### Q2-1: Two Envelopes Problem

- •We have two envelopes:
  - E<sub>1</sub> has two black balls, E<sub>2</sub> has one black, one red
  - •The red one is worth \$100. Others, zero
  - •Open an envelope, see one ball. Then, can switch (or not).
  - •You see a black ball. Switch?





## Q2-1: Two Envelopes Problem

•Let's solve it.  
P(E<sub>1</sub>|Black ball) = 
$$\frac{P(\text{Black ball}|E_1)P(E_1)}{P(\text{Black ball})}$$
  
•Now plug in:  
 $P(E_1|\text{Black ball}) = \frac{1 \times \frac{1}{2}}{P(\text{Black ball})}$   
So switch!  
 $P(E_2|\text{Black ball}) = \frac{\frac{1}{2} \times \frac{1}{2}}{P(\text{Black ball})}$ 

# Break & Quiz

**Q 3.1:** 50% of emails are spam. Software has been applied to filter spam. A certain brand of software can detect 99% of spam emails, and the probability for a false positive (a non-spam email detected as spam) is 5%. Now if an email is detected as spam, then what is the probability that it is in fact a nonspam email?

- A. 5/104
- B. 95/100
- C. 1/100

### D. 1/2

# Break & Quiz

**Q 3.1:** 50% of emails are spam. Software has been applied to filter spam. A certain brand of software claims that it can detect 99% of spam emails, and the probability for a false positive (a non-spam email detected as spam) is 5%. Now if an email is detected as spam, then what is the probability that it is in fact a nonspam email?

#### A. 5/104

- B. 95/100
- C. 1/100
- D. 1/2