
CS 760: Machine Learning
Practical Tips & Midterm Review

Fred Sala

University of Wisconsin-Madison

October 26, 2021

Announcements

•Logistics:
•Midterm!

•Class roadmap:

Tuesday, Oct. 26 Practical Aspects of
Training + Review

Wed, Oct. 27 Midterm

Thursday, Oct. 28 Generative Models

Tuesday, Nov. 2 Kernels + SVMs

M
o

stly Su
p

ervised
 Learn

in
g

Outline

•RNN Variants + LSTMs
• LSTM cells, gates, variations

•Practical Training Tips & Tricks
•Data pipelines, initialization, hyperparameter tuning

•Midterm Review
•Cross-validation, optimization, models

Outline

•RNN Variants + LSTMs
• LSTM cells, gates, variations

•Practical Training Tips & Tricks
•Data pipelines, initialization, hyperparameter tuning

•Midterm Review
•Cross-validation, optimization, models

Tasks We Can Handle?

•Don’t have the ability to do anything except (1) so far…
•Need a new kind of model

Modeling Sequential Data: External Input

•External inputs can also influence transitions
• s(t) state at time t. Transition function f
• x(t): input at time t

𝑠(𝑡+1) = 𝑓(𝑠 𝑡 , 𝑥(𝑡+1); 𝜃)

𝑠(𝑡−2) 𝑠(𝑡−1) 𝑠(𝑡) 𝑠(𝑡+1)
𝑓 𝑓𝑓

𝑥(𝑡−2) 𝑥(𝑡−1) 𝑥(𝑡) 𝑥(𝑡+1)

Important: the
same 𝒇 and 𝜽 for

all time steps

𝑠

𝑥

𝑓

Simple RNNs

•Classical RNN variant:

𝑠(𝑡−1) 𝑠(𝑡) 𝑠(𝑡+1)

𝑥(𝑡−1) 𝑥(𝑡) 𝑥(𝑡+1)

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑎(𝑡) = 𝑏 +𝑊𝑠(𝑡−1) + 𝑈𝑥(𝑡)

𝑠(𝑡) = tanh 𝑎 𝑡

𝑜(𝑡) = 𝑐 + 𝑉𝑠(𝑡)

ො𝑦(𝑡) = softmax 𝑜 𝑡

𝐿(𝑡) = CrossEntropy(𝑦 𝑡 , ො𝑦(𝑡))

𝑜(𝑡−1) 𝑜(𝑡) 𝑜(𝑡+1)

𝑉 𝑉 𝑉

𝐿(𝑡−1) 𝐿(𝑡) 𝐿(𝑡+1)

𝑦(𝑡−1) 𝑦(𝑡) 𝑦(𝑡+1)

RNN Problems

•What happens to gradients in backprop w. many layers?
• In an RNN trained on long sequences (e.g. 100 time steps) the

gradients can easily explode or vanish.
•We can avoid this by initializing the weights very carefully.

•Even with good initial weights, very hard to detect that
current target output depends on an input from long ago.
•RNNs have difficulty dealing with long-range dependencies.

•RNN: can write structure as:

•Long Short-Term Memory: deals with problem. Cell:

LSTM Architecture

Chris Olah

•Step-by-step
• Good reference: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

•“Forget” gate.
•Can remove all or part of any entry in cell state C
•Note the sigmoid activation

Understanding the LSTM Cell

•Step-by-step

•Input gate. Combine:
•What entries in Ct-1 we’ll update
•Candidates for updating: Ćt

•Add information to cell state Ct-1 (post-forgetting)

Understanding the LSTM Cell

•Step-by-step

•Updating Ct-1 to Ct

•Forget, then
•Add new information

Understanding the LSTM Cell

•Step-by-step

•Output gate
•Combine hidden state, input as before, but also
•Modify according to cell state Ct

Understanding the LSTM Cell

Outline

•RNN Variants + LSTMs
• LSTM cells, gates, variations

•Practical Training Tips & Tricks
•Data pipelines, initialization, hyperparameter tuning

•Midterm Review
•Cross-validation, optimization, linear models

Break & Quiz

First step: building a simple pipeline

• Set up data, model training, evaluation loop

•Use a fixed seed
•Don’t want to get different values each time

•Overfit on one batch
•Goal: see that we can get zero loss, catch any

bugs

•Check training loss: goes down?

Tips & Tricks: Initial Pipeline

•Shuffle the training data
• In training ,usually don’t select random examples, but rather go

through the dataset for each epoch
•Shuffle to avoid relationships between consecutive points

•Pay attention to your data
•Properties?

Tips & Tricks: Data

Usually want to pick small random values
•Final layer, could use knowledge of problem. Ex: if mean is u,

initialize to u
•Don’t want the same value: symmetry means every weights has

same gradient, hard to break out of

•Multiple methods: various rules of thumb
•Sample from a normal distribution
•Note that #inputs affects the variance… grows as d2 for d inputs. Can

correct by dividing by 1/ 𝑛

Tips & Tricks: Initialization

•Simple ways:
•Constant
•Divide by a factor ever certain number of epochs (annealing)
• Look at validation loss and reduce on plateau

•Also simple: use an optimizer like Adam that internally tracks
learning rates
• In fact, per parameter

•Lots of variations available

Tips & Tricks: Learning Rate Schedule

•Best thing to do: get more data!
•Not always possible or cheap, but start

here.

