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Announcements

•Logistics: 
•HW 5 coming out shortly
•Probability tutorial?

•Class roadmap: Tuesday, Nov. 2 Kernels + SVMs

Thursday, Nov. 4 Graphical Models I

Tuesday, Nov. 9 Graphical Models II

Thursday, Nov. 11 Less-than-full Supervision



Outline

•Review & Generative Adversarial Networks 
•Applications, histograms, autoregressive models

•Support Vector Machines (SVMs)
•Lagrangian duality, margins, training objectives

•Kernels
•Feature maps, kernel trick, conditions
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GANs: Generative Adversarial Networks

•So far, we’ve been modeling the density…
•What if we just want to get high-quality samples?

•GANs do this. Based on a clever idea:
•Art forgery: very common through history
• Left: original
•Right: forged version
•Two-player game. Forger wants to pass off the 

forgery as an original; investigator wants to 
distinguish forgery from original



GANs: Basic Setup

•Let’s set up networks that implement this idea:
•Discriminator network: like the investigator
•Generator network: like the forger

Stanford CS231n / Emily Denton



GAN Training: Discriminator

•How to train these networks? Two sets of parameters to 
learn: θd (discriminator) and θg (generator)

•Let’s fix the generator. What should the discriminator do?
•Distinguish fake and real data: binary classification. 
•Use the cross entropy loss, we get

Real data, want 
to classify 1 

Fake data, want 
to classify 0



GAN Training: Generator & Discriminator

•How to train these networks? Two sets of parameters to 
learn: θd (discriminator) and θg (generator)

•This makes the discriminator better, but also want to make 
the generator more capable of fooling it:
•Minimax game! Train jointly.

Real data, want 
to classify 1 

Fake data, want 
to classify 0



GAN Training: Alternating Training

•So we have an optimization goal:

•Alternate training: 
•Gradient ascent: fix generator, make the discriminator better:

•Gradient descent: fix discriminator, make the generator better



GAN Training: Issues

•Training often not stable

•Many tricks to help with this:
•Replace the generator training with

•Better gradient shape
•Choose number of alt. steps carefully

•Can still be challenging.

Stanford CS231n



GAN Architectures

•So far we haven’t commented on what the networks are

•Discriminator: image classification, use a CNN

•What should generator look like
• Input: noise vector z. Output: an image (ie, volume 3 x width x 

height)
•Can just reverse our CNN pattern…

Radford et al ‘16



GANs: Example

•From Radford’s paper, with 5 epochs of training:



Break & Quiz
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Mini-Tutorial: Constrained Optimization

•Take optimization problem:
min
𝑤

𝑓(𝑤)

𝑔𝑖 𝑤 ≤ 0, ∀1 ≤ 𝑖 ≤ 𝑘

ℎ𝑗 𝑤 = 0, ∀1 ≤ 𝑗 ≤ 𝑙

•Generalized Lagrangian:

ℒ 𝑤, 𝜶, 𝜷 = 𝑓 𝑤 +෍

𝑖

𝛼𝑖𝑔𝑖(𝑤) +෍

𝑗

𝛽𝑗ℎ𝑗(𝑤)

where 𝛼𝑖 , 𝛽𝑗’s are called Lagrange multipliers

Objective

Constraints



Mini-Tutorial: Lagrangian

•Form the quantity:
𝜃𝑃 𝑤 ≔ max

𝜶,𝜷:𝛼𝑖≥0
ℒ 𝑤, 𝜶, 𝜷

≔ max
𝜶,𝜷:𝛼𝑖≥0

𝑓 𝑤 +෍

𝑖

𝛼𝑖𝑔𝑖(𝑤) +෍

𝑗

𝛽𝑗ℎ𝑗(𝑤)

•Note:

𝜃𝑃 𝑤 = ቊ
𝑓 𝑤 , if 𝑤 satisfies all the constraints
+∞, if 𝑤 does not satisfy the constraints

𝑔𝑖 𝑤 ≤ 0, ∀1 ≤ 𝑖 ≤ 𝑘

ℎ𝑗 𝑤 = 0, ∀1 ≤ 𝑗 ≤ 𝑙



Mini-Tutorial: Lagrangian

•Form the quantity:
𝜃𝑃 𝑤 ≔ max

𝜶,𝜷:𝛼𝑖≥0
ℒ 𝑤, 𝜶, 𝜷

•Note:

𝜃𝑃 𝑤 = ቊ
𝑓 𝑤 , if 𝑤 satisfies all the constraints
+∞, if 𝑤 does not satisfy the constraints

