

CS 760: Machine Learning Generative Models

Fred Sala

University of Wisconsin-Madison

Oct. 28, 2021

Announcements

•Logistics:

•Congrats on the getting through the midterm!

•Class roadmap:

Thursday, Oct. 28	Generative Models
Tuesday, Nov. 2	Kernels + SVMs
Thursday, Nov. 4	Graphical Models I
Tuesday, Nov. 9	Graphical Models II

Outline

Intro to Generative Models

•Applications, histograms, autoregressive models

•Flow-based Models

•Transformations, training, sampling

•Generative Adversarial Networks (GANs)

• Generators, discriminators, training, examples

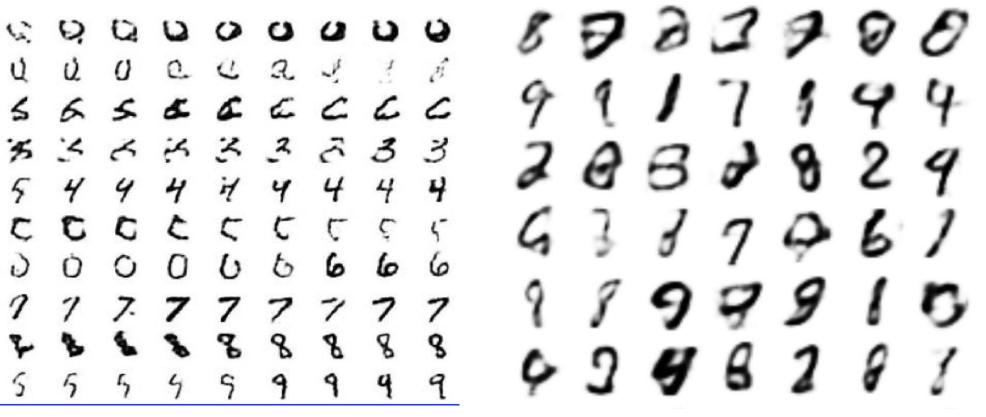
Generative Models

- •Goal: capture our data distribution.
 - Recall our **discriminative** vs. **generative** discussion
 - Generative models exist in supervised & unsupervised settings
 - Today: focus is on **unsupervised**

neurohive

Applications: Generate Images

- •Old idea---tremendous growth
- •Historical evolution:

