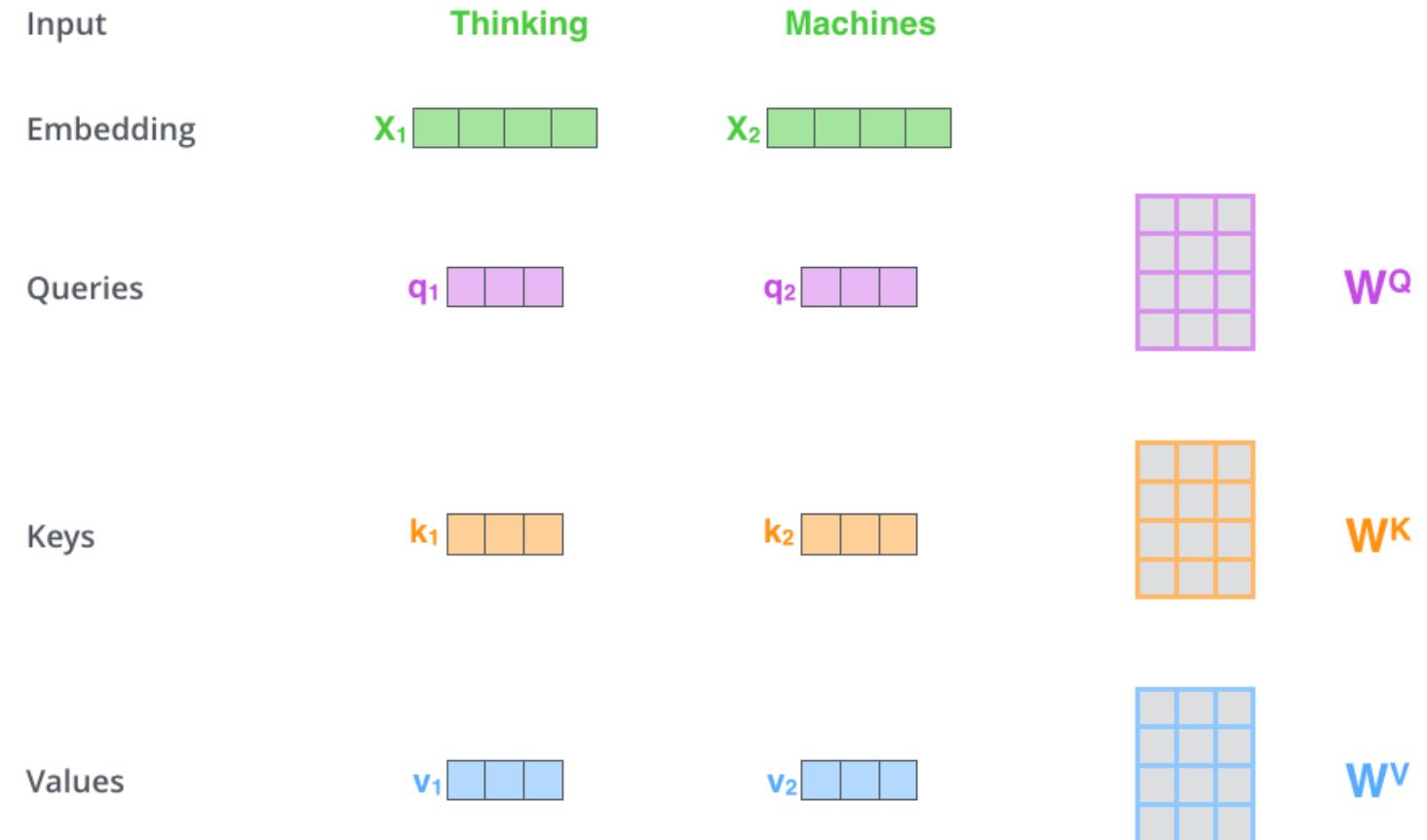
Score 0.7



Self-Attention: Query, Key, Value Vectors

- *Transform* incoming word vectors,
- Enable *interactions* between words
- Get our **query**, **key**, **value** vectors via weight matrices: linear transformations!

