Q1-1: Assume that we have the current $\hat{Q}(s, a)$ as follows, and we are using a greedy update, i.e. $\hat{Q}(s, a) = r + \gamma \max_{a'} \hat{Q}(s', a')$ in the Q learning process, for the following MDP. Here we choose $\gamma = 0.9$, and the MDP has two actions: a_1 (move) and a_2 (stay), with rewards $r_1 = 1$ and $r_2 = 0$ respectively. Suppose we are currently at the state s_1 , and selecting the action a_1 , please calculate the new $\hat{Q}(s_1, a_1)$.

- 1. 9.1
- 2.8.1
- 3. 10
- 4. 9

$\hat{Q}(s,a)$	<i>a</i> ₁	<i>a</i> ₂
s ₁	10	9
S ₂	9	10

Q1-1: Assume that we have the current $\hat{Q}(s, a)$ as follows, and we are using a greedy update, i.e. $\hat{Q}(s, a) = r + \gamma \max_{a'} \hat{Q}(s', a')$ in the Q learning process, for the following MDP. Here we choose $\gamma = 0.9$, and the MDP has two actions: a_1 (move) and a_2 (stay), with rewards $r_1 = 1$ and $r_2 = 0$ respectively. Suppose we are currently at the state s_1 , and selecting the action a_1 , please calculate the new $\hat{Q}(s_1, a_1)$.

$$(a_1) = r_1 + \gamma \max_{a'} \hat{Q}(s_2, a')$$

= 1 + 0.9 * 10 = 10

$\hat{Q}(s,a)$	<i>a</i> ₁	<i>a</i> ₂
S ₁	10	9
<i>S</i> ₂	9	10

Q2-1: A robot wants to deliver a package from warehouse at s1 to a home at s9. However, it wants to avoid trench (present at s6). In the figure, the green numbers are the optimal V*(s), the blue arrows are the optimal policy, and the black arrows are the possible actions from s3. How can you get V*(s3) using Q(s, a)? Assume discount factor $\gamma = 0.8$ and rewards as follows:

- r(s, a) = -100 if entering the trench
- r(s, a) = +100 if entering home
- r(s, a) = 0 otherwise
 - 1. max {51, 0}
 - 2. max {51, -20}
 - 3. max {51, -80}
 - 4. max {51, -100}

s1 51 🗭 🔅	s2 64	s3 • • • • • • • • • • • • • • • • • • •
s4 64	s5 80	s6 100
s7 80	s8 100	s9 0

Q2-1: A robot wants to deliver a package from warehouse at s1 to a home at s9. However, it wants to avoid trench (present at s6). In the figure, the green numbers are the optimal V*(s), the blue arrows are the optimal policy, and the black arrows are the possible actions from s3. How can you get V*(s3) using Q(s, a)? Assume discount factor $\gamma = 0.8$ and rewards as follows:

- r(s, a) = -100 if entering the trench
- r(s, a) = +100 if entering home
- r(s, a) = 0 otherwise
 - 1. max {51, 0}
 - 2. max {51, -20}
 - 3. max {51, -80}
 - 4. max {51, -100}

Q(s3,
$$\leftarrow$$
) = 0 + 0.8 * 64 = 51
Q(s3, \downarrow) = -100 + 0.8*100 = -20

 $V^*(s3) = \max \{Q(s3, \leftarrow), Q(s3, ↓)\}$ = max {51, -20}