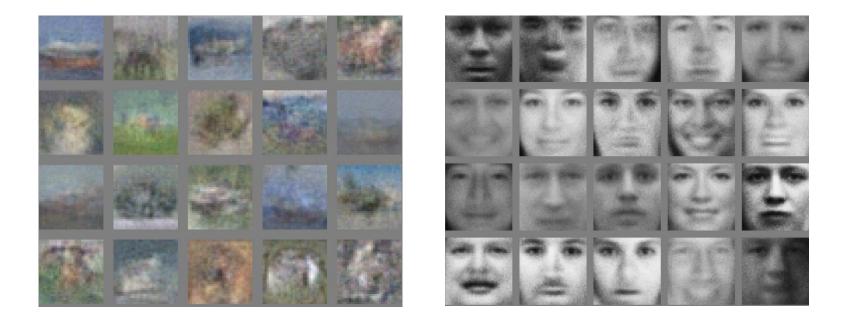


2006: Hinton et al

2013: Kingma & Welling

Applications: Generate Images

More recently, GAN models: 2014
Goodfellow et al



Applications: Generate Images

• More recently, GAN models

• StyleGAN, Karras, Laine, Aila, 2018

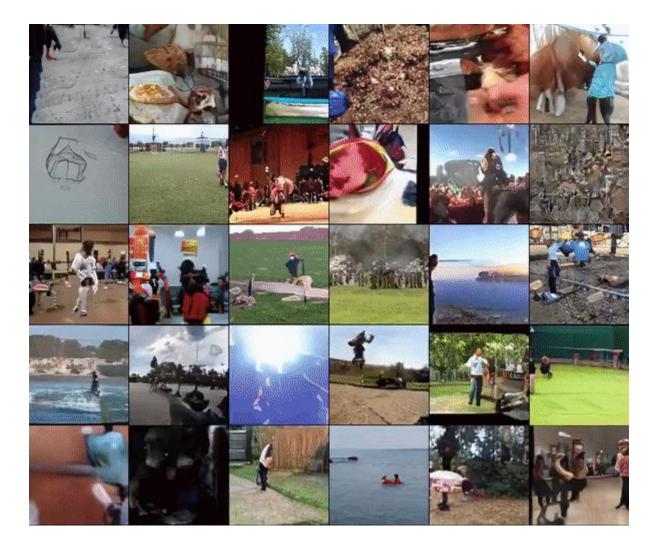
Applications: Generate Images/Video

- •GANs can also generate video
 - Plus transfer:

CycleGAN: Zhu, Park, Isola & Efros, 2017

Applications: Generate Video

•GANs can also generate video (DVD-GAN, Clark et al)



Additional Applications

• Compress data

• Can often do better than fixed methods like JPEG

•Generate additional training data

• Use for training a model

Obtain good representations

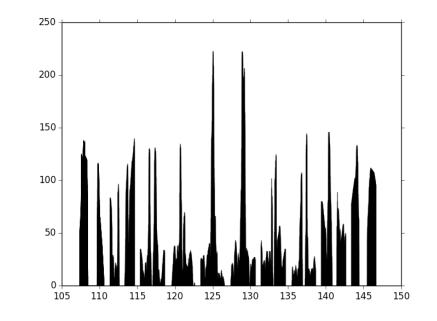
• Then can fine-tune for particular tasks

Goal: Learn a Distribution

 \bullet Want to estimate p_{data} from samples

$$x^{(1)}, x^{(2)}, \dots, x^{(n)} \sim p_{\text{data}}(x)$$

- •Useful abilities to have:
 - Inference: compute p(x) for some x
 - **Sampling**: obtain a sample from p(x)
- •As always need efficiency for this too...

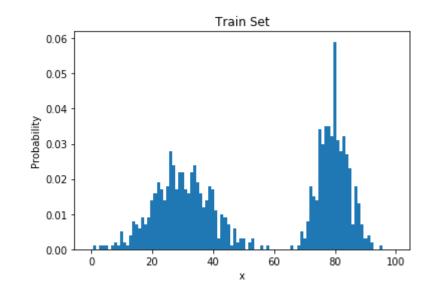


Goal: Learn a Distribution

 \bullet Want to estimate p_{data} from samples

$$x^{(1)}, x^{(2)}, \dots, x^{(n)} \sim p_{\text{data}}(x)$$

- •One way: if discrete valued-variables, build a histogram:
- •Say in {1, ..., k}.
 - Estimate p₁, p₂, ..., p_k
- •Train this model:
 - Count times #i appears in dataset



Histograms: Inference & Samples

•Inference: check our estimate of p_i

•Sampling:

- Produce the cumulative distribution $F_i = p_1 + ... + p_i$
- Get a random value uniformly in [0,1]
- Get smallest value i so that $u \leq F_i$
- •Easy, but...
 - Too many values to compute (recall this from Naïve Bayes)
 - MNIST: 28x28 means 2⁷⁸⁴ probabilities

Parametrizing Distributions

• Don't store each probability, store $p_{\theta}(x)$

- We saw the conditional version of this for Naïve Bayes
- •One approach: likelihood-based
 - Good: we know how to train with maximum likelihood

$$\arg\min_{\theta} -\frac{1}{n} \sum_{i=1}^{n} \log p_{\theta}(x^{(i)})$$

• Recall that we can think of this as minimizing KL divergence

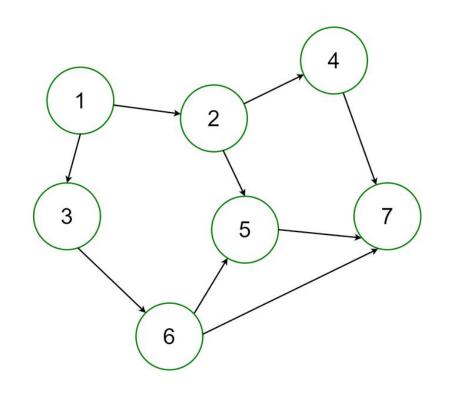
Parametrizing Distributions

•One approach: likelihood-based

- Good: we know how to train with **maximum likelihood**
- Then, train with SGD
- We've been doing this all along for supervised learning... just need to make some choices for $p_{\theta}(x)$

Parametrizing Distributions: Bayes Nets

- Bayes nets: a useful tool
- •A Bayes net: a DAG that represents a probability distribution
 - DAG: directed acyclic graph
 - Say graph is G = (V, E), and for node v, pa(v) denotes its parents:
 - Example: pa(7) = ?