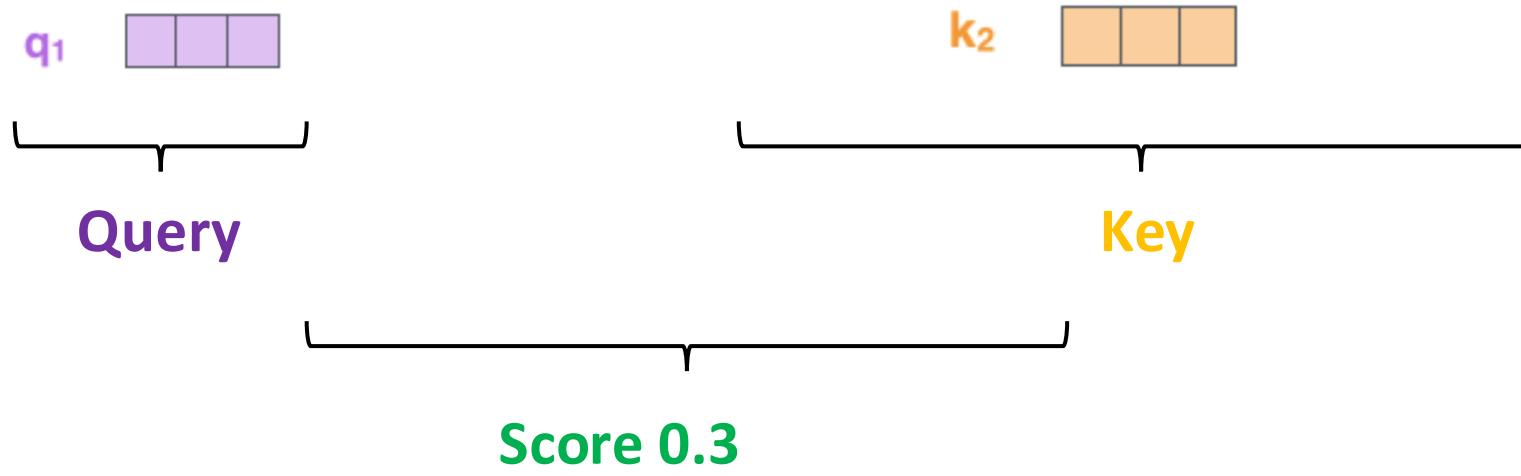
Objects:
Query
Key
Value



Self-Attention: Score Functions

Have **query**, **key**, **value** vectors

- Next, get our **score**



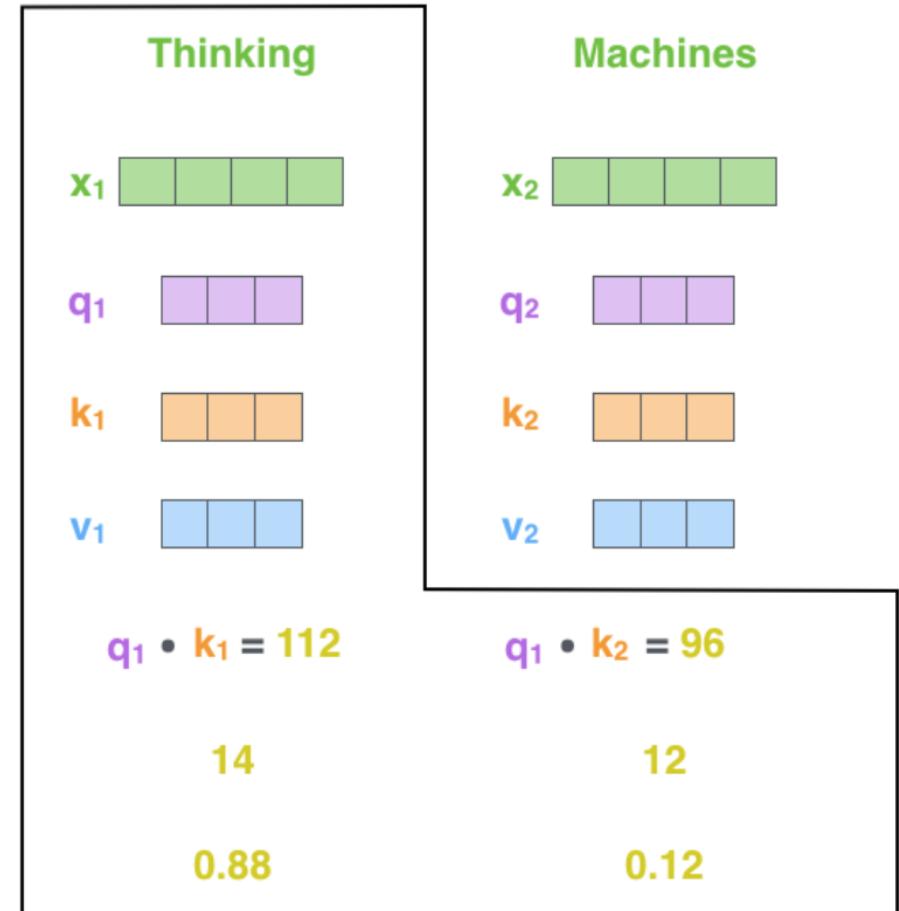
- Lots of things we could do --- **simpler** is usually better!
- Dot product $q_1 \cdot k_2 = 96$
- Then we'll do **softmax**

Self-Attention: Scoring and Scaling

- Transform incoming word vectors,
- Enable *interactions* between words
- Get our **query**, **key**, **value** vectors via weight matrices: linear transformations!
- Compute scores

Objects:
Query
Key
Value

Input
Embedding
Queries
Keys
Values
Score
Divide by 8 ($\sqrt{d_k}$)
Softmax



Self-Attention: Putting it Together

- Have **query**, **key**, **value** vectors via weight matrices: linear transformations!
- Have softmax score outputs (**focus**)
- Add up the values!

Objects:
Query
Key
Value

Input

Embedding

Queries

Keys

Values

Score

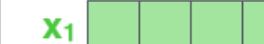
Divide by 8 ($\sqrt{d_k}$)

Softmax

Softmax
X
Value

Sum

Thinking

x_1 

q_1

k_1

v_1

Machines

x_2

q_2

k_2

v_2

$$q_1 \cdot k_1 = 112$$

14

0.88

v_1

$$q_1 \cdot k_2 = 96$$

12

0.12

v_2

z_1

z_2

Self-Attention: Matrix Formulas

- Have **query**, **key**, **value** vectors via weight matrices: linear transformations!
- Have softmax score outputs (**focus**)
- Add up the values!

Objects:

Query
Key
Value

$$Q = XW_Q, K = XW_K, V = XW_V$$

$$\text{Attention}(Q, K, V) = \text{softmax} \left(\frac{QK^T}{\sqrt{d_k}} \right) V$$

Note: softmax is applied to the
rows of this matrix!

$$\text{Attention}(Q, K, V) = \text{softmax} \left(X \frac{W_Q W_K^T}{\sqrt{d_k}} X^T \right) V$$

