R T c w»‘.&}:n?'

R AL

CS 760: Machine Learning
Generative Models

Fred Sala

University of Wisconsin-Madison

Oct. 28, 2021

Announcements

*Logistics:
*Congrats on the getting through the midterm!
*Class roadmap:

Tuesday, Nov. 2 Kernels + SVMs
Thursday, Nov. 4 Graphical Models |

Tuesday, Nov. 9 Graphical Models Il

Outline

*Intro to Generative Models
* Applications, histograms, autoregressive models

*Flow-based Models
*Transformations, training, sampling

*Generative Adversarial Networks (GANSs)
e Generators, discriminators, training, examples

Generative Models

*Goal: capture our data distribution.
* Recall our discriminative vs. generative discussion
* Generative models exist in supervised & unsupervised settings
* Today: focus is on unsupervised

neurohive

Applications: Generate Images

*Old idea---tremendous growth

*Historical evolution:

Q&N D0O
O>rNV -
A = QO
M~y
R~ OP
=P Ny
N ST\ o~ Q

=NV MNMFT-I3 N v
NN TLUI NPT
5 VULTFLd NP
Ao dN, >LIO N2 o
/3 I99N U NP
FINNIVONL
oUW ITUOIONS
FIEV, TODONL
YoM N EUD N P

2013: Kingma & Welling

2006: Hinton et al

Applications: Generate Images

* More recently, GAN models: 2014
* Goodfellow et al

Applications: Generate Images

* More recently, GAN models
* StyleGAN, Karras, Laine, Aila, 2018

Applications: Generate Images/Video

*GANSs can also generate video
* Plus transfer:

CycleGAN: Zhu, Park, Isola & Efros, 2017

Applications: Generate Video

*GANSs can also generate video (DVD-GAN, Clark et al)

e R - 4 2
e/ o - A
b - 3 AR 2 y Sk
j :

-,

3

I L
R R

Additional Applications

*Compress data
e Can often do better than fixed methods like JPEG

*Generate additional training data
e Use for training a model

*Obtain good representations
* Then can fine-tune for particular tasks

Goal: Learn a Distribution

*Want to estimate p,,, from samples

58(1),.517(2), e ,x(”) ~ Pdata(T)

e Useful abilities to have:

* Inference: compute p(x) for some x
* Sampling: obtain a sample from p(x)

* As always need efficiency for this too...

Goal: Learn a Distribution

*Want to estimate p,,, from samples

(1) (2)

9 7"'737(”) diata(x)

*One way: if discrete valued-variables, build a histogram:

*Say in {1, ..., k}.
* Estimate p4, P, ..., Py

*Train this model:
* Count times #i appears in dataset

0.06 1

0.05 1

0.04 1

Probability

002 ~

0.01 1

0.00 -

Train Set

0.03 1

100

Histograms: Inference & Samples

*Inference: check our estimate of p,
*Sampling:

* Produce the cumulative distribution F=p,+...+p,
* Get a random value uniformly in [0,1]
* Get smallest value i so that u <F,

*Easy, but...
* Too many values to compute (recall this from Naive Bayes)
* MNIST: 28x28 means 27%* probabilities

Parametrizing Distributions

*Don’t store each probability, store pgy(x)
* We saw the conditional version of this for Naive Bayes

*One approach: likelihood-based
* Good: we know how to train with maximum likelihood

1 .
in — — 1 (%)
arg min —— ;_1 og po(x**’)

* Recall that we can think of this as minimizing KL divergence

Parametrizing Distributions

*One approach: likelihood-based

e Good: we know how to train with maximum likelihood
* Then, train with SGD

* We've been doing this all along for supervised learning... just need
to make some choices for pg(x)

Parametrizing Distributions: Bayes Nets

*Bayes nets: a useful tool

* A Bayes net: a DAG that represents a probability distribution
* DAG: directed acyclic graph
e Say graph is G = (V, E), and for node v, pa(v) denotes its parents:

 Example: pa(7) =7
=8
etg,a
O

Parametrizing Distributions: Bayes Nets

*Bayes nets: a useful tool

* A Bayes net: a DAG that represents a probability distribution
* DAG: directed acyclic graph
e Say graph is G = (V, E), and for node v, pa(v) denotes its parents:
* Helps represent distribution in a compact way:

P, xa) = [@] zpan)

veV

Parametrizing Distributions: Bayes Nets

* A Bayes net: a DAG that represents a probability distribution
*Say graph is G = (V, E), and for node v, pa(v) denotes its parents:
* Helps represent distribution in a compact way:

p(@1,....xa) = || p(®ol@pace))
veV
* Compare to standard factorization: chain rule

p(T1,...,2q) = H p(Tylxr, T2, ..., Ty _1)
veV

* If G sparse, conditional probability terms are much smaller.

Autoregressive Models

*Use a Bayes net for the features

d
logpé’(xla o 7£Cd) . Zlogpg(xZ‘pa(xZ))
1=1

*Then we can directly plug these into our MLE estimation

*Some practical questions:

* To help generalization, share parameters (we did this for CNNs,
RNNs).

*n fact can directly use RNNs.

Autoregressive Models: RNNs

*Can use the Bayes net idea to just model a sequence
* Apply to dxd images:

d2
p(x) = Hp(33@,R|P($1,R, .o, %i—1,R)P(Ti,BP(T1,B, - -, Ti1,B)P(Ticlp(T1,G) - -, Tic1,G)

= 1 \ 1 \ l

Red Channel Blue Channel Green Channel
Pixels Pixels Pixels

@] | []] [z

* Each pixel depends on the previous pixels
* Same function/parameters used for each

van den Oord et al ‘16

PixelRNN: Samples

rained on magene: S HONN S E LR
o 97 D 1

SR R
*Use for completion: 3 -

* Left: covered
* Right: original “‘

* Middle: completed

van den Oord et al ‘16

PixelRNN: Samples

*Upside: can evaluate p(x) pretty easily, samples are good

*Downside: sequential generation (need all the previous
pixels) might be slow
* Many variants: combine with CNNs, architectural tricks

T = el L
an==giuma=

e
=

5 e
s | Mlssar . w
O NS Sl
= BT e

pixelCNN++, Salimans et al ‘17

Break & Quiz

Flow Models

*Still want to fit pg(x)

*Some goals:
* Good fit for the data
* Computing a probability: the actual value of p4(x) for some x

* Ability to sample
* Also: a latent representation

*Won’t model pg4(x) directly... instead we’ll get some latent
variable z

Flow-based
generative models: X > >
minimize the negative f(x)

log-likelihood

Flow Inverse

| f (=)

Lilian Weng

Flow Models

*Key idea: transform a simple distribution to complex
* Use a chain of transformations (the “flow”)

Flow-based
generative models: x . Flow A 2 N Inverse o
minimize the negative f(x) f—l (z)
log-likelihood

zo ~ po(zo) z; ~ p;i(z;) zi ~ Pk (ZK)

Lilian Weng

Flow Models

*Key idea: transform a simple distribution to complex
* Use a chain of invertible transformations (the “flow”)

Flow-based
generative models: X > T > Z = Inverse — x/
minimize the negative f(x) (=)
log-likelihood

* How to sample?

* Sample from Z (the latent variable)---has a simple distribution that lets us do
it: Gaussian, uniform, etc.

* Then run the sample z through the inverse flow to get a sample x

e How to train? Let’s see...

Flow Models: Density Relationships

*Key idea: transform a simple distribution to complex
* Use a chain of transformations (the “flow”)

*How does each transformation affect the density p?

Latent variable Transformation
<

Sz = fo(x)

po(x)dr = p(z)dz

po(z) = p(fo(2))

Ofo(x)

ox

Determinant of
Jacobian matrix

s

Flow Models: Training

*Key idea: transform a simple distribution to complex
* Use a chain of transformations (the “flow”)

*How does training change?
*ldea: might be easier to optimize p,

max Z log py(z")) = mgxz logpz (fo(™))) + log 8f ((Z))|
\) f I
Y Latent variable Determinant of
Maximum version Jacobian matrix
Likelihood

Can extend to many chained transformations...