•Augmentation
•But make sure you understand the

transformations

•Use other strategies: dropout, weight
decay, early stopping
•Check each strategy one-at-a-time

Tips & Tricks: Regularizing

Nanonets

Many solutions:

•Grid Search: pick candidate sets S1,…,Sk for each hparam,
search over every combination in S1 x S2 x … x Sk

•Random Search

•Bayesian Approaches

•Hyperband: use successive halfing

Tips & Tricks: Hyperparameter Tuning

Li et al, “Hyperband: A Novel Bandit-Based Approach to

Hyperparameter Optimization”, 2018

•Checkpoint your models
•Save weights regularly

•Log information from training
process

•At least keep track of train / test
losses, time elapsed, current training
settings. Log regularly

Tips & Tricks: Monitoring & Logging

NeptuneAI

•Log information from training
process

•Use software packages
•Also have built-in visualization

•Example: TensorBoard

Tips & Tricks: Monitoring & Logging

pytorch.org

Break & Quiz

Outline

•RNN Variants + LSTMs
• LSTM cells, gates, variations

•Practical Training Tips & Tricks
•Data pipelines, initialization, hyperparameter tuning

•Midterm Review
•Cross-validation, optimization, models

Supervised Learning: Formal Setup

Problem setting
•Set of possible instances

•Unknown target function

•Set of models (a.k.a. hypotheses):

Get
•Training set of instances for unknown target function,

safe safepoisonous

SL: Training & Generalization

Goal: model h that best approximates f

•One way: empirical risk minimization (ERM)

•Generalization?

Model prediction

Loss function (how far are we)?
Hypothesis Class

k-Nearest Neighbors: Classification

Training/learning: given

Prediction: for , find k most similar training points

Return plurality class

•I.e., among the k points, output most popular class.

Decision Trees: Learning

MakeSubtree(set of training instances D)

C = DetermineCandidateSplits(D)

if stopping criteria met

make a leaf node N

determine class label/probabilities for N

else

make an internal node N

S = FindBestSplit(D, C)

for each outcome k of S

Dk = subset of instances that have outcome k

kth child of N = MakeSubtree(Dk)

return subtree rooted at N

•Learning Algorithm:

Bias: Accuracy of a Model

•How can we get an unbiased estimate of the accuracy of a
learned model?

•Unbiased estimate of

labeled data set

training set test set

accuracy estimate

learned model

learning

method

Bias: Using a Test Set

•How can we get an unbiased estimate of the accuracy of a
learned model?
•When learning a model, you should pretend that you don’t have

the test data yet (it is “in the mail”)
• If the test-set labels influence the learned model in any way,

accuracy estimates will be biased

•Don’t train on the test set!

Strategy I: Random Resampling

•Address the second issue by repeatedly randomly
partitioning the available data into training and test sets.

labeled data set
+++++- - - - -

+++- - - ++- -

random
partitions

+++- - - ++- -

+++ - - - ++- -

training sets test sets

Strategy II: Cross Validation

labeled data set

s1
s2 s3 s4 s5

iteration train on test on

1 s2 s3 s4 s5 s1

2 s1 s3 s4 s5 s2

3 s1 s2 s4 s5 s3

4 s1 s2 s3 s5 s4

5 s1 s2 s3 s4 s5

Partition data
into n subsamples

Iteratively leave one
subsample out for the
test set, train on the
rest

Strategy II: Cross Validation Example

•Suppose we have 100 instances, and we want to estimate
accuracy with cross validation

iteration train on test on correct

1 s2 s3 s4 s5 s1 11 / 20

2 s1 s3 s4 s5 s2 17 / 20

3 s1 s2 s4 s5 s3 16 / 20

4 s1 s2 s3 s5 s4 13 / 20

5 s1 s2 s3 s4 s5 16 / 20

accuracy = 73/100 = 73%

Strategy II: Cross Validation Tips

• 10-fold cross validation is common, but smaller values of n are often
used when learning takes a lot of time

• in leave-one-out cross validation, n = # instances

• in stratified cross validation, stratified sampling is used when
partitioning the data

• CV makes efficient use of the available data for testing

• note that whenever we use multiple training sets, as in CV and random
resampling, we are evaluating a learning method as opposed to an
individual learned hypothesis

Other Metrics

true positive rate (recall) =
TP

actual pos
 =

TP

TP + FN

true positives
(TP)

true negatives
(TN)

false positives
(FP)

false negatives
(FN)

positive

negative

positive negative

predicted
class

actual class

false positive rate =
FP

actual neg
 =

FP

TN + FP

Other Metrics: ROC Curves

•A Receiver Operating Characteristic (ROC) curve plots the TP-
rate vs. the FP-rate as a threshold on the confidence of an
instance being positive is varied

ideal point

1.0

1.0False positive rate

Tr
u

e
p

o
si

ti
ve

 r
at

e

Alg 1

Alg 2

expected curve for
random guessing

Different methods can
work better in
different parts of ROC
space.

Iterative Methods: Gradient Descent

•What if there’s no closed-form solution?

•Use an iterative approach. Goal: get closer to solution.

•Gradient descent.
•Suppose we’re computing
•Start at some

• Iteratively compute

•Stop after some # of steps Learning
rate/step size

Gradient Descent: Illustration

•Goal: steps get closer to minimizer

•Some notes:
•Step size can be fixed or a function

•Under certain conditions, will converge
to global minimum
• Need convexity for this

Wikipedia

Level Sets

Gradient Descent: Linear Regression

•Example for linear regression problem.

•Want to find

•What’s our gradient?

•So, plugging in , we get

Iterative Methods: Gradient Descent

•Simple modification to GD.

•Let’s use some notation: ERM:

•GD:

Note: this is what we’re optimizing over!
x’s are fixed samples.

Gradient Descent: Convergence

•Even if GD is cheaper, what does it give us?

•Let’s analyze it. We’ll need some ingredients
•Convex function g
•Differentiable (need this for gradients)
• Lipschitz-continuous gradients

• If we run t steps with fixed step size, starting at x0

Minimizer

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov , Sharon Li, Chris Olah

