Q1-1: Assume that we have the current $\hat{Q}(s, a)$ as follows, and we are using a greedy update, i.e. $\hat{Q}(s, a)=r+\gamma \max \widehat{Q}\left(s^{\prime}, a^{\prime}\right)$ in the Q learning process, for the following MDP. Here we choose $\gamma=\stackrel{a \prime}{a^{\prime}}$, and the MDP has two actions: a_{1} (move) and a_{2} (stay), with rewards $r_{1}=1$ and $r_{2}=0$ respectively.
Suppose we are currently at the state s_{1}, and selecting the action a_{1}, please calculate the new $\widehat{Q}\left(s_{1}, a_{1}\right)$.

1. 9.1
2. 8.1
3. 10
4. 9

$\hat{Q}(s, a)$	a_{1}	a_{2}
s_{1}	10	9
s_{2}	9	10

Q1-1: Assume that we have the current $\hat{Q}(s, a)$ as follows, and we are using a greedy update, i.e. $\hat{Q}(s, a)=r+\gamma \max \widehat{Q}\left(s^{\prime}, a^{\prime}\right)$ in the Q learning process, for the following MDP. Here we choose $\gamma=0.9$, and the MDP has two actions: a_{1} (move) and a_{2} (stay), with rewards $r_{1}=1$ and $r_{2}=0$ respectively.
Suppose we are currently at the state s_{1}, and selecting the action a_{1}, please calculate the new $\widehat{Q}\left(s_{1}, a_{1}\right)$.

1. 9.1

$$
\begin{gathered}
\hat{Q}\left(s_{1}, a_{1}\right)=r_{1}+\gamma \max _{a^{\prime}} \hat{Q}\left(s_{2}, a^{\prime}\right) \\
=1+0.9 * 10=10
\end{gathered}
$$

2. 8.1
3. 10
4. 9

$\hat{Q}(s, a)$	a_{1}	a_{2}
s_{1}	10	9
s_{2}	9	10

Q2-1: A robot wants to deliver a package from warehouse at s1 to a home at $s 9$. However, it wants to avoid trench (present at $s 6$). In the figure, the green numbers are the optimal $\mathrm{V}^{*}(\mathrm{~s})$, the blue arrows are the optimal policy, and the black arrows are the possible actions from s 3 . How can you get $\mathrm{V}^{*}(\mathrm{~s} 3)$ using $\mathrm{Q}(\mathrm{s}, \mathrm{a})$? Assume discount factor $\gamma=0.8$ and rewards as follows:

- $r(s, a)=-100$ if entering the trench
- $r(s, a)=+100$ if entering home
- $r(s, a)=0$ otherwise

1. $\max \{51,0\}$
2. $\max \{51,-20\}$
3. $\max \{51,-80\}$
4. $\max \{51,-100\}$

Q2－1：A robot wants to deliver a package from warehouse at s1 to a home at s9． However，it wants to avoid trench（present at s6）．In the figure，the green numbers are the optimal $\mathrm{V}^{*}(\mathrm{~s})$ ，the blue arrows are the optimal policy，and the black arrows are the possible actions from s 3 ．How can you get $\mathrm{V}^{*}(\mathrm{~s} 3)$ using $\mathrm{Q}(\mathrm{s}, \mathrm{a})$ ？Assume discount factor $\gamma=0.8$ and rewards as follows：
－$r(s, a)=-100$ if entering the trench
－$r(s, a)=+100$ if entering home
－$r(s, a)=0$ otherwise

1． $\max \{51,0\}$
2． $\max \{51,-20\}$
3． $\max \{51,-80\}$
4． $\max \{51,-100\}$

$$
\begin{aligned}
& \mathrm{Q}(s 3, \leftarrow)=0+0.8 * 64=51 \\
& \mathrm{Q}(\mathrm{~s} 3, \downarrow)=-100+0.8^{*} 100=-20 \\
& \begin{aligned}
\mathrm{V}^{*}(\mathrm{~s} 3) & =\max \{\mathrm{Q}(\mathrm{~s} 3, \leftarrow), \mathrm{Q}(\mathrm{~s} 3, \downarrow)\} \\
& =\max \{51,-20\}
\end{aligned}
\end{aligned}
$$

	$\begin{aligned} & s 2 \\ & 64 \end{aligned}$	s3 $\longleftarrow 51$
$\begin{aligned} & \text { s4 } \\ & 64 \end{aligned}$	$\begin{aligned} & s 5 \\ & 80 \end{aligned}$	s6 100
s7	$\begin{aligned} & s 8 \\ & 100 \end{aligned}$	$\begin{array}{lc} \hline \text { s9 } & \text { 田 } \\ 0 & \text { 里 } \end{array}$