Parametrizing Distributions: Bayes Nets

- Bayes nets: a useful tool
- •A Bayes net: a DAG that represents a probability distribution
 - DAG: directed acyclic graph
 - Say graph is G = (V, E), and for node v, pa(v) denotes its parents:
 - Helps represent distribution in a compact way:

$$p(x_1, \dots, x_d) = \prod_{v \in V} p(x_v | x_{\operatorname{pa}(v)})$$

Parametrizing Distributions: Bayes Nets

•A Bayes net: a DAG that represents a probability distribution

• Say graph is G = (V, E), and for node v, pa(v) denotes its parents:

• Helps represent distribution in a compact way:

$$p(x_1,\ldots,x_d) = \prod_{v \in V} p(x_v | x_{\operatorname{pa}(v)})$$

• Compare to standard factorization: chain rule

$$p(x_1, \dots, x_d) = \prod_{v \in V} p(x_v | x_1, x_2, \dots, x_{v-1})$$

• If G sparse, conditional probability terms are much smaller.

Autoregressive Models

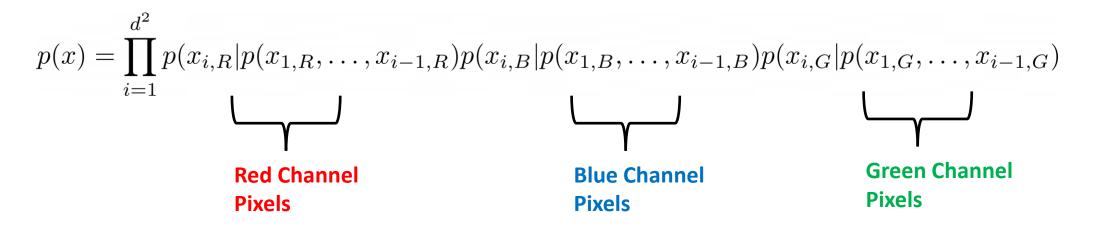
•Use a Bayes net for the features

$$\log p_{\theta}(x_1, \dots, x_d) = \sum_{i=1}^d \log p_{\theta}(x_i | \operatorname{pa}(x_i))$$

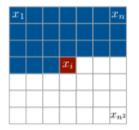
- •Then we can directly plug these into our MLE estimation
- •Some practical questions:
 - To help generalization, share parameters (we did this for CNNs, RNNs).
 - In fact can directly use RNNs.

Autoregressive Models: RNNs

- Can use the Bayes net idea to just model a sequence
- •Apply to dxd images:



- Each pixel depends on the previous pixels
- Same function/parameters used for each