Break & Questions

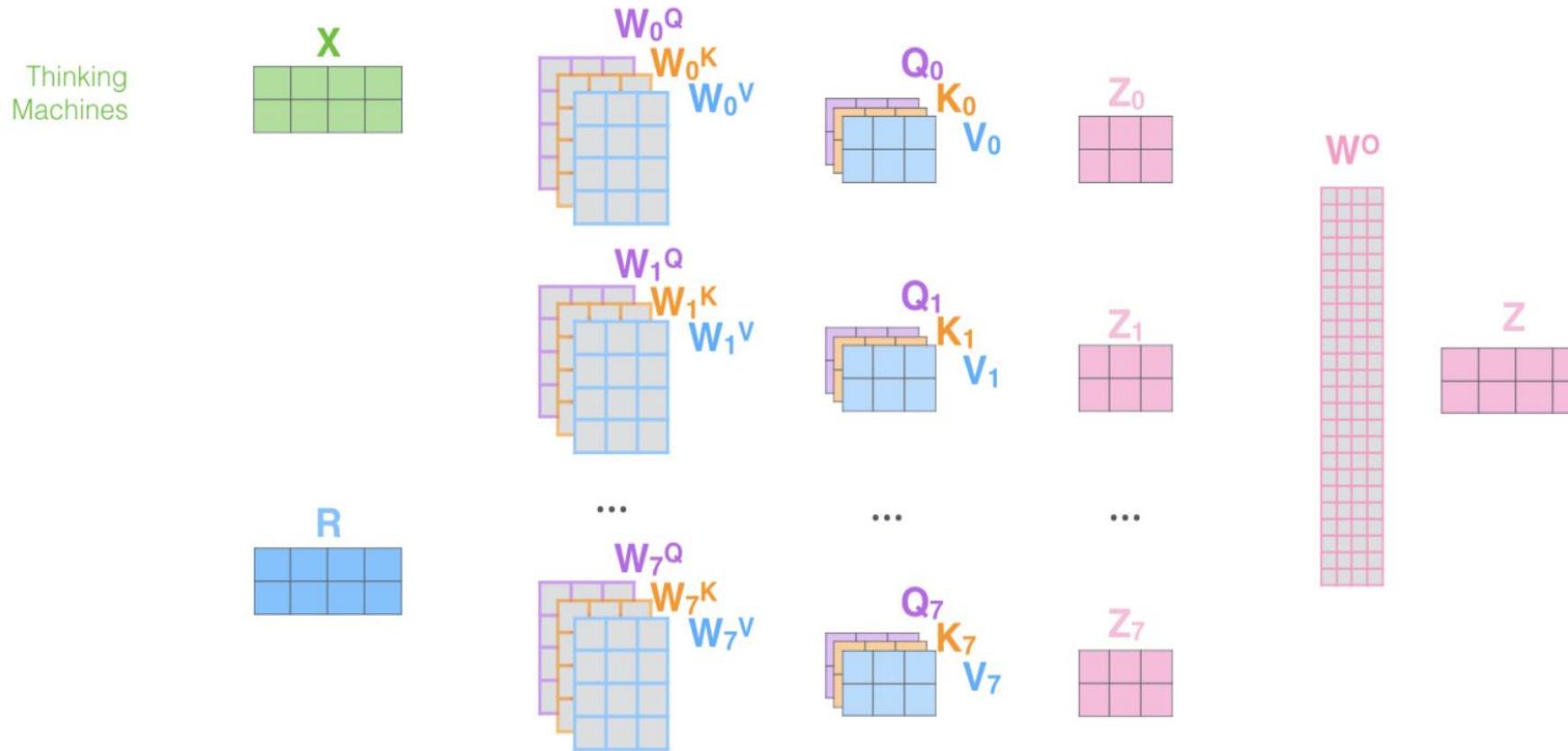
Outline

- **Review From Last Time Basic Attention**
 - Self-attention, basic attention layer, QKV setup and intuition
- **Additional Elements**
 - Multi-head attention, positional encodings
- **Full architecture**
 - Encoder layer, decoder layer, full original Transformer architecture (2017)

Self-Attention: Multi-head

This is great but will we capture everything in one?

- Do we use just 1 kernel in CNNs? **No!**
- Do it many times in parallel: **multi-headed attention**. Concatenate outputs



Self-Attention: Positional Encodings

Almost have a full layer designed.

- One annoying issue: so far, order of words **(position) doesn't matter!**
- Solution: add positional encodings

$$PE_{(pos,2i)} = \sin(pos/10000^{2i/d_{\text{model}}})$$

$$PE_{(pos,2i+1)} = \cos(pos/10000^{2i/d_{\text{model}}})$$

↑
Location index

POSITIONAL
ENCODING

0	0	1	1
---	---	---	---

0.84	0.0001	0.54	1
------	--------	------	---

0.91	0.0002	-0.42	1
------	--------	-------	---

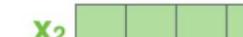
+

+

+

EMBEDDINGS

x_1

x_2 

x_3

INPUT

Je

suis

étudiant

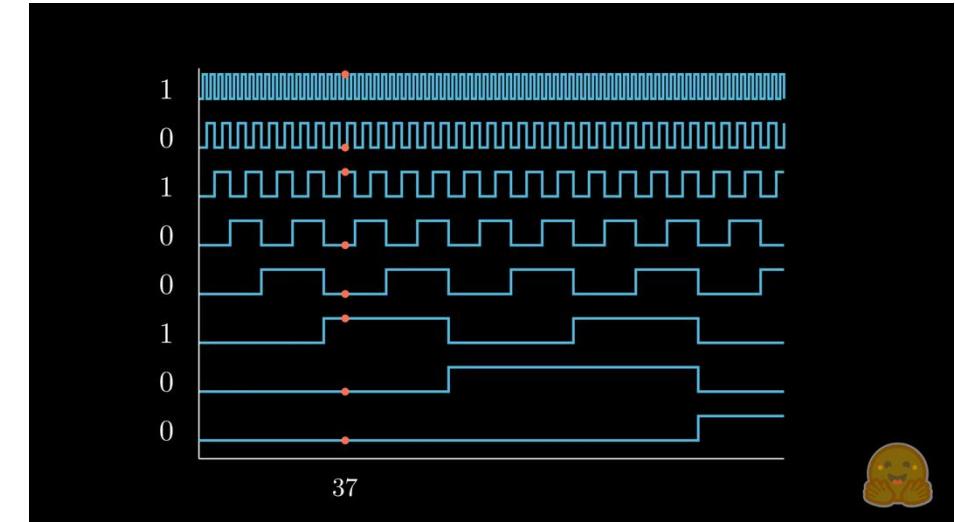
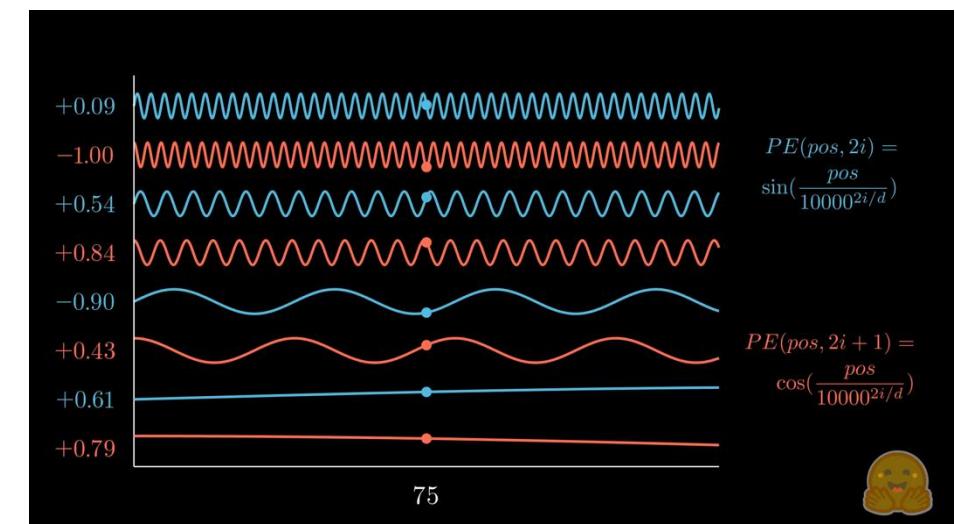
Self-Attention: Positional Encodings

$$PE_{(pos,2i)} = \sin(pos/10000^{2i}/d_{\text{model}})$$

$$PE_{(pos,2i+1)} = \cos(pos/10000^{2i}/d_{\text{model}})$$

Why these **mysterious formulas**? Want properties:

- Consistent encoding
- Smooth
- Linearity across positions
 - Alternating sin and cos: can multiply by rotation matrix to obtain shifts



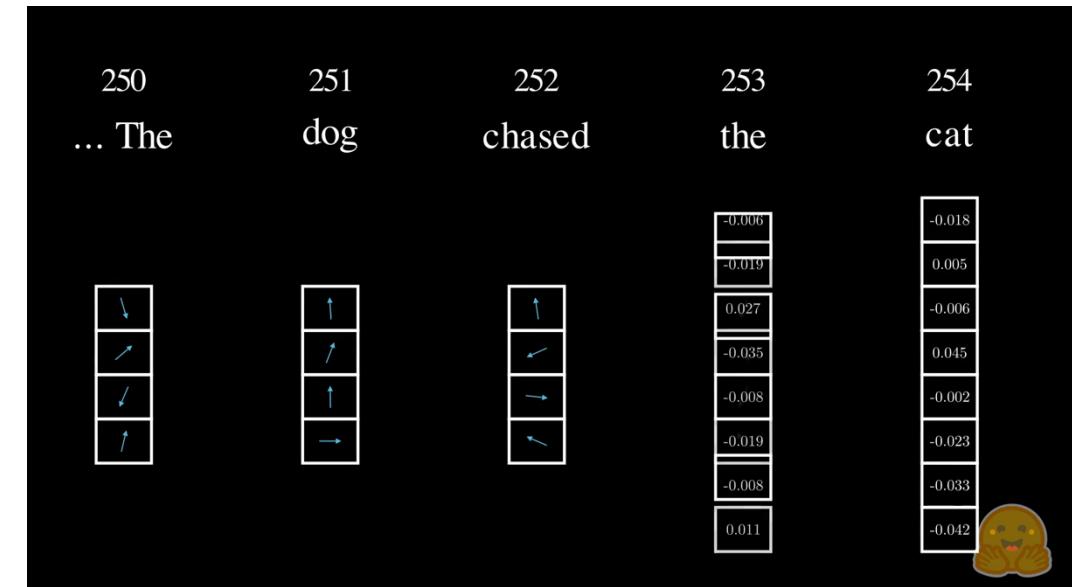
Self-Attention: Modern Positional Encodings

