CS 760: Machine Learning
Neural Networks lli

Fred Sala

University of Wisconsin-Madison

Oct. 14, 2021 :

Logistics

Announcements:

*Proposal due today!
*HW 4 Out

*Midterm: next week

*Class roadmap:

Tuesday, Oct. 19
Thursday, Oct. 21

Tuesday, Oct. 26

Wed, Oct. 27

Neural Networks IV

Neural Networks V

Practical Aspects of
Training + Review

Midterm

|

“ SYJOMIDN |eJnaN ||V

Outline

*Review & Regularization
* Forward/backwards Pass, Views, L1/L2 Effects

*Other Forms of Regularization
* Data Augmentation, Noise, Early Stopping, Dropout

*Convolutional Neural Networks
* Convolution Operation, Intuition

Outline

*Review & Regularization
* Forward/backwards Pass, Views, L1/L2 Effects

Review: Backprop

*Forward pass:
L(fnetwork(x)a y)

*Let’s unwrap this:

L 7“ Wk: k— 1(Wk: 1 e (WQ 1 Wl))))’y)

i ¥

Activation Linear
function transformation,

Layer k Layer k

Activation Linear
function transformation,

Layer 1 Layer 1

Review: Forward/Backward Passes

*Forward pass:

Lt (WhrE = (W2 (W2 (W) -+),)
*For convenience,
o =r! (WIri=t (W=t o2 (W2t (W) -+)
Z] — WjTj_l(Wj_l o TZ(Wle(Wlx)) o)

Review: Backward Pass

*Backward pass. Say we compute gradient w.r.t. x

OL Oa* 0zF 0aF—1 9zk1 Oal Oz1
dak OzF Oak—1 0zk—1 Qak—2 0zl Ox

eCan write this with matrix notation
* Writing it forward, this is equivalent

Val = (W) (WA W () VL

Linear Activation function
derivative derivative

Review: Backpropagation

*Backward pass. Say we compute gradient w.r.t. x

VxL _ (Wl)T(Tl)/ o (Wk_l)T(Tk_l)/(Wk)T(Tk)/vakL
*Let’s write this recursively:

57 = (1) (W) oo (WO (5 (W) () Vi L

. T Easy to set up a recursion (start at k, go down) :

Start at |

layer here 5j—1 — (T]_l)/(W])T5]

Review: Backpropagation

*Let’s write this recursively:
5 = (79 (W oo (W T (L (W) () 9 e L
* Easy to set up a recursion (start at k, go down) :

5]'—1 _ (T]—l)/(W])Té*j

*How do we get our gradients for weights?

Vs L =6 (a7~)T

Review: Regularization, Bayesian Prior View

*Recall our MAP version of training. Bayes law:

p(0)p({x;, yi}0)
p({xi,yi})

p(0 | {x;,yi}) =
* MAP:

max logp(6 | {x; y;}) = min —logp(6) —logp(1x; yi} | 6)

\ J
\ ' J Y

Regularization MLE loss

*L2: Corresponds to normal p(x |y, 8), normal prior p(6)

Choice of View?

*Typical choice for optimization: soft-constraint
mgn Lr,(68) = L(6) + AR(6)

*Hard constraint / Bayesian view: conceptual / for derivation

*Hard-constraint preferred if
* Know the explicit bound R(0) <r

*Bayesian view preferred if
* Domain knowledge easy to represent as a prior

Examples: L2 Regularization
*Again,
" - A
min Lp(6) = L(6) + 110113
e Questions: what are the

* Effects on (stochastic) gradient descent?

* Effects on the optimal solution?

L2 Regularization: Effect on GD

*Gradient of regularized objective
VL,(0) = VL(O) + A0

*Gradient descent update
0 —60—nVLis(0) =60—nVL(O)—nAb

= (1 -n1)68 —n VL(6)

*In words, weight decay

L2 Regularization: Effect on Optimal Solution

Consider a quadratic approximation around 8

L(O®) =~ LA+ (0 —-69TVL(6" +%(9 —90)TH(H — 6%

Since 8 is optimal, VL(6*) = 0
“ - 1
L(B) = L(6%) + 5(6 —0")TH(6 — 6%)

VL(O) =~ H(6 — 6*)

