S8 \ :
A%

[}

CS 760: Machine Learning
Practical Tips & Midterm Review

Fred Sala

University of Wisconsin-Madison

October 26, 2021

Announcements

*Logistics:
*Midterm!
*Class roadmap:

Wed, Oct. 27
Thursday, Oct. 28

Tuesday, Nov. 2

Midterm

Generative Models

Kernels + SVMs

—

|

duluiea pasiniadng Aj3son

Outline

*RNN Variants + LSTMs
* LSTM cells, gates, variations

*Practical Training Tips & Tricks
*Data pipelines, initialization, hyperparameter tuning

*Midterm Review
*Cross-validation, optimization, models

Outline

*RNN Variants + LSTMs
* LSTM cells, gates, variations

Tasks We Can Handle?

one to one one to many many to one many to many many to many

*Don’t have the ability to do anything except (1) so far...
* Need a new kind of model

Modeling Sequential Data: External Input

*External inputs can also influence transitions
* sl state at time t. Transition function f
«x(t): input at time t %f

S(t+1) — f(s(t),x(t“); 3) x

Important: the
same [and 0 for
all time steps

x(t_z) x(t_l) x(t) x(t+1)

Simple RNNs

eClassical RNN variant:

a® = p+WstD 4 yx®
s® = tanh(a®)
0® =¢c+Vs®
@ @ 9O = softmax(o®)
L® = CrossEntropy(y®,)

ot—1) o® ot+1)

RNN Problems

*What happens to gradients in backprop w. many layers?

*In an RNN trained on long sequences (e.g. 100 time steps) the
gradients can easily explode or vanish.

* We can avoid this by initializing the weights very carefully.

*Even with good initial weights, very hard to detect that
current target output depends on an input from long ago.
* RNNs have difficulty dealing with long-range dependencies.

LSTM Architecture

*RNN: can write structure as:
| e

Sl

| | I

&) ®) &)

*Long Short-Term Memory: deals with problem. Cell:

® ®
f

Y 2
| (DR W R
f [TAAL A T
)

&)

@ Chris Olah

Understanding the LSTM Cell

*Step-by-step

* Good reference: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

fe =0 (Wg-lht—1,2¢] + by)

*“Forget” gate.
e Can remove all or part of any entry in cell state C
* Note the sigmoid activation

Understanding the LSTM Cell

*Step-by-step

iy = 0 (Wi-[hee1,ze] + b;)

hi ('f — t?illll(”'(v-[h,*l..1-,] = B])(,)

*Input gate. Combine:
* What entries in C,_, we'll update
» Candidates for updating: C,
* Add information to cell state C, ; (post-forgetting)

Understanding the LSTM Cell

*Step-by-step

O,
f’r .(-$ Cy = fi*xCi_1 + 14 x Cy
t

—>>

Ji

*Updating C,_, to C,
* Forget, then
* Add new information

Understanding the LSTM Cell

*Step-by-step

he A

GE@ni> op =0 (W, [hi—1,2¢] + bo)

229 ll;
r >
Iy

hy = o4 * tanh (C})

*Output gate
* Combine hidden state, input as before, but also
* Modify according to cell state C,

Outline

*Practical Training Tips & Tricks
*Data pipelines, initialization, hyperparameter tuning

Break & Quiz

Tips & Tricks: Initial Pipeline

First step: building a simple pipeline
e Set up data, model training, evaluation loop

*Use a fixed seed
* Don’t want to get different values each time

e Qverfit on one batch

* Goal: see that we can get zero loss, catch any
bugs

*Check training loss: goes down?

Tips & Tricks: Data

*Shuffle the training data

*In training ,usually don’t select random examples, but rather go
through the dataset for each epoch

* Shuffle to avoid relationships between consecutive points

* Pay attention to your data
* Properties?

Tips & Tricks: Initialization

Usually want to pick small random values

* Final layer, could use knowledge of problem. Ex: if mean is u,
initialize to u

* Don’t want the same value: symmetry means every weights has
same gradient, hard to break out of

* Multiple methods: various rules of thumb
e Sample from a normal distribution

* Note that #inputs affects the variance... grows as d? for d inputs: Can
correct by dividing by 1/4/n

Tips & Tricks: Learning Rate Schedule

*Simple ways:
* Constant

* Divide by a factor ever certain number of epochs (annealing)
* Look at validation loss and reduce on plateau

*Also simple: use an optimizer like Adam that internally tracks
learning rates

*In fact, per parameter

e Lots of variations available

Tips & Tricks: Regularizing

*Best thing to do: get more data!
* Not always possible or cheap, but start

here.
. {Sﬂ‘" o “‘lé" \\',4"/"’;
e Augmentation e | & e
Izs | &E N

* But make sure you understand the

transformations

ales | BE %/‘ &
. . Enlarge your Dataset
*Use other strategies: dropout, weight nanonets
decay, early stopping