Flows: Example

*Flow to a Gaussian (right)

Flow
1.0 15 -
0.8 - 10 1 3000 A
*Before training: ... 5
0_
0.4 A B
0.2 - 1od
0.0 A 1 . : —15 - l | |
-2 0 2 2 0 5
1.0 4 7.5
50 - 2500 A
0.8 A
2.5 1 2000 A
[[} 0.6
* After training: 00-
- —2.5 1000 ~
0.2 1 e o
00— [. ~7.5 . , , 04
-2 0 2 - 0 >

UC Berkeley: Deep Unsupervised Training

Flows: Transformations

\What kind of f transformations should we use?

*Many choices:
* Affine: f(x) = A1(x - b)

— Forward

* Elementwise: f(x,, ..., x4) = (f(x), .., f(xy)) ::Z — iverse

® Endpoints

*Splines: 050
0.25 1

. 0.00 4
*Properties: 025

* Invertible =050
« Differentiable (forward and inverse)]

—1.00 A
-1.0 -0.5 0.0 0.5 1.0

(a) Forward and inverse transformer

Papamakarios et al’ 21

Break & Quiz

GANs: Generative Adversarial Networks

*So far, we've been modeling the density...
* What if we just want to get high-quality samples?

*GANs do this. Based on a clever idea:
* Art forgery: very common through history
e Left: original

* Right: forged version

* Two-player game. Forger wants to pass off the
forgery as an original; investigator wants to
distinguish forgery from original

GANSs: Basic Setup

*Let’s set up networks that implement this idea:
* Discriminator network: like the investigator
* Generator network: like the forger

Fake Images
(from generator)

Real or Fake

Duscnmlnator Network

Real Images
(from training set)

Generator Network

Random noise

*

s

Stanford CS231n / Emily Denton

GAN Training: Discriminator

*How to train these networks? Two sets of parameters to
learn: B, (discriminator) and 6, (generator)

*Let’s fix the generator. What should the discriminator do?
* Distinguish fake and real data: binary classification.
* Use the cross entropy loss, we get

I%&X Eznpaaa 108 Do, () + Eoop(z) log(l — Do, (G, (2)))
I I

Real data, want Fake data, want
to classify 1 to classify 0

GAN Training: Generator & Discriminator

*How to train these networks? Two sets of parameters to
learn: B, (discriminator) and 6, (generator)

*This makes the discriminator better, but also want to make
the generator more capable of fooling it:
* Minimax game! Train jointly.

min max
0, 0Od

@ ~paacs 108 Do, () +

I

Real data, want
to classify 1

ﬂz,vp(z) log(l — DQd (GQQ (Z)))

T

Fake data, want
to classify 0

GAN Training: Alternating Training

*So we have an optimization goal:

min max

<|::wr\’pda,‘ca log ng (I) _|_

0, 04

* Alternate training:
* Gradient ascent: fix generator, make the discriminator better:

max Eﬂ?NPdata, log DQd ('CC) + EZNP(Z) log(l - ng (GQQ (Z)))

0a

{‘zmp(z) log(l — DQd (Gé’g (Z)))

* Gradient descent: fix discriminator, make the generator better

minE, ;) log(l — Dy, (Gg, (2)))

Og

GAN Training: Issues

*Training often not stable

*Many tricks to help with this:
* Replace the generator training with

Hgglx {'zwp(z) log(DQd (GQQ (Z)))

* Better gradient shape
* Choose number of alt. steps carefully

_ . High gradient signal :
*Can still be challenging. .

Cow gradient signal

Stanford CS231n

GAN Architectures

*So far we haven’t commented on what the networks are
*Discriminator: image classification, use a CNN

*What should generator look like

* Input: noise vector z. Output: an image (ie, volume 3 x width x
neight)
* Can just reverse our CNN pattern...

512
A

CONV 3 64

GANSs: Example

*From Radford’s paper, with 5 epochs of training:

M : rﬁ % ; =
» "!4 i B l 4 t‘ e BN
; J‘-A ‘r’: . - 'y r‘v&‘“ :

TR

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,

Yingyu Liang, Volodymyr Kuleshov, Fei-Fei Li, Justin Johnson, Serena Yeung, Pieter Abbeel, Peter Chen, Jonathan
Ho, Aravind Srinivas