L2 Regularization: Effect on Optimal Solution

»Gradient of regularized objective: VL, (8) ~ H(8 — 8*) + 16

On the optimal 83: 0 = VLz(6;) ~ H(O; — 6) + A0;
0% ~ (H + A)"'Ho"
*H has eigendecomp. H = QAQ", assume (A + AI)~1 exists:

0: ~ (H+AD"1HO* = Q(A + AI)"1AQT 6O

* Effect: rescale along eigenvectors of H

L2 Regularization: Effect on Optimal Solution

Effect: rescale along eigenvectors of H
Visual Example:

Figure from Deep Learning,
Goodfellow, Bengio and Courville

L1 Regularization: Effect on GD

méi}n Lr(6) = L(6) + 2]16]l

* Effect on (stochastic) gradient descent:
*Gradient of regularized objective

VL, (0) = VL(O) + Asign(6)
where sign applies to each elementin 6
*Gradient descent update

0 —60—nVLes(8) =60 —1nVL(O) — nlsign(6)

L1 Regularization: Effect on Optimal Solution
*Again,
L(6) ~ L(6°) + 5 (6 — 6)"H(6 — 6"

*Further assume that H is diagonal and positive (H;;> 0, Vi)
* not true in general but assume for getting some intuition

*The regularized objective is (ignoring constants)

] 1 *
Lr(8) = ZEHL'L'(HL' —0)* + 1|6;]
:

L1 Regularization: Effect on Optimal Solution

* The regularized objective is (ignoring constants)

A~ 1 £
Lr(0) = ZEHii(Hi —07)% + 216,
i

*The optimal 05 g

A
max{@i* —H—,O} if 6; =0
(02)1 z{ /{l
min{@lfk +H—,O} if 67 <0

il

\
* Compact expression for the optimal 65

A
(62); = sign(8) max{|6;| ———, 0}
Ll

L1 Regularization: Effect on Optimal Solution

*The optimal 05

(A
max{@i* ——,O} if 8; =0

(9;)1 ~ { /{l
min{@lfk +—,O} if ; <0
\ Hy)

(Or);
e Effect: induces sparsity
A " (0"
- Hy

Break & Quiz

21

Outline

*Other Forms of Regularization
* Data Augmentation, Noise, Early Stopping, Dropout

Data Augmentation

Augmentation: transform + add new samples to dataset
*Transformations: based on domain

*|dea: build invariances into the model
*Ex: if all images have same alignhment, model learns to use it
*Keep the label the same!

Data Augmentation: Examples

Examples of transformations for images

*Crop (and zoom)
*Color (change contrast/brightness)
*Rotations+ (translate, stretch, shear, etc)

Many more possibilities. Combine as well!

Q: how to deal with this at test time?
*A: transform, test, average

Combining & Automating Transformations

One way to automate the process:
*Apply every transformation and combinations
Downside: most don’t help...

Want a good policy, ie, 2> = = = =

*Active area of research: search for good
policies | | 3
1. Ratner et al: “Learning to Compose Domain-Specific
Transformations for Data Augmentation”
2. Cubuk et al: “AutoAugment: Learning Augmentation
Strategies from Data”

Data Augmentation: Other Domains

Not just for image data. For example, on text:

* Substitution
*E.g., “Itis a great day” = “It is a wonderful day”
* Use a thesaurus for particular words
* Or, use a model. Pre-trained word embeddings, language models

e Back-translation

* “Given the low budget and production limitations, this movie is very good.” =
“There are few budget items and production limitations to make this film a

really good one”

Xie et al: “Unsupervised Data Augmentation for
Consistency Training”

Adding Noise

*What if we have many solutions?

Class +1

Class -1

Adding Noise

*Adding some amount of noise helps us pick solution:

[] |
H g
O
O
Class +1 0 ¢
H B ®
® ® o
O
] ® ® Class -1
® O
® o

Prefer w, (higher confidence)

Adding Noise

*Too much: hurts instead

Too much noise leads
to data points cross

. - the boundary
H g
O [|
Class +1 O
H B o
® ® ®

[|

O P o Class -1

® ®
o o

Prefer w, (higher confidence)

Adding Noise: Equivalence to Weight Decay

*Suppose the hypothesis is f(x) = wlx, noise is e~N (0, AI)
* After adding noise, the loss is

