
Q1-1: Assume that we have the current ෠𝑄(𝑠, 𝑎) as follows, and we are using a greedy
update, i.e. ෠𝑄 𝑠, 𝑎 = 𝑟 + 𝛾max

𝑎′
෠𝑄 𝑠′, 𝑎′ in the Q learning process, for the following

MDP. Here we choose 𝛾 = 0.9, and the MDP has two actions: 𝑎1 (move) and 𝑎2 (stay),
with rewards 𝑟1 = 1 and 𝑟2 = 0 respectively.
Suppose we are currently at the state 𝑠1, and selecting the action 𝑎1, please calculate
the new ෠𝑄 𝑠1, 𝑎1 .

1. 9.1

2. 8.1

3. 10

4. 9

𝑠1 𝑠2

+1

+1

+0+0

෠𝑄 𝑠, 𝑎 𝑎1 𝑎2

𝑠1 10 9

𝑠2 9 10

Q1-1: Assume that we have the current ෠𝑄(𝑠, 𝑎) as follows, and we are using a greedy
update, i.e. ෠𝑄 𝑠, 𝑎 = 𝑟 + 𝛾max

𝑎′
෠𝑄 𝑠′, 𝑎′ in the Q learning process, for the following

MDP. Here we choose 𝛾 = 0.9, and the MDP has two actions: 𝑎1 (move) and 𝑎2 (stay),
with rewards 𝑟1 = 1 and 𝑟2 = 0 respectively.
Suppose we are currently at the state 𝑠1, and selecting the action 𝑎1, please calculate
the new ෠𝑄 𝑠1, 𝑎1 .

1. 9.1

2. 8.1

3. 10

4. 9

𝑠1 𝑠2

+1

+1

+0+0

෠𝑄 𝑠, 𝑎 𝑎1 𝑎2

𝑠1 10 9

𝑠2 9 10

෠𝑄 𝑠1, 𝑎1 = 𝑟1 + 𝛾max
𝑎′

෠𝑄 𝑠2, 𝑎
′

= 1 + 0.9 ∗ 10 = 10

Q2-1: A robot wants to deliver a package from warehouse at s1 to a home at s9.
However, it wants to avoid trench (present at s6). In the figure, the green numbers
are the optimal V*(s), the blue arrows are the optimal policy, and the black arrows
are the possible actions from s3. How can you get V*(s3) using Q(s, a)? Assume
discount factor 𝛾 = 0.8 and rewards as follows:

● r(s, a) = -100 if entering the trench
● r(s, a) = +100 if entering home
● r(s, a) = 0 otherwise

s1
51

s2
64

s3
51

s4
64

s5
80

s6 100

s7
80

s8
100

s9
0

1. max {51, 0}

2. max {51, -20}

3. max {51, -80}

4. max {51, -100}

Q2-1: A robot wants to deliver a package from warehouse at s1 to a home at s9.
However, it wants to avoid trench (present at s6). In the figure, the green numbers
are the optimal V*(s), the blue arrows are the optimal policy, and the black arrows
are the possible actions from s3. How can you get V*(s3) using Q(s, a)? Assume
discount factor 𝛾 = 0.8 and rewards as follows:

● r(s, a) = -100 if entering the trench
● r(s, a) = +100 if entering home
● r(s, a) = 0 otherwise

s1
51

s2
64

s3
51

s4
64

s5
80

s6 100

s7
80

s8
100

s9
0

1. max {51, 0}

2. max {51, -20}

3. max {51, -80}

4. max {51, -100}
Q(s3, ←) = 0 + 0.8 * 64 = 51
Q(s3, ↓) = -100 + 0.8*100 = -20

V*(s3) = max {Q(s3, ←), Q(s3, ↓)}
= max {51, -20}