These *sinusoidal* embeddings were defined in the original Transformers paper,

- Added once (as we saw) prior to the first layer

Many new variants of positional encodings that behave slightly differently

- Example: *multiplicative* instead of *additive*
- Popular: **Rotary Positional Encoding (RoPE)**
- Note: perform in every attention layer



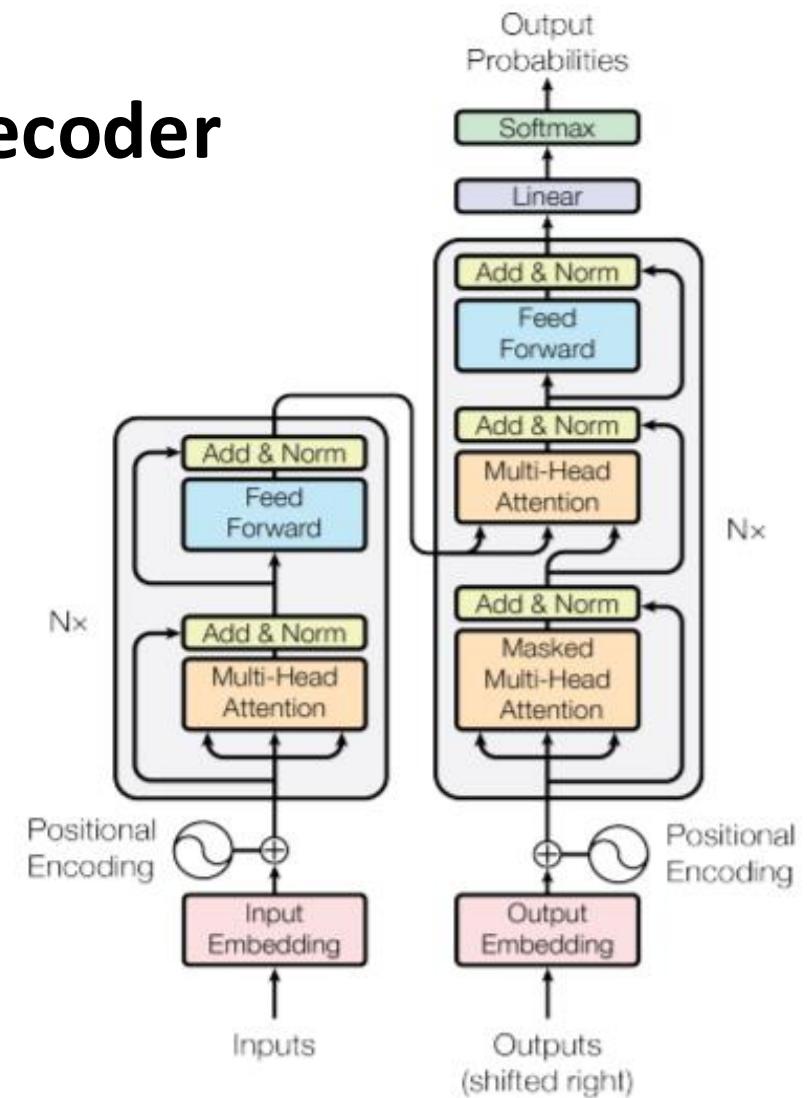
Break & Questions

Outline

- **Review From Last Time Basic Attention**
 - Self-attention, basic attention layer, QKV setup and intuition
- **Additional Elements**
 - Multi-head attention, positional encodings
- **Full architecture**
 - Encoder layer, decoder layer, full original Transformer architecture (2017)

Transformers: Model Architecture

- Initial goal for an architecture: **encoder-decoder**
 - Get rid of recurrence
 - Replace with **self-attention**
- Architecture
 - You may have seen this picture
 - Centered on self-attention blocks



Interlude: Encoder-Decoder Models

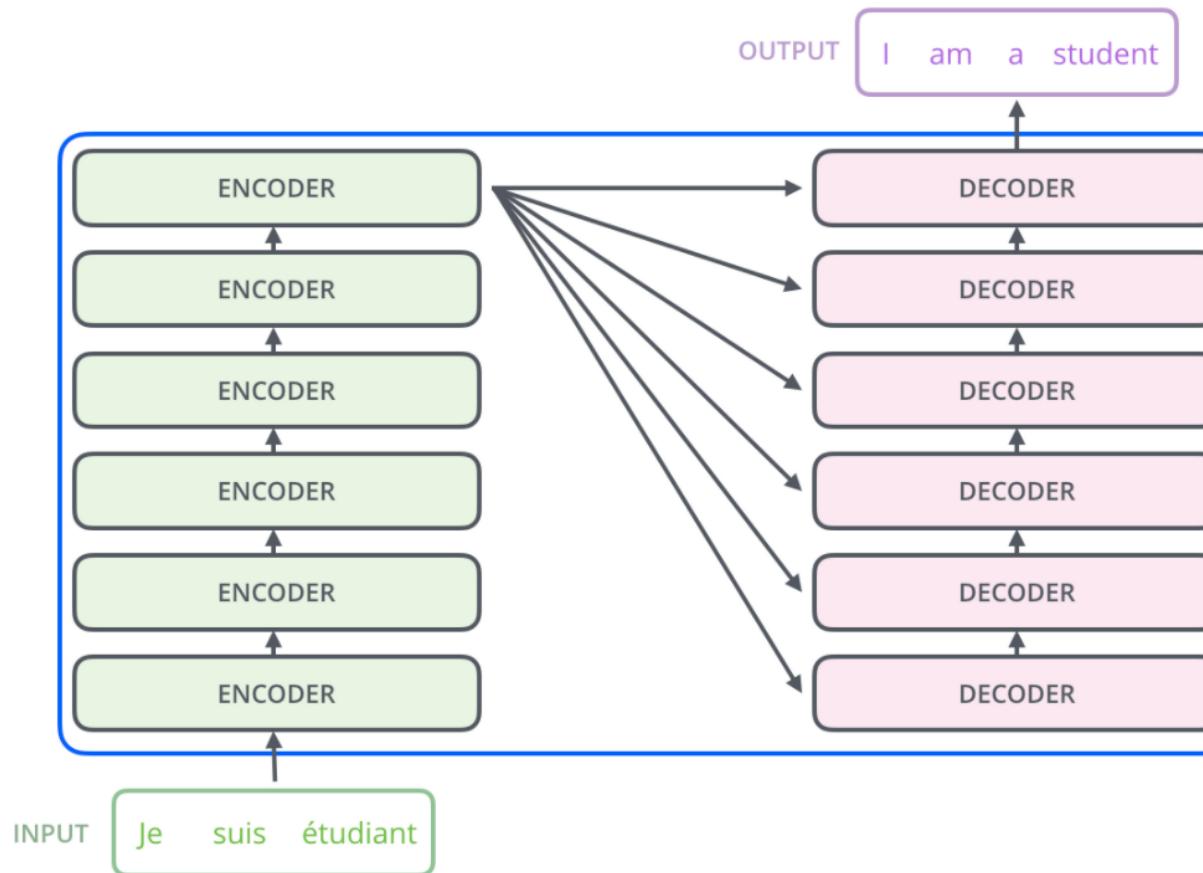
- Translation tasks: natural encoder-decoder architecture
- Intuition:

“Mum, Mum, there wouldn’t be any railway fare and we shouldn’t have to pay for the caravans. Oh, do let us go in a caravan.”
Mrs. Russell shook her head. “I know it sounds lovely, darling; but we can’t afford to get a caravan. It would cost at least fifty pounds to buy one, even if we had one, Daddy couldn’t get away this summer. No, we must make up our minds to do without a holiday this year; but I’ll tell you what we’ll do: we’ll all go to Southend for the day, as we did last year, and have our lunch and tea with us and have a splendid picnic.”
“Then we can bathe again,” said Bob; “but, oh! I do wish I could have a pony and ride,” he added unexpectedly. “You don’t know how I long for a pony,” he continued, sighing deeply as he remembered the blissful holiday when a friend let him share his little Dartmoor pony and ride occasionally. “Southend is nothing but houses and people,” cried Phyllis; “it’s no better than this place; and oh! Mum, I do so long for fields and flowers and animals,” she added piteously; and she shook her long brown hair forward to hide the tears in her eyes.
“Never mind, darling, you shall have them one day,” answered Mrs. Russell with easy vagueness.
This really was not very comforting, and it was the most fortunate thing that at that moment a car stopped at the door.
“Uncle Edward!” shouted Bob, rushing from the room. Phyllis brushed the tears so hastily from her eyes that she arrived at the front door almost as he did, and both flung themselves on the tall, kindly-looking man standing beside the car.
“Uncle Edward! Uncle Edward!” they cried. “You’ve come at last! We’ve been longing to see you. Oh, how glad we are you’re here!”
Now the delightful thing was that their uncle seemed just as pleased to see them as they were to see him, and returned their hugs and greetings with the greatest cordiality. They were just on the point of dragging him into the house, hanging one on each arm, when he said: “Stop, not so fast. There are some things to fetch in from the car.”
So saying he began diving into the back of it and bringing out, not one or two trunks or a suitcase, but various parcels, which he handed out one by one.
“That’s the pair of chickens I’ve brought for your mother,” said he, handing

Algeron avait été voilà deux jours de l’abattoir à 4 heures du matin, en rentrant après avoir été sur les quais. Elle était paralysée, dans le coin de sa cage, les pattes côte, comme si elle courait dans son sommeil. La dissection montre que mes prédictions étaient justes. Comparé à un cerveau normal, celui d’Algeron a diminué de poids et montre un effacement des circonvolutions cérébrales ainsi qu’un élargissement des scissures. C’est épouvantable de penser que la même chose m’arrive peut-être à moi, en ce moment. L’avoir vu produire chez Algeron rend cette menace réelle, la première fois, je suis effrayé de l’avenir. J’ai mis le corps d’Algeron dans une petite boîte en métal et je l’ai emporté à la maison avec moi. Je n’ai pas les laisser le jeter dans l’incinérateur. C’est une chose sentimentale mais tant hier soir, je l’ai enterrée dans la cour de derrière. J’ai pleuré en mettant un bouquet de fleurs sauvages sur la tombe.

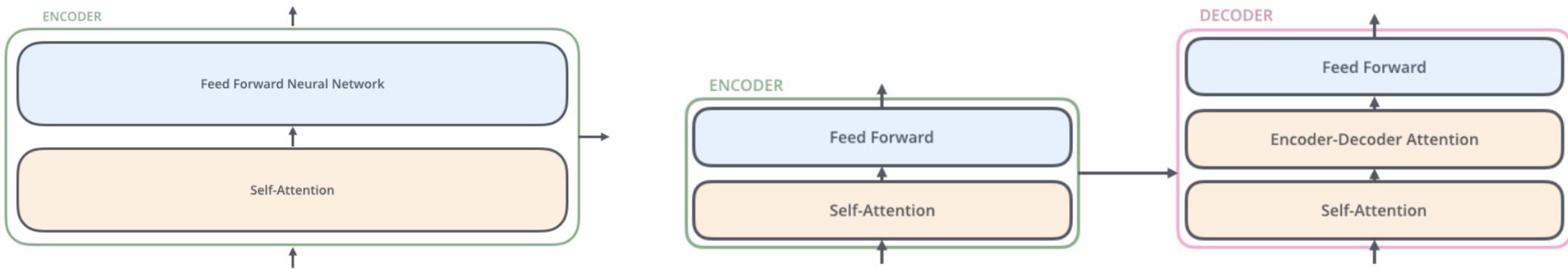
Transformers: Architecture

- **Sequence-sequence** model with **stacked** encoders/decoders:
 - For example, for French-English translation:



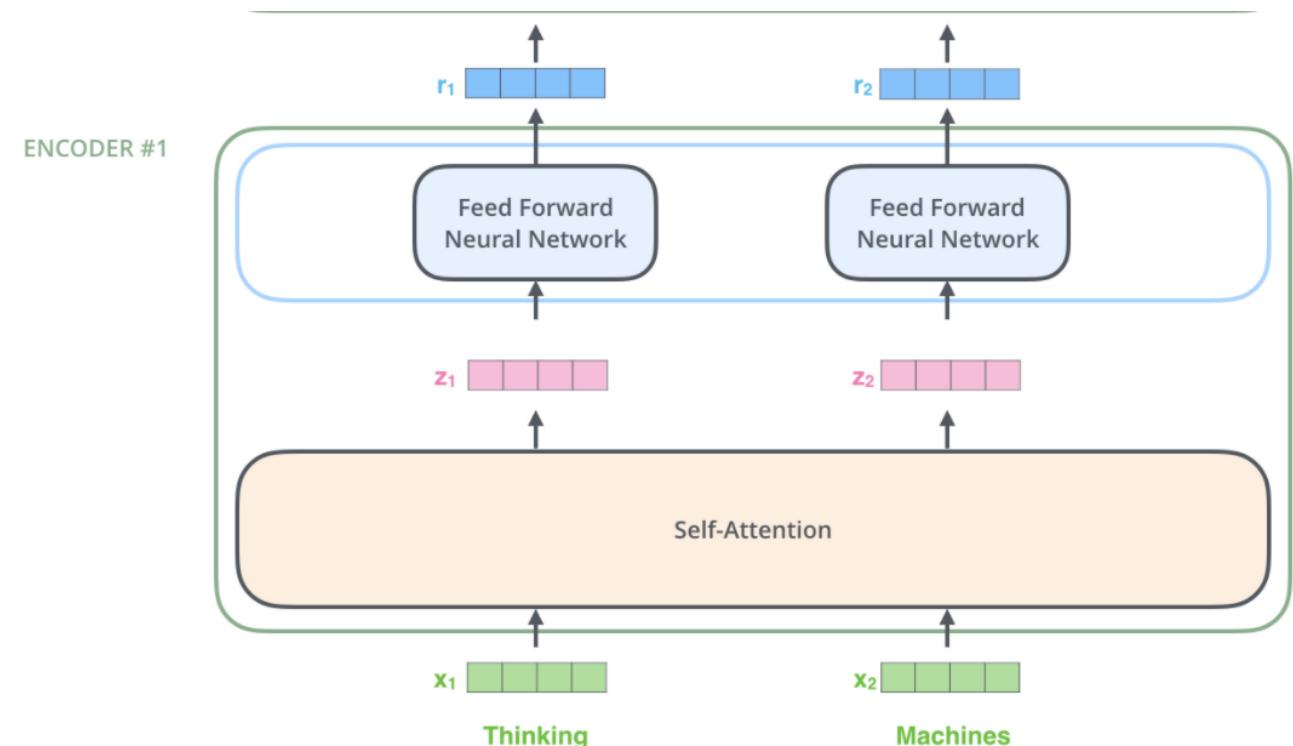
Transformers: Architecture

- Sequence-sequence model with **stacked** encoders/decoders:
 - What's inside each encoder/decoder unit?
 - Focus encoder first: **pretty simple!** 2 components:
 - Self-attention block
 - Fully-connected layers (i.e., an MLP)



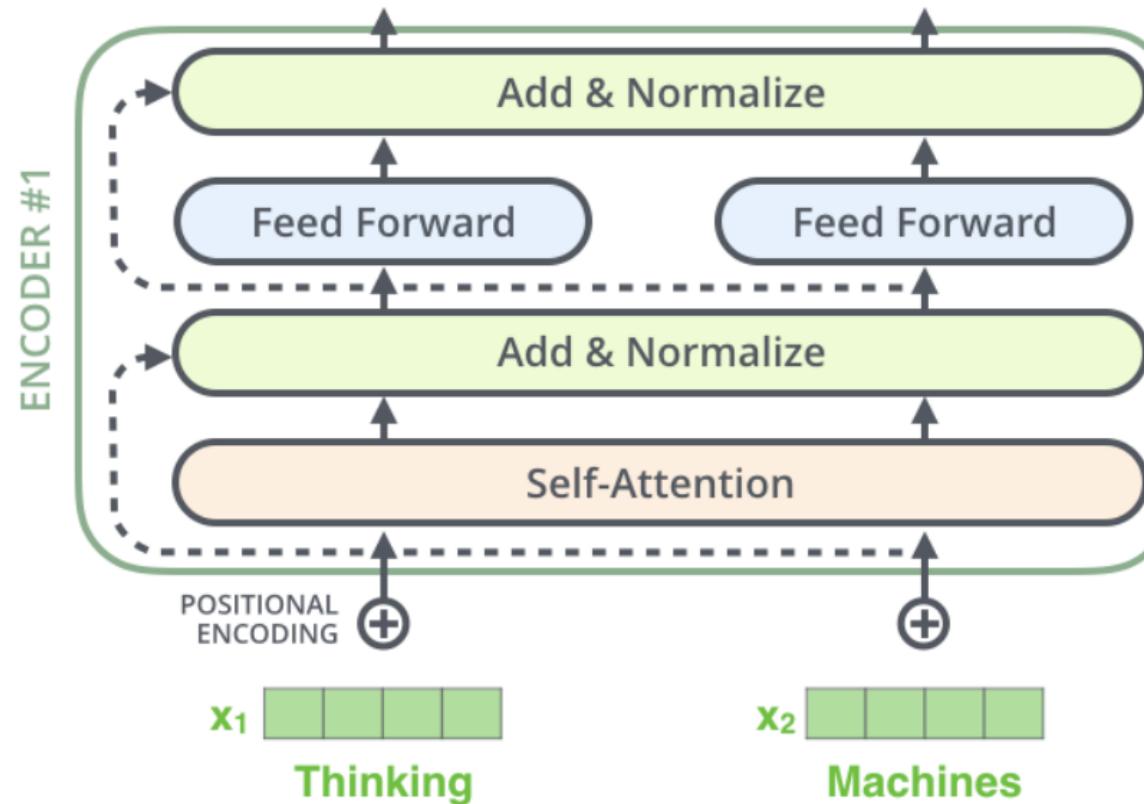
Transformers: Inside an Encoder

- Let's take a look at the encoder. Two components:
 - 1. **Self-attention** layer (covered this)
 - 2. “Independent” **feedforward nets**
 - **Note: same MLP (often 2-layer)** at every position



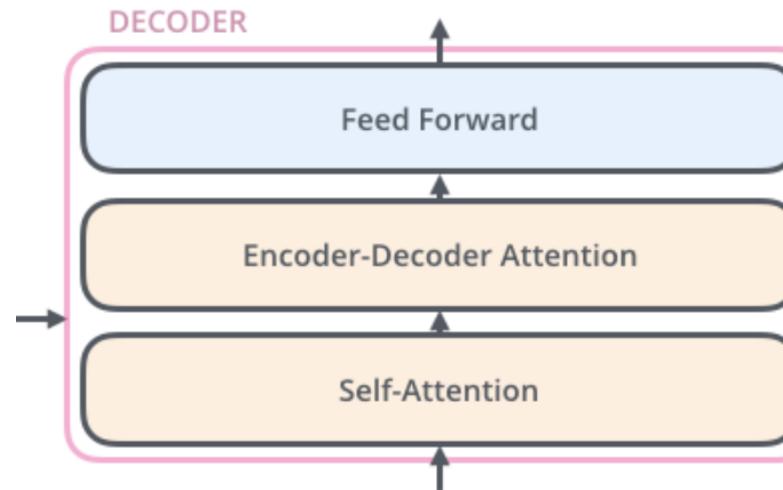
Transformers: More Tricks

- Recall a big innovation for ResNets: residual connections
 - And also layer normalizations
 - Apply to our encoder layers