L(f) = [Ex,y,e[f(x +€) — Y]Z — Exye[f(x) +wle — y]z

L(f) :IEx,y,e [f(x) — Y]Z + ZIEx,y,e [WTE(f(x) —)] + IIEx,y,e [WTE]Z

L(f) =Eyy e [f(X) — y12 + 2| wl|*

Early Stopping

*ldea: don’t train the network to too small training error

* Larger the hypothesis class, easier to find a hypothesis that fits the
difference between the two

*So: do not push the hypothesis too much; use validation error to
decide when to stop

Learning curves
| | | 1
e—e Training set loss

0.20

0.15 —— Validation set loss|

0.10

0.05

Loss (negative log likelihood)

0.00

0 50 100 150 200 250

Time (epochs) Figure from Deep Learning,

Goodfellow, Bengio and Courville

Early Stopping

*Practically: when training, also output validation error
* Every time validation error improved, store a copy of the weights
* When validation error not improved for some time, stop
* Return the copy of the weights stored

wo

(=

e ———

e %
~

— -

. 3 A
Jl,

:///

>
w1

Figure from Deep Learning,
Goodfellow, Bengio and Courville

Dropout

*Basic idea: randomly select weights to update

*In each update step

* Randomly sample a different binary mask to all the input and
hidden units
* Multiply the mask bits with the units and do the update as usual

*Typical dropout prob: 0.2 for input and 0.5 for hidden units

Dropout

*Closely related to bagging: cREcBEoREC
* Ensembling many models @ (| (| ()
gol vF |6
O R ECREC
() () () (»)
° o @) (@) @ @ @

SO | 2

(b)) (k)
> | vle o
OB EONEONRNO
)

Figure from Deep Learning, Goodfellow, Bengio and Courville

Batch Normalization

*If outputs of earlier layers are uniform or change greatly on
one round for one mini-batch, then neurons at next levels
can’t keep up: they output all high (or all low) values

*Next layer doesn’t have ability to change its outputs with
learning-rate-sized changes to its input weights

*We say the layer has “saturated”

Batch Normalization

* Algorithm:

* (i)-(iii) like standardization of input
data, but w.r.t. only the data in mini-
batch. Can take derivative and
incorporate the learning of last step
parameters into backpropagation.

* Note last step can completely un-do
previous 3 steps

* But if so this un-doing is driven by
the later layers, not the earlier
layers; later layers get to “choose”
whether they want standard normal
inputs or not

Input: Values of x over a mini-batch: B = {x1._ . };
Parameters to be learned: v,
Output: {y; = BN, g(z;)}

1 m
— — i // mini-batch mean
UB ™ ; X 1ni
0F E f:(:c — 1B)* // mini-batch variance
y m 1=1 7’
T; i BB // normalize
VO 123 + €
yi < Y% + = BN, g(z;) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

Break & Quiz

37

Outline

*Convolutional Neural Networks
* Convolution Operation, Intuition

Images as Input?

*We could use the feed-forward fully-connected layers we
have so far...

* Kind of big though...
* Also, if our images move, should the weights change?

-_

iR N
jian i

T CETE WD DS

i i
Hi e
ll i II i

s

— e o SHE R TSN TAY (ST AR SN
=-=“—--_-—
A SEY R SR D WDy e SOt SIS NS
-——-—--—_-
oD MG T RN =

PixelArt4K

Convolution Operation

*Given array u; and wg, their convolution is a function s;

+ oo

St = § UgWi—_q

a=—oo

*Writtenass = (u*w) or s;=(ux*w);
*When u; or w; is not defined, assumed to be 0

Convolution Operation

*Example:

w =[z,y, x]
u=[a,b,cd,e,f]

xa+yb+zc

—T

Convolution Operation

*Example:

w =[z,y, x]
Xb+YC+Zd u= [a, br C, d; e, f]

i

a2 b e d e | f

Convolution Operation

*Example:

xc+yd+ze

i

_a b e d e

Convolution Operation

*Example:

xd+ye+zf

i

Convolution Operation

*Stride: # of positions we move per step

—T

xc+yd+ze

i

__a | b e d e

Convolution Operation

* Matrix version: Kernel/Filter

ol > el ba

wa+bx+ wa+bx+ bw+cx+
Input ey+fz fy+ gz

AN

Feature Map

ey+fz

Convolution Operation

*All the units used the same set of weights (kernel)
*The units detect the same “feature” but at different locations

first hidden layer first hidden laver

[Figure from neuralnetworksanddeeplearning.com]

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov, Sharon Li e

