S Nt o Sk =

CS 760: Machine Learning
Recurrent Neural Networks

Fred Sala

University of Wisconsin-Madison

October 21, 2021

Announcements

*Logistics:
*HW 4 due (Friday!),
e Midterm review, midterm

*Class roadmap:
Thursday, Oct. 21 NeuralNetworksV

Tuesday, Oct. 26 Practical Aspects of

—

Training + Review
Wed, Oct. 27 Midterm
o
Thursday, Oct. 28 Generative Models
Tuesday, Nov. 2 Kernels + SVMs —

duiuJiea pasiaiadng AjasoN

Outline

*CNN Tasks & Architectures
* MNIST, ImageNet, LeNet, AlexNet, ResNets

*RNN Basics
*Sequential tasks, hidden state, vanilla RNN

*RNN Variants + LSTMs
*RNN training, variants, LSTM cells

Outline

*CNN Tasks & Architectures
* MNIST, ImageNet, LeNet, AlexNet, ResNets

Review: 2-D Convolutions

*Example:
Input Kernel Output
0|11]2
0| 1 19 | 25
31415 * —
2|3 37 143

Ox0+1x14+3%x2+4%x3=19,
IX0+2Xx14+4%x2+5%3 =25,
3IX0+4X14+6X%X2+7%X3 =37,
4x0+5X1+7%X2+8X%X3=43.

(vdumoulin@ Github)

Review: CNN Advantages

*Fully connected layer: m x n edges

e Convolutional laver: £ m x k edges

oJoX Jojormme

k kernel size

oxoRcRcgo ™™

Review: Convolutional Layers

*Properties
*Input: volume ¢;x n, x n, (channels x height x width)

* Hyperparameters: # of kernels/filters c,, size k, x k,, stride s, x s,
zero padding p, xp,,

* Output: volume ¢, x m, x m ,(channels x height x width)
* Parameters: k, x k,, x c; per filter, total (k, x k,, x ¢;) x c,

@E>©©ooo

3
Stanford CS 231n

Review: Max Pooling

*Returns the maximal value in the sliding
window

*Example:
*max(0,1,3,4) =4

Input Qutput
011] 2

2 X 2 Max 419
31415 Pool

ooling 718
6|78

Review: CNN Architectures: LeNet

*Traditional tasks: handwritten digit recognition
*Classic dataset: MNIST
° 1989_1999 LeNet mOdel zip code recognition. Neural Computation

LeCun, Y et al. (1989). Backpropagation applied to handwritten

LeCun, Y.; Bottou, L.; Bengio, Y. & Haffner, P. (1998). Gradient-
based learning applied to document recognition. Proc. IEEE

32x32 image

convolution convolution pooling full
pooling full
= | _ Gauss
| = = =
I i © o
| — :-—'-'_'-—- o \ o
i - =t —
]| l « =
___________________—_—__—‘_____,__—-r__..-"‘:-"‘_'—-'-___ 1 -—-.._______.______________-_-_-_-_‘______-___-_
R 6@14x14 ST
N S2 feature map H o 4{_.-——:{;;@;'5"5
6@28x28 16@10x10 x

C1 feature map

C3 feature map S4 feature map

CNN Architectures: AlexNet

*First of the major advancements: AlexNet
*Wins 2012 ImageNet competition
* Major trends: deeper, bigger LeNet

227 3
CONV Overlapping Overlapping
11x11 Max POOL CONV Max POOL CONV
stride=4, 96 3x3, 96 5x5,pad=2 33, 256 3x3,pad=1
96 kernels stride=2 ’ 256 kernels stride=2 384 kernels
1‘1i ii (227-11)/4 +1 |gg (35-3)/2 +1 27'" {321? I:;ir_w o f::} e " {1113 |=2.1;3_jjll
[IV: =55 =27 a7 a7 13 0
i 25 13
227
Overlapping
84 CONV CONV Max POOL
3x3,pad=1 3x3,pad=1 256 3x3, 256 O
384 kernels 256 kernels stride=2
(13+2°1-3)11 (13+2*1-3)11 (13-3)/2 +1 FC FC !
+1 =13 +1 =13 =6
" ; O
- 13 6
13 |88 13 9216 1000
13 13 Softmax

4096 4096

More CNN Architectures

*AlexNet vs LeNet
* Architecture compar'wn/

1000 Classes At Output
FC Layers Increased Size

More Convolutional Layers

More Output Channels

Larger Pool Size

Larger kernel size, stride for increased image /
size, and more output channels.