* Check each strategy one-at-a-time

Tips & Tricks: Hyperparameter Tuning

Many solutions:

*Grid Search: pick candidate sets S,,...,S, for each hparam,
search over every combination in S; xS, x ... X S,

*Random Search
*Bayesian Approaches
*Hyperband: use successive halfing

Li et al, “Hyperband: A Novel Bandit-Based Approach to
Hyperparameter Optimization”, 2018

Tips & Tricks: Monitoring & Logging

[]
¢ Checkpomt your models
o WARNING: tensorflow: __init__ (from tensorflow.python.ops.init_ops) is deprecated and wi
® Instructions for updating:
ave We I g S reg u a r y Use tf.initializers.variance_scaling instead with distribution=uniform to get equivalen

WARNING: tensorflow:From /home/jitendra gtbit11l/.local/lib/python2.7/site-packages/tflea
deprecated and will be removed in a future version.
Instructions for updating:
keep_dims is deprecated, use keepdims instead
2018-89-27 19:49:34.298676: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your C
start training...

- emotions = 7

- model = B

e o L] L]
*Log information from trainin e hRerr
learning_rate = 0.0816
learning_rate_decay = 0.864
otimizer_param (momentum) = 0.95

keep prob = 0.956
Process oot 150

use landmarks = True

use hog + landmarks = True

use hog sliding window + landmarks = True
use batchnorm after conv = True

use batchnorm after fc =

id: TOMNF9
directory: logs/

* At least keep track of train / test

Validation samples: 56

losses, time elapsed, current training

| Momentum | epoch: 001 | loss: 0.000PO - acc: 0.0000 -- iter: 0128/3436
BE[ASH[ATraining Step: 2 | total loss: 1m3e|[32m1. 8167423 [EmEE|[Om | time:

Settl ngSo Log regu |a rly r'[‘ugrlflentum | epoch: 801 | loss: 1.B1674 - acc: 0.0914 -- iter: 0256/3436

BE[AGH[ATraining Step: 3 | total loss: [fZ[1mE|[32m1.96555FF[emEE[Om | time:
BEr2k

| Momentum | epoch: 001 | loss: 1.96555 - acc: 0.1700 -- iter: 0384/3436
BE[ASH[ATraining Step: 4 | total loss: 1m38][32m2. 2045423 [emSE|[Om | time:
BE[2K

| Momentum | epoch: 001 | loss: 2.20454 - acc: 0.1363 -- iter: 0512/3436
BE[AGH[ATraining Step: 5 | total loss: [Z[1mE|[32m2.05230FF[emEE[6m | time:
BEr2k

| Momentum | epoch: 001 | loss: 2.05230 - acc: 0.1122 -- iter: 0640/3436
BE[ASH[ATraining Step: 6 | total loss: 1mSE|[32m1.975735 [OmEE|[Om | time: 9.32
=

NeptuneAl

Tips & Tricks: Monitoring & Logging

*Log information from training
p r O C e S S My latest experiment

Simple comparison of several hyperparameters

, accuracy
[C] Show data download links
Ignore outliers in chart scaling
accuracy
tag: accurac! y/accurac y

() Use Softwa re paCkages Tooltip sorting method: default -
e Also have built-in visualization

—_— e 0.6

Horizontal Axis

RELATIVE
* Example: TensorBoard

Runs

WALL

Write a regex to filter runs

() Ir_1E-03,conv=1fc=2

O Ir_1E-03,conv=2,fc=2

O Ir_1E-04,conv=1fc=2

() Ir_1E-04,conv=2,fc=2
TOGGLE ALL RUNS

experiment AdYd1TgeTlaLWXx6I8JUbA

(]}
Bl =

pvtorch.org

Break & Quiz

Outline

*Midterm Review
*Cross-validation, optimization, models

Supervised Learning: Formal Setup

Problem setting
* Set of possible instances X

* Unknown target function f: X =)

*Set of models (a.k.a. hypotheses): H = {h‘h X — y}

Get
* Training set of instances for unknown target function,

SL: Training & Generalization

Goal: model h that best approximates f

*One way: empirical risk minimization (ERI\/I)

f-&rgmm—Zf), y'9))

hE?—[n
\
Model prediction

Hypothesis Class
Loss function (how far are we)?

*Generalization?

k-Nearest Neighbors: Classification

Training/learning: given

{(xzW), g0, (2@ 4@ o (2(m) y(m)))

Prediction: for o, find k most similar training points

Return plurality class "

J < argmax > (v, yD)

VE
Y 1=1

|.e., among the k points, output most popular class.