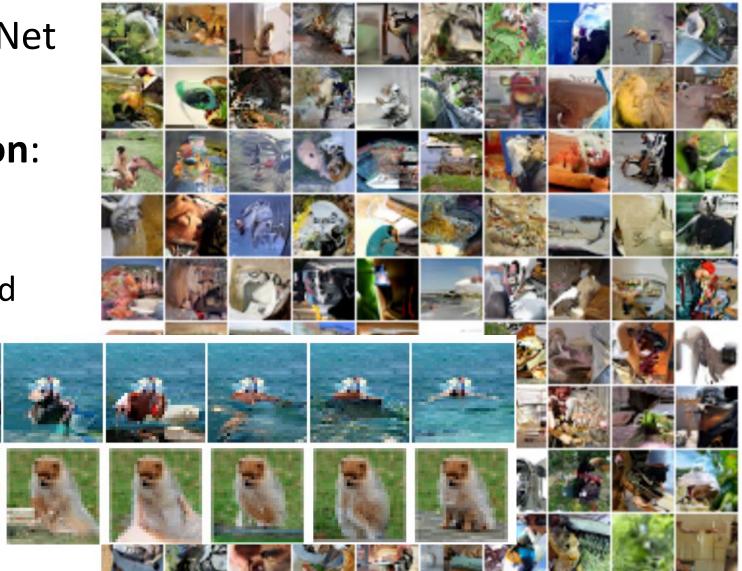
van den Oord et al '16

PixelRNN: Samples

- Trained on ImageNet
- •Use for **completion**:
 - Left: covered
 - Right: original

- 201

• Middle: completed



van den Oord et al '16

PixelRNN: Samples

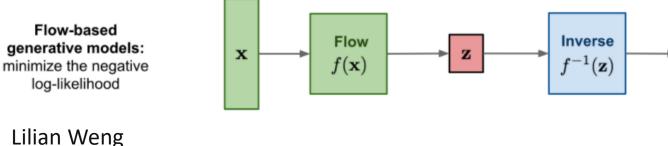
- •Upside: can evaluate p(x) pretty easily, samples are good
- Downside: sequential generation (need all the previous pixels) might be slow
 - Many variants: combine with CNNs, architectural tricks

pixelCNN++, Salimans et al '17

Break & Quiz

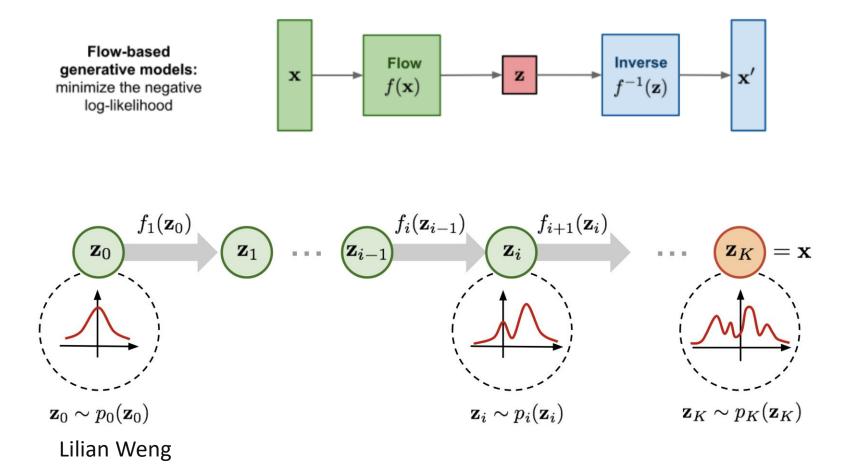
Flow Models

- •Still want to fit $p_{\theta}(x)$
- •Some goals:
 - Good fit for the data
 - Computing a probability: the actual value of $p_{\theta}(x)$ for some x
 - Ability to sample
 - Also: a latent representation
- •Won't model $p_{\theta}(x)$ directly... instead we'll get some latent variable z



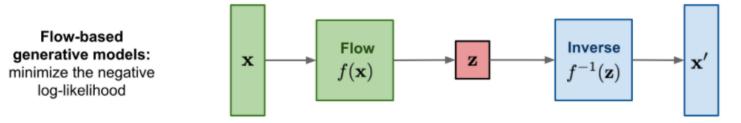
Flow Models

•Key idea: transform a simple distribution to complex •Use a chain of transformations (the "flow")



Flow Models

Key idea: transform a simple distribution to complex
Use a chain of invertible transformations (the "flow")



- How to sample?
 - Sample from Z (the latent variable)---has a simple distribution that lets us do it: Gaussian, uniform, etc.
 - Then run the sample z through the inverse flow to get a sample x
- How to train? Let's see...

Flow Models: Density Relationships

- Key idea: transform a simple distribution to complex
 Use a chain of transformations (the "flow")
- How does each transformation affect the density p?