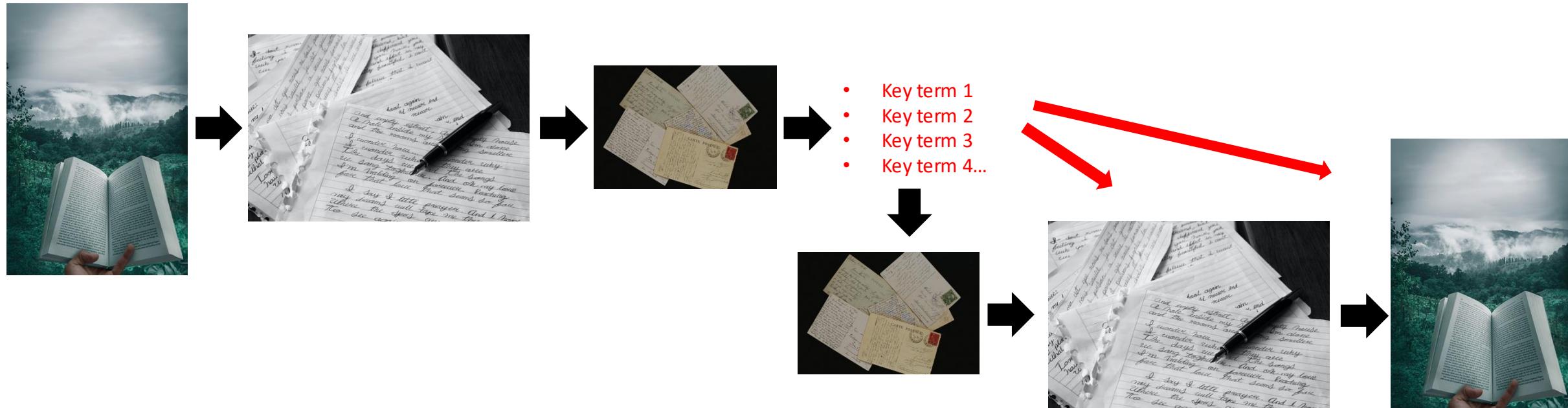
Transformers: Inside a Decoder

- Let's take a look at the decoder. Three components:
 - 1. **Self-attention** layer (covered this)
 - 2. Encoder-decoder attention (same, but K, V come from encoder)
 - 3. “Independent” **feedforward nets**



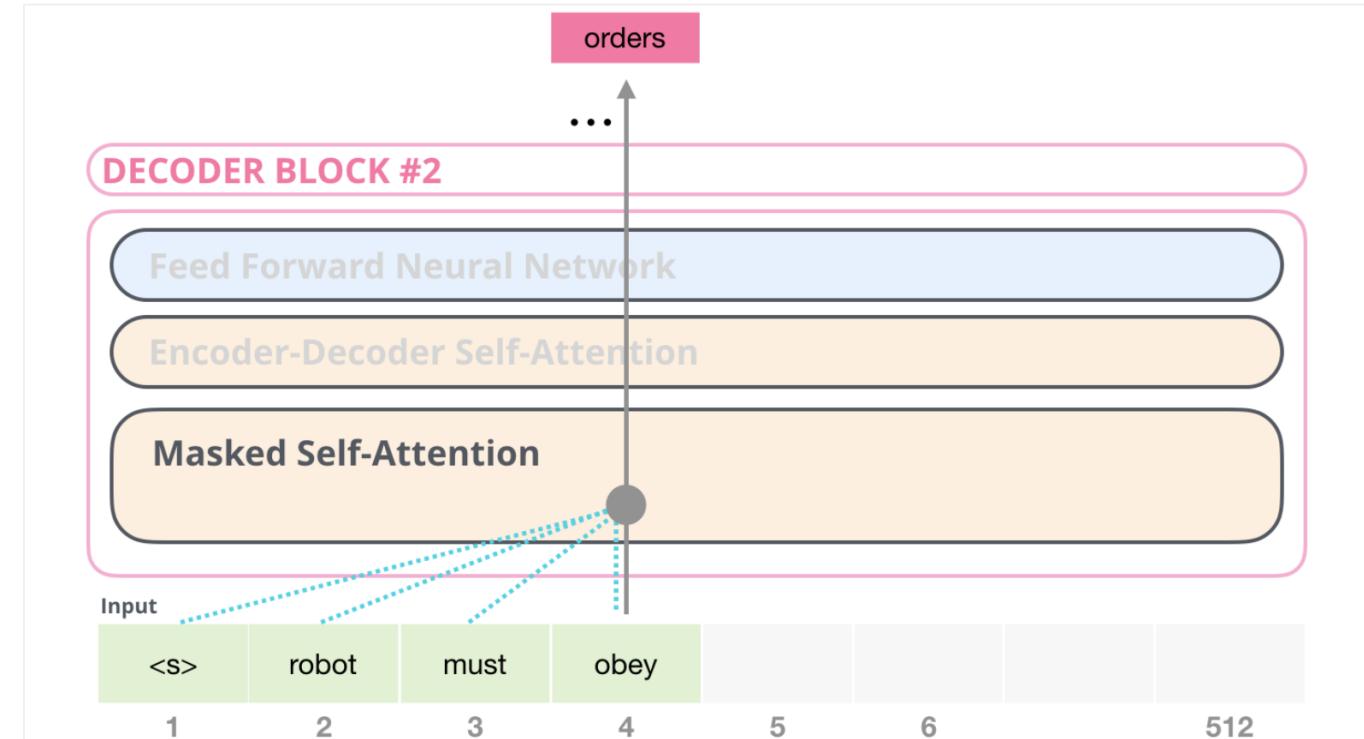
Transformers: Cross-Attention

- Why encoder-decoder attention ?
 - Recall: same as before, but K, V come from encoder
 - Actually more traditional, but... **intuition:**



Transformers: Decoder Masking

- One more interesting bit!
 - At the decoder level, self-attention changes a bit:
 - Masked instead: block *future* words from being attended to
 - Sorta obvious for inference (test-time), but **important in training**
 - **How to mask?** Add $-\infty$ before softmax



Transformers: Last Layers

- Next let's look at the end. Similar to a CNN,

- 1. Linear layer
- 2. Softmax

Get probabilities of words

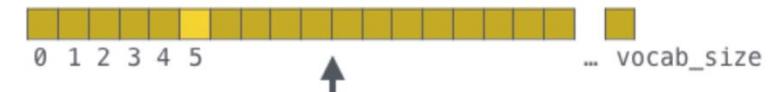
Which word in our vocabulary is associated with this index?

am

Get the index of the cell with the highest value (argmax)

