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Announcements

•Homework 1: out! 
•Due 2 weeks from release

•Resources
•https://jalammar.github.io/illustrated-transformer/ Very 
nice resource for following along

•Class roadmap:

Thursday Feb. 12 Transformers and Attention II

Tuesday Feb. 17 Architectures: Encoder-Only

Thursday Feb. 19 Architectures: Others

Tuesday Feb. 24 Attention Variants
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Outline

•Review From Last Time Basic Attention
•Self-attention, basic attention layer, QKV setup and 
intuition

•Additional Elements
•Multi-head attention, positional encodings

•Full architecture
•Encoder layer, decoder layer, full original Transformer 
architecture (2017)
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Building Layers

Recall how we built a convolutional layer

•We defined an operation (convolution)

•We decided how it should operate over the inputs (from 
previous layer) to produce the layer’s outputs

•We’ll do the same to build an attention-based layer

•Input: vectors for words

Note: All visualizations are due to Jay Alammar

Excellent resource: https://jalammar.github.io/illustrated-transformer/



Self-Attention: Goals and Inputs

From bottom-up. Let’s design a basic layer.

•Two criteria
•Transform incoming word vectors,
•Enable interactions between words

• Input: vectors for words



Self-Attention: Retrieval Intuition

•How should we design the interactions?
•Analogy: search
“Which restaurants near me are open at 9:00 pm?”

Query Key

Score 0.3

Value

Score 0.7

Objects:

Query
Key
Value



Self-Attention: Query, Key, Value Vectors

•Transform incoming word vectors,
•Enable interactions between words

• Get our query, key, value vectors via weight matrices: linear 
transformations!

Objects:

Query
Key
Value



Self-Attention: Score Functions

Have query, key, value vectors

• Next, get our score 

• Lots of things we could do --- simpler is usually better!

• Dot product

• Then we’ll do softmax 

Query Key

Score 0.3



Self-Attention: Scoring and Scaling

•Transform incoming word vectors,
•Enable interactions between words

• Get our query, key, value vectors via weight 
matrices: linear transformations!

• Compute scores

Objects:

Query
Key
Value



Self-Attention: Putting it Together

• Have query, key, value vectors via 
weight matrices: linear 
transformations!

• Have softmax score outputs (focus)

• Add up the values! 

Objects:

Query
Key
Value



Self-Attention: Matrix Formulas

• Have query, key, value vectors via weight matrices: linear transformations!

• Have softmax score outputs (focus)

• Add up the values! 

Objects:

Query
Key
Value

Note: softmax is applied to the 
rows of this matrix!



Break & Questions
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Self-Attention: Multi-head

This is great but will we capture everything in one?

• Do we use just 1 kernel in CNNs? No!

• Do it many times in parallel: multi-headed attention. Concatenate outputs



Self-Attention: Positional Encodings

Almost have a full layer designed.

• One annoying issue: so far, order of words (position) doesn’t matter!

• Solution: add positional encodings

Location index



Self-Attention: Positional Encodings

Why these mysterious formulas? Want properties:

• Consistent encoding 

• Smooth

• Linearity across positions
• Alternating sin and cos: can multiply by rotation matrix to 

obtain shifts 

https://huggingface.co/blog/designing-positional-encoding



These sinusoidal embeddings were defined in the original 
Transformers paper,

• Added once (as we saw) prior to the first layer

Many new variants of positional encodings that behave 
slightly differently 

• Example: multiplicative instead of additive

• Popular: Rotary Positional Encoding (RoPE)

• Note: perform in every attention layer

Self-Attention: Modern Positional Encodings

https://huggingface.co/blog/designing-positional-encoding



Break & Questions
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Vaswani et al. ‘17

Transformers: Model Architecture

• Initial goal for an architecture: encoder-decoder
•Get rid of recurrence
•Replace with self-attention

•Architecture
•You may have seen this picture
•Centered on self-attention blocks



Interlude: Encoder-Decoder Models

•Translation tasks: natural encoder-decoder architecture

• Intuition: 



Transformers: Architecture

•Sequence-sequence model with stacked encoders/decoders:
•For example, for French-English translation:



Transformers: Architecture

•Sequence-sequence model with stacked encoders/decoders:
•What’s inside each encoder/decoder unit?

•Focus encoder first: pretty simple! 2 components:
• Self-attention block

• Fully-connected layers (i.e., an MLP) 



Transformers: Inside an Encoder

•Let’s take a look at the encoder. Two components:
•1. Self-attention layer (covered this)
•2. “Independent” feedforward nets

• Note: same MLP (often 2-layer) at every position 



Transformers: More Tricks

•Recall a big innovation for ResNets: residual connections
•And also layer normalizations
•Apply to our encoder layers



Transformers: Inside a Decoder

•Let’s take a look at the decoder. Three components:
•1. Self-attention layer (covered this)
•2. Encoder-decoder attention (same, but K, V come from encoder)
•3. “Independent” feedforward nets



Transformers: Cross-Attention

•Why encoder-decoder attention ?
•Recall: same as before, but K, V come from encoder
•Actually more traditional, but… intuition:

• Key term 1
• Key term 2
• Key term 3
• Key term 4…



Transformers: Decoder Masking

•One more interesting bit!
•At the decoder level, self-attention changes a bit:
•Masked instead: block future words from being attended to

• Sorta obvious for inference (test-time), but important in training
• How to mask? Add −∞ before softmax  



Transformers: Last Layers

•Next let’s look at the end. Similar to a CNN,

•1. Linear layer
•2. Softmax

Get probabilities of 
words



Transformers: Putting it All Together

•What does the full architecture look like?



Transformers: Training

•Data: standard datasets (WMT English-German)
•Note: supervised task. Soon: switch to self-supervised
•~5 million pairs of sentences for this dataset
•Training procedure not special: cross-entropy loss, Adam optimizer



Transformers: The Rest

•Next time: we’ll talk about 
•How to use it (i.e., outputs)
•How to train it in various other ways (not supervised!)
•How to rip it apart and build other models with it.
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