Latent variable Transformation

$$z = f_{\theta}(x)$$

$$p_{\theta}(x) dx = p(z) dz$$

$$p_{\theta}(x) = p(f_{\theta}(x)) \left| \frac{\partial f_{\theta}(x)}{\partial x} \right|$$
Determinant of Jacobian matrix

Flow Models: Training

- Key idea: transform a simple distribution to complex
 Use a chain of transformations (the "flow")
- •How does training change?

• Idea: might be easier to optimize p_z

$$\max_{\theta} \sum_{i} \log p_{\theta}(x^{(i)}) = \max_{\theta} \sum_{i} \log p_{Z}(f_{\theta}(x^{(i)})) + \log \left| \frac{\partial f_{\theta}}{\partial x}(x^{(i)}) \right|$$

$$\downarrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$Latent variable version \qquad Determinant of Jacobian matrix$$

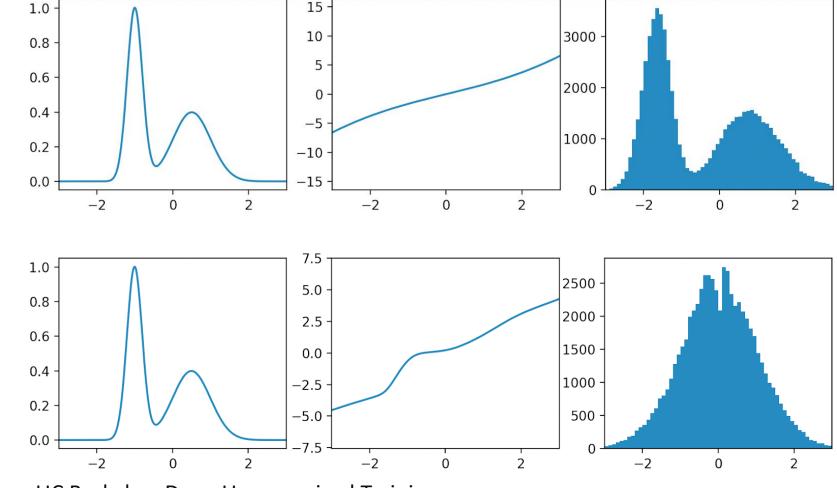
Can extend to many chained transformations...

Flows: Example

• Flow to a Gaussian (right)

Flow

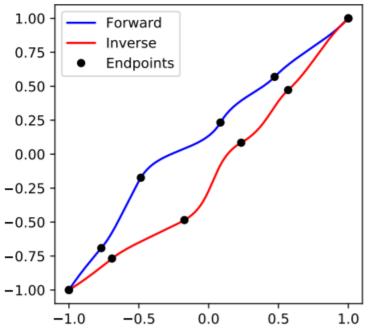
•After training:



UC Berkeley: Deep Unsupervised Training

Flows: Transformations

- •What kind of f transformations should we use?
- Many choices:
 - Affine: $f(x) = A^{-1}(x b)$
 - Elementwise: $f(x_1, ..., x_d) = (f(x_1), ..., f(x_d))_{0.75}^{1.00}$
 - Splines:
- Properties:
 - Invertible
 - Differentiable (forward and inverse)



(a) Forward and inverse transformer

Papamakarios et al' 21

Break & Quiz

GANs: Generative Adversarial Networks

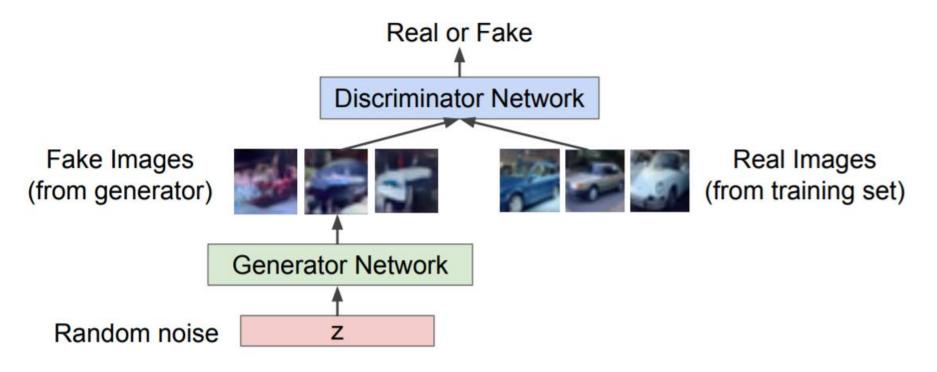
•So far, we've been modeling the density...