5

log_probs

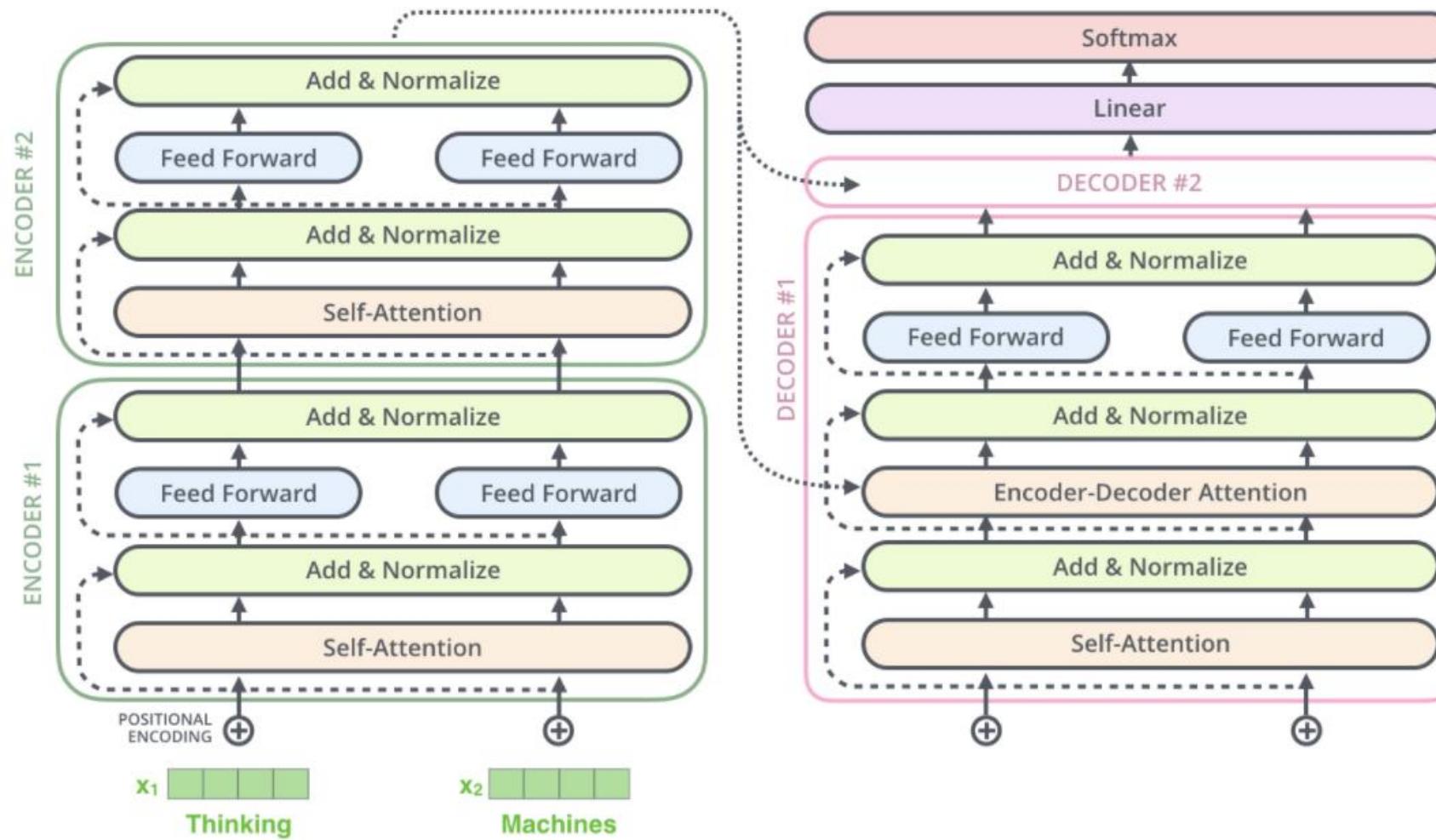


logits

Decoder stack output

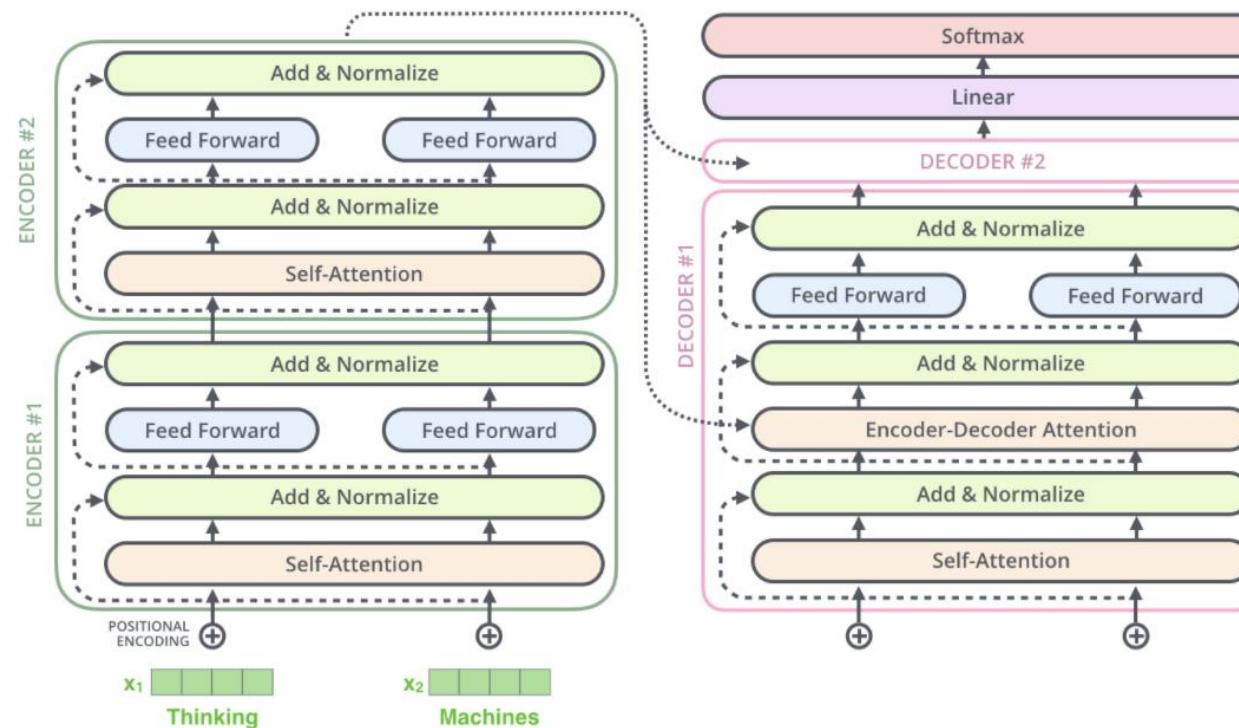
Transformers: Putting it All Together

- What does the full architecture look like?



Transformers: Training

- Data: standard datasets (WMT English-German)
 - Note: **supervised task**. Soon: switch to self-supervised
 - ~5 million pairs of sentences for this dataset
 - Training procedure not special: cross-entropy loss, Adam optimizer



Transformers: The Rest

- Next time: we'll talk about
 - How to **use** it (i.e., outputs)
 - How to **train** it in various other ways (not supervised!)
 - How to **rip** it apart and build other models with it.