Decision Trees: Learning

*Learning Algorithm:

{(x®, y®), (2@ 4@ . (2™, y(m))}

\w/m s
” T
< & $ i
Age | CR | Medium \‘ ™
/ x gdm %
X N /\
” (]

MakeSubtree(set of training instances D)
C = DetermineCandidateSplits(D)
if stopping criteria met
make a leaf node N
determine class label/probabilities for N
else
make an internal node N
S = FindBestSplit(D, C)
for each outcome k of §
D, = subset of instances that have outcome &
k™ child of N = MakeSubtree(D,)

return subtree rooted at N

Bias: Accuracy of a Model

*How can we get an unbiased estimate of the accuracy of a
learned model?

labeled data set

!

training set test set
*Unbiased estimate of 8 l 4
A learned model
. e N
method |
_ J

‘ aCcuracy estimate ‘

Bias: Using a Test Set

*How can we get an unbiased estimate of the accuracy of a
learned model?

* When learning a model, you should pretend that you don’t have
the test data yet (it is “in the mail”)

* If the test-set labels influence the learned model in any way,
accuracy estimates will be biased

Don’t train on the test set! :

Strategy |I: Random Resampling

* Address the second issue by repeatedly randomly
partitioning the available data into training and test sets.

labeled data set

random

training sets test sets partitions

+++ - - - ++4- -

+++- - - +4- -

+4+- - - ++- -

Strategy Il: Cross Validation

Partition data
into n subsamples

Iteratively leave one
subsample out for the
test set, train on the
rest

labeled data set

) 4

S1 S, S3 Sa St
iteration train on test on
1 S; S354 S5 S1
2 S; S3 S Ssg S,
3 S1 S, S;4 S S5
4 S1 Sy S3 Sg Sy
5 S1S; S3 Sy Ss

Strategy ll: Cross Validation Example

*Suppose we have 100 instances, and we want to estimate
accuracy with cross validation

iteration train on test on correct
1 S, S3 S; Sc S4 11/ 20
2 S; S3 S; St S, 17 /20
3 S; S, S; St Ss 16 /20
4 S; S, S3 Sc S, 13 /20
5 S; S, S3 Sy Se 16 /20

accuracy = 73/100 = 73%

Strategy ll: Cross Validation Tips

 10-fold cross validation is common, but smaller values of n are often
used when learning takes a lot of time

* in leave-one-out cross validation, n = # instances

* in stratified cross validation, stratified sampling is used when
partitioning the data

* CV makes efficient use of the available data for testing

* note that whenever we use multiple training sets, as in CV and random
resampling, we are evaluating a learning method as opposed to an
individual learned hypothesis

Other Metrics

actual class
A
-~ —~
positive negative
r o, .
positive true positives false positives
(TP) (FP)
predicted <
class nesative false negatives true negatives
; (FN) (TN)
\.
TP TP

true positive rate (recall) = =
actual pos TP +FN

. FP FP
false positive rate = =

actual neg TN+FP

Other Metrics: ROC Curves

* A Receiver Operating Characteristic (ROC) curve plots the TP-
rate vs. the FP-rate as a threshold on the confidence of an
instance being positive is varied

ideal point Different methods can
/ work better in

1.0+ Alg 1 , different parts of ROC
&
© e space.
<
= Alg2 -~
S * expected curve for
g random guessmg
l—

False positive rate

Iterative Methods: Gradient Descent

*What if there’s no closed-form solution?
*Use an iterative approach. Goal: get closer to solution.

e Gradient descent.
* Suppose we’re computing in g(@)
*Start at some (), 0

* [teratively compute 9t—|—1 — 6’t — ong(Ht)

 Stop after some # of steps Learning
rate/step size

Gradient Descent: lllustration

*Goal: steps get closer to minimizer

*Some notes:
* Step size can be fixed or a function

* Under certain conditions, will converge
to global minimum
* Need convexity for this

Level Sets
Wikipedia

Gradient Descent: Linear Regression

*Example for linear regression problem.

1
*Want to find minf(fe) = min _HXQ — y”%

0 0 N
»What's our gradient? V/(fg) = l(XT'xe6 - QXTZ/)
(L

*So, plugging in , we get

1
6)75_|_1 — (915 — CV—(QXTX(Qt — 2XTy)
T

Iterative Methods: Gradient Descent

*Simple modification to GD.
eLet’s use some notation: ERM:

argm1n—Z€ 9), y(9)

Note: this is what we’re optimizing over!
x’s are fixed samples.

o ik . .
6D O =0 - - ng(f(et;f(z))ay(z))

Gradient Descent: Convergence

*Even if GD is cheaper, what does it give us?

*Let’s analyze it. We'll need some ingredients

* Convex function g
* Differentiable (need this for gradients)
* Lipschitz-continuous gradients

|Vg(x1) — Vg(x2)|l2 < Li|jx1 — x2]|2

*If we run t steps with fixed step size, starting at x,

k]2
g(xt) —g(il?*) S on L HZ

/ 2t

Minimizer

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov , Sharon Li, Chris Olah

