Q2-1: Two Envelopes Problem

-We have two envelopes:

- E_{1} has two black balls, E_{2} has one black, one red
-The red one is worth $\$ 100$. Others, zero
- Open an envelope, see one ball. Then, can switch (or not).
- You see a black ball. Switch?

Q2-1: Two Envelopes Problem

-Let's solve it.

$$
P\left(E_{1} \mid \text { Black ball }\right)=\frac{P\left(\text { Black ball } \mid E_{1}\right) P\left(E_{1}\right)}{P(\text { Black ball })}
$$

-Now plug in:

$$
\begin{aligned}
P\left(E_{1} \mid \text { Black ball }\right) & =\frac{1 \times \frac{1}{2}}{P(\text { Black ball })} \\
P\left(E_{2} \mid \text { Black ball }\right) & =\frac{\frac{1}{2} \times \frac{1}{2}}{P(\text { Black ball })}
\end{aligned}
$$

Break \& Quiz

Q 3.1: 50% of emails are spam. Software has been applied to filter spam. A certain brand of software can detect 99% of spam emails, and the probability for a false positive (a nonspam email detected as spam) is 5%. Now if an email is detected as spam, then what is the probability that it is in fact a nonspam email?
A. $5 / 104$
B. $95 / 100$
C. $1 / 100$
D. $1 / 2$

Break \& Quiz

Q 3.1: 50\% of emails are spam. Software has been applied to filter spam. A certain brand of software claims that it can detect 99% of spam emails, and the probability for a false positive (a non-spam email detected as spam) is 5%. Now if an email is detected as spam, then what is the probability that it is in fact a nonspam email?
A. $5 / 104$
B. $95 / 100$
C. $1 / 100$
D. $1 / 2$

