
Q1-1: Select the correct statement.

A. Support vector machines are able to produce non-linear decision boundaries by, in a sense, 

transforming low-dimensional inputs into a high-dimensional space, then performing classification in 

that high-dimensional space. This usually works because high-dimensional data is much more likely to 

be linearly separable than low-dimensional data.

B. “Kernel trick” refers to first applying the above transformation and then computing the dot products 

between the transformed data points.

1. Both the statements are TRUE.

2. Statement A is TRUE, but statement B is FALSE.

3. Statement A is FALSE, but statement B is TRUE.

4. Both the statements are FALSE.
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1. Both the statements are TRUE.
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Since the training and 
classification only require 
the dot products between 
data points, it “cheats” by 
using the Kernel function 
instead. This cheating is 
referred to as the “kernel 
trick”.

A. Support vector machines are able to produce non-linear decision boundaries by, in a 

sense, transforming low-dimensional inputs into a high-dimensional space, then 

performing classification in that high-dimensional space. This usually works because high-

dimensional data is much more likely to be linearly separable than low-dimensional data.

B. “Kernel trick” refers to first applying the above transformation and then computing the dot 

products between the transformed data points.



Q1-2: Consider the polynomial kernel k(x’, x′) = (xx′ + 1)3, for x ∈ R (i.e., a one-
dimensional feature space). Give an explicit expression for the corresponding 
feature map ɸ(x) such that k(x, x′) = ɸ(x)T ɸ(x′).

1. ɸ(x)T = [x3, √3 x2, √3 x, 1]

2. ɸ(x)T = [x3, ∛3 x2, ∛3 x, 1]

3. ɸ(x)T = [x3,  x2, x, 1]

4. ɸ(x)T = [x3, √3 x2, √3 x]
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Q3-1: Which of the following might be valid reasons for preferring an SVM over a 
neural network?

A. An SVM can effectively map the data to an infinite-dimensional space, a neural net cannot.

B. The transformed (basis function) representation constructed by an SVM is usually easier to 

visualize/interpret than for a neural net.

C. An SVM would not get stuck in local minima, unlike a neural net.

1. A, B

2. B, C

3. A, C

4. A, B, C
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A: True using RBF kernel
B: Not necessarily
C: True (convex optimization problem in SVM)



Q1-1: Are these statements true or false?
(A) If we have multiple optimal solutions on a given training set, those 
solutions will also have the same test loss.
(B) If a hyperplane only changes its bias term by 1, then the distance from 
some point 𝑥 to the hyperplane will not change.

1. True, True 

2. True, False 

3. False, True

4. False, False
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(A) Multiple optimal solutions on the training usually 
have different test loss. Please refer to the example 
given in the lecture.

(B) Recall that the distance is given by 
|𝑓𝑤,𝑏(𝑥)|

∥𝑤∥
. If only 

the bias term is changed, then |𝑓𝑤,𝑏(𝑥)| will change 
while ∥ 𝑤 ∥ remains same. So the distance will also 
be changed.



Q1-2: Are these statements true or false?

(A) Define the margin to be γ = min
𝑖

𝑦𝑖𝑓𝑤,𝑏(𝑥𝑖)

∥𝑤∥
, if 𝑓𝑤,𝑏(x) predicts correctly on 

some 𝑥𝑖 and incorrectly on others, then the margin will be positive.
(B) If the training set can be correctly separated, then max

𝑤,𝑏
γ can still be 

negative.

1. True, True 

2. True, False 

3. False, True

4. False, False
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(A) In this case, 
𝑦𝑖𝑓𝑤,𝑏(𝑥𝑖)

∥𝑤∥
would be negative on those 𝑥𝑖

with incorrect predictions. So take min on all 
training data, we will get the margin negative.

(B) In this case, there exists at least one 𝑤 and 𝑏 such 
that all instances are correctly classified, so the 
corresponding margin is non-negative.



Q1-3: Are these statements true or false?
(A) The solution of SVM will always change if we remove some instances 
from the training set.
(B) If we can only access the labels and the inner products of instances 
𝑥𝑖

𝑇𝑥𝑗 𝑖,𝑗
, we can NOT solve the learning problem in SVM.

1. True, True 

2. True, False 

3. False, True

4. False, False
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(A) As is shown in the lecture, if we remove those 
instances with 𝛼𝑖 = 0, it will not influence the SVM 
result.

(B) We can see that the dual problem only depends on 
𝑦𝑖 and the inner products of training instances. So 
we can also solve the SVM problem in this case.