- What if we just want to get high-quality samples?
- •GANs do this. Based on a clever idea:
 - Art forgery: very common through history
 - Left: original
 - Right: forged version
 - Two-player game. Forger wants to pass off the forgery as an original; investigator wants to distinguish forgery from original

GANs: Basic Setup

•Let's set up networks that implement this idea:

- Discriminator network: like the investigator
- Generator network: like the **forger**



Stanford CS231n / Emily Denton

GAN Training: Discriminator

- •How to train these networks? Two sets of parameters to learn: θ_d (discriminator) and θ_g (generator)
- •Let's fix the generator. What should the discriminator do?
 - Distinguish fake and real data: binary classification.
 - Use the cross entropy loss, we get

$$\max_{\theta_d} \mathbb{E}_{x \sim p_{\text{data}}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

$$\uparrow$$
Real data, want
to classify 1
Fake data, want
to classify 0

GAN Training: Generator & Discriminator

- •How to train these networks? Two sets of parameters to learn: θ_d (discriminator) and θ_g (generator)
- •This makes the discriminator better, but also want to make the generator more capable of fooling it:
 - Minimax game! Train jointly.

$$\begin{split} \min_{\theta_g} \max_{\theta_d} \mathbb{E}_{x \sim p_{\text{data}}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \\ \uparrow \\ & \uparrow \\ \text{Real data, want} \\ & \text{to classify 1} \\ \end{split}$$

GAN Training: Alternating Training

•So we have an optimization goal:

 $\min_{\theta_g} \max_{\theta_d} \mathbb{E}_{x \sim p_{\text{data}}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$

- •Alternate training:
 - **Gradient ascent**: fix generator, make the discriminator better:

$$\max_{\theta_d} \mathbb{E}_{x \sim p_{\text{data}}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

• Gradient descent: fix discriminator, make the generator better

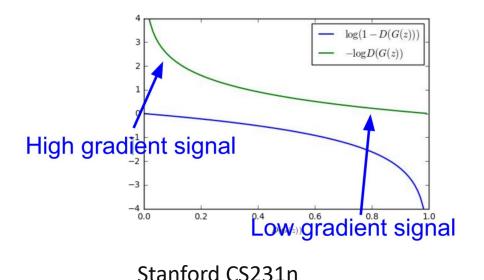
$$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

GAN Training: Issues

- •Training often not stable
- Many tricks to help with this:
 - Replace the generator training with

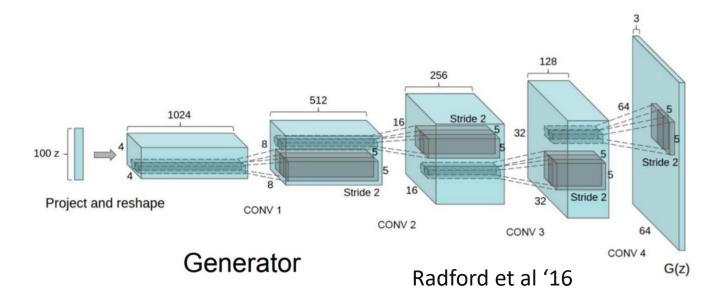
$$\max_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(D_{\theta_d}(G_{\theta_g}(z)))$$

- Better gradient shape
- Choose number of alt. steps carefully
- •Can still be challenging.



GAN Architectures

- •So far we haven't commented on what the networks are
- **Discriminator**: image classification, use a **CNN**
- What should generator look like
 - Input: noise vector z. Output: an image (ie, volume 3 x width x height)
 - Can just reverse our CNN pattern...



GANs: Example

• From Radford's paper, with 5 epochs of training:

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, Yingyu Liang, Volodymyr Kuleshov, Fei-Fei Li, Justin Johnson, Serena Yeung, Pieter Abbeel, Peter Chen, Jonathan Ho, Aravind Srinivas