Dense (1000)

{

Dense (4096)

t

Dense (4096)

,

3x3 MaxPool, stride 2

Dense (10)

Dense (84)

Dense (120)

t

2x2 AvgPool, stride 2

t

5x5 Conv (16)

¢

2x2 AvgPool, stride 2

t

5x5 Conv (6), pad 2

t
3x3 Conv (384), pad 1
t
3x3 Conv (384), pad 1
t
3x3 Conv (384), pad 1
!
3x3 MaxPooling, stride 2
!
5x5 Conv (256), pad 2
t
3x3 MaxPool, stride 2
t
11x11 Conv (96), stride 4
t

t

image (3x224x224)

image (32x32)

AlexNet

LeNet

More Differences

* Activations: from sigmoid to RelLU
* Deal with vanishing gradient issue

*Data Augmentation

- sigmoid

1
0B l+4+e -

Qe

y Saturating gradients

Q2

oo A
=10 =5 Q 3 10

Going Further

*|lmageNet error rate
* Competition winners; note layer count on right.

30

25

20

15

10

5

28.2

16.4

152 layers

11.7 |19 layers

22 layers

shallow 8 layers | |8 layers

2010 2011 2012 2013 2014 2014
Linet al Sanchez & Krizhevsky etal Zeiler & Simonyan & Szegedy et al
Perronnin (AlexNet) Fergus Zisserman (VGG) (GoogleNet)

Credit: Stanford CS 231n

7.3 ;

A

2015

Heetal
(ResNet)

Add More Layers: Enough?

VGG: 19 layers. ResNet: 152 layers. Add more layers...
sufficient?

*No! Some problems:
*i) Vanishing gradients: more layers => more likely
*ii) Instability: can’t guarantee we learn identity maps

20-layer

Reflected in training error:

56-layer

test error (%o)

training error (%o)

20-layer

; iter:‘ (led) - " ter. (led)

He et al: “Deep Residual Learning for Image Recognition”

Residual Connections

Idea: adding layers can’t make worse if we can learn identity
*But, might be hard to learn identity

*/ero map Is easy...
* Make all the weights tiny, produces zero for output

Left: Conventional layers block

0 . flx) +x %E Right: Residual layer block
flx)
A To learn identity f(x) = x, layers now
X A .
X need to learn f(x) = 0 = easier

ResNet Architecture

*ldea: Residual (skip) connections help make learning easier
[Example architectu re: VGG-19 34-layer plain 34-layer residual

image image image

output

*Note: residual connections

3x3 conv, B4
* Every two layers for ResNet34 0

*Vastly better performance e

pool, /2 pool, /2 paal, f2

autput

* No additional parameters! %]
*
* Records on many benchmarks et

| 3x3 conv, 256 |

pool, f2
output

size: 2B 3x3 cony, 512

He et al: “Deep Residual Learning for Image Recognition”

Outline

*RNN Basics
*Sequential tasks, hidden state, vanilla RNN

So Far...

*Our models take one input object to one output object
* Fixed-dimensional input vector

*What about sequential data?
*|.e., language!
* Also, video, many other data

\What should our models do?

Tasks We Can Handle?

one to one

*Our standard model so far. One fixed input type, one output
* Image classification

Tasks We Can Handle?

one to many

man wearing a black shirt
red shirt on a man jelephant is standing
large green T elephant is brown

trees

roof of a
building

trunk of an

elephant i _ green trees

in the
background

rocks on
the ground e *
7 leg ¢
ball is e S92
white A\ &
round is B T T leg of an
hlo <+ e asEss elephant

; shadO\. on
ground is brown elephant is standing the ground

“DenseCap: Fully Convolutional Localization Networks for
Dense Captioning”, Johnson, Karpathy, Li

*One input, but sequence at the output
* EX: image captioning. Input: one image, Output: sequence of words

Tasks We Can Handle?

many to one

N - BONC©)

Negative Neutral Positive

*Seqguence input, one output

* Ex: sentiment analysis. Input is a sentence, output is one of
{positive, neutral, negative}

Tasks We Can Handle?

many to many
Economic growth has slowed down in recent years

N bt

Das Wirtschaftswachstum hat sich in den letzten Jahren verlangsamt .
Economic growth has slowed down in recent years . > e e

| |
II | . /

\ | |
La croissance économique s' est ralentie ces derniéres années .

devblogs.nvidia.com

*Sequence input, sequence output
* Ex: machine translation. Translate from language A to language B

Tasks We Can Handle?

many to many

*Synchronized input and output
* Ex: Video classification: label each frame of a video

Tasks We Can Handle?

one to one one to many many to one many to many many to many

*Don’t have the ability to do anything except (1) so far...
* Need a new kind of model

Modeling Sequential Data

*Simplistic model:
st state at time t. Transition function f

S(t'l'l) — f(S(t), 8)

' N

Modeling Sequential Data: External Input

*External inputs can also influence transitions
* sl state at time t. Transition function f
«x(t): input at time t %f

S(t+1) — f(s(t),x(t“); 3) x

Important: the
same [and 0 for
all time steps

x(t_z) x(t_l) x(t) x(t+1)

Recurrent Neural Networks

*Use the principle from the system above:

* Same computational function and parameters across different time
steps of the sequence

*Each time step: takes the input entry and the previous
hidden state to compute the current hidden state and the

output entry
*Training: loss typically computed at every time step

RNNs: Basic Components

*\What do we need for our new network?

* lnput x
*State s
* Output o

* Labels y & Loss function L
e Still need to train!

Recurrent: state is >
plugged back into
itself

RNNs: Unrolled Graph

— Il
SHONCESE -

Simple RNNs

eClassical RNN variant:

a® = p+WstD 4 yx®
s® = tanh(a®)
0® =¢c+Vs®
@ @ 9O = softmax(o®)
L® = CrossEntropy(y®,)

ot—1) o® ot+1)

Properties

*Hidden state: a lossy summary of the past

*Shared functions / parameters
* Reduce the capacity and good for generalization

*Uses the knowledge that sequential data can be processed in
the same way at different time step

*Powerful (universal): any function computable by a Turing
machine computed by such a RNN of a finite size
Siegelmann and Sontag (1995)

Example: Char. Level Language Model

*LM goal: predict next character:

target chars: ‘e’ T i i “0”
1.0 0.5 0.1 0.2
2.2 0.3 0.5 -1.5
.Voca bUIary output layer 30 b 55 i
4.1 1.2 1.1 2.2
{hlelllo} A .
T T W_hy
\
Tl . 0.3 1.0 0.1 0.3
*Training sequence: hidden layer | -0.1 |— | 03 |—| 0.5 =% 0.0
“ ” 0.9 0.1 -0.3 0.7
hello ‘
T T TW_xh
1 0 0 0
i 0 1 0 0
tl
input layer |Sa 0 : :
0 0 0 0
input chars: “h” “g" “p» “q

Stanford CS231N

Example: Char. Level Language Model

*LM goal: predict next character:

*\Vocabulary saple - | 1 '\ '

h | .03 .25 A1 A1
A3 Y i 1
{h,e,l,0} sommax | 2| | |2[|=|| |=
.84 .50 .03 .79
1.0 05 0.1 | 0.2
. 2.2 0.3 05 15
‘TESt tlme: O per. I 10| |19 0.1
4.1 12| |11 | 2.2 |
[b A A A
e Sample chars, feed into model W_hy
V4
03 1.0 0.1 w bh -03
hidden layer | -0.1 ~ 03 -+ 05—+ 09
09 0.1 03 07
W_xh
input layer

S |loocoo -

"

0 loo=0o
/-—
T~ loaeo >
.—', o000

input chars: “h”

Outline

*RNN Variants + LSTMs
*RNN training, variants, LSTM cells

RNN Variants

Example: use the output at the
previous step

Example: only output at the
end
\ 0(t+1) \
\NW
V v V s
\
4
U

x (=1 oAl x(E+1)

RNN Variants: Encoder/Decoder

*RNNSs: can map sequence to one vector; or to sequence of
same length

*What about mapping sequence to sequence of different
length?
* Ex: speech recognition, machine translation, question answering,
etc.

RNN Variants: Encoder/Decoder

Encoder

-# ﬁ

Decoder | |
€Y

y

Training RNNs

*Backpropagation Through Time
* |dea: unfold the computational graph, and use backpropagation

*Conceptually: first compute the gradients of the internal
nodes, then compute the gradients of the parameters

o b

=
§ & @

0Ey OBy (p Ohy (1 Ohy o
oU ~ Ohy (.1,2 G n O <.1,l : ET Ty

RNN Problems

*What happens to gradients in backprop w. many layers?

*In an RNN trained on long sequences (e.g. 100 time steps) the
gradients can easily explode or vanish.

* We can avoid this by initializing the weights very carefully.

*Even with good initial weights, very hard to detect that
current target output depends on an input from long ago.
* RNNs have difficulty dealing with long-range dependencies.

LSTM Architecture

*RNN: can write structure as:
| e

Sl

| | I

&) ®) &)

*Long Short-Term Memory: deals with problem. Cell:

® ®
f

Y 2
| (DR W R
f [TAAL A T
)

&)

@ Chris Olah

Understanding the LSTM Cell

*Step-by-step

* Good reference: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

fe =0 (Wg-lht—1,2¢] + by)

*“Forget” gate.
e Can remove all or part of any entry in cell state C
* Note the sigmoid activation

Understanding the LSTM Cell

*Step-by-step

iy = 0 (Wi-[hee1,ze] + b;)

hi ('f — t?illll(”'(v-[h,*l..1-,] = B])(,)

*Input gate. Combine:
* What entries in C,_, we'll update
» Candidates for updating: C,
* Add information to cell state C, ; (post-forgetting)

Understanding the LSTM Cell

*Step-by-step

O,
f’r .(-$ Cy = fi*xCi_1 + 14 x Cy
t

—>>

Ji

*Updating C,_, to C,
* Forget, then
* Add new information

Understanding the LSTM Cell

*Step-by-step

he A

GE@ni> op =0 (W, [hi—1,2¢] + bo)

229 ll;
r >
Iy

hy = o4 * tanh (C})

*Output gate
* Combine hidden state, input as before, but also
* Modify according to cell state C,

R —a > o T S
M Rt o i STt i s e
R T ol o S 5
LR A

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov , Sharon Li, Chris Olah