•Minimizing 𝑓 𝑤 with constraints is the same as minimizing 
𝜃𝑃 𝑤

min
𝑤

𝑓 𝑤 = min
𝑤

𝜃𝑃 𝑤 = min
𝑤

max
𝜶,𝜷:𝛼𝑖≥0

ℒ 𝑤,𝜶, 𝜷



Mini-Tutorial: Duality

•The primal problem

𝑝∗ ≔ min
𝑤

𝑓 𝑤 = min
𝑤

max
𝜶,𝜷:𝛼𝑖≥0

ℒ 𝑤,𝜶, 𝜷

•The dual problem

𝑑∗ ≔ max
𝜶,𝜷:𝛼𝑖≥0

min
𝑤

ℒ 𝑤, 𝜶, 𝜷

•Always true:
𝑑∗ ≤ 𝑝∗



Mini-Tutorial: Duality

•Always true:
𝑑∗ ≤ 𝑝∗

Let’s see why:

𝑑∗ ≔ max
𝜶,𝜷:𝛼𝑖≥0

min
𝑤

ℒ 𝑤, 𝜶, 𝜷

= max
𝜶,𝜷:𝛼𝑖≥0

min
𝑤

𝑓 𝑤 + σ𝑖 𝛼𝑖𝑔𝑖(𝑤) + σ𝑗 𝛽𝑗ℎ𝑗(𝑤)

≤ max
𝜶,𝜷:𝛼𝑖≥0

𝑓 𝑤∗ + σ𝑖 𝛼𝑖𝑔𝑖(𝑤
∗) + σ𝑗 𝛽𝑗ℎ𝑗(𝑤

∗)

= 𝑝∗

Definition

Non-positive



Mini-Tutorial: Duality Gap

•Always true:
𝑑∗ ≤ 𝑝∗

If actual equality, could solve dual instead of primal… when?
•Under conditions (ex: Slater’s), there exists 𝑤∗, 𝜶∗, 𝜷∗ such that

𝑑∗ = ℒ 𝑤∗, 𝜶∗, 𝜷∗ = 𝑝∗

• 𝑤∗, 𝜶∗, 𝜷∗ satisfy Karush-Kuhn-Tucker (KKT) conditions:
𝜕ℒ

𝜕𝑤𝑖
= 0, 𝛼𝑖𝑔𝑖 𝑤 = 0

𝑔𝑖 𝑤 ≤ 0, ℎ𝑗 𝑤 = 0, 𝛼𝑖 ≥ 0



Review: Linear Classification

•Assuming linear separability,
(𝑤∗)𝑇𝑥 = 0

Class +1

Class -1

𝑤∗

(𝑤∗)𝑇𝑥 > 0

(𝑤∗)𝑇𝑥 < 0



Review: Training & Margins

•Want: a large margin

Class +1

Class -1

𝑤2

large margin



Mini-Tutorial: Linear Algebra & Margin

•What’s the expression for the margin?
•We write 𝑦 = sign(𝑓𝑤 𝑥 ) = sign(𝑤𝑇𝑥)

•𝑥 has distance 
|𝑓𝑤 𝑥 |

| 𝑤 |
to the hyperplane 𝑤𝑇𝑧 = 0

• Let’s show it. 𝑤 is orthogonal to the hyperplane

•The unit direction is 
𝑤

| 𝑤 |

•For any unit vector 𝑣, the length of the projection of 
𝑥 on 𝑣 is |𝑣𝑇𝑥|

•The projection of 𝑥 is 
𝑤

𝑤

𝑇

𝑥 =
𝑓𝑤(𝑥)

| 𝑤 |

𝑤

| 𝑤 |

𝑥

𝑤

𝑤

𝑇

𝑥

0



Mini-Tutorial: Linear Algebra & Margin

•𝑥 has distance 
|𝑓𝑤,𝑏 𝑥 |

| 𝑤 |
to the hyperplane 𝑤𝑇𝑧 + 𝑏 = 0

Proof:
• Let 𝑥 = 𝑥⊥ + 𝑟

𝑤

| 𝑤 |
, then |𝑟| is the distance

•Multiply both sides by 𝑤𝑇 and add 𝑏

• Left hand side: 𝑤𝑇𝑥 + 𝑏 = 𝑓𝑤,𝑏 𝑥

•Right hand side: 𝑤𝑇𝑥⊥ + 𝑟
𝑤𝑇𝑤

| 𝑤 |
+ 𝑏 = 0 + 𝑟| 𝑤 |

w is orthogonal to 𝑤𝑇𝑧 + 𝑏 = 0



Support Vector Machines: Candidate Goal

•The absolute margin over all training data points: 

𝛾 = min
𝑖

|𝑓𝑤,𝑏 𝑥𝑖 |

| 𝑤 |
•We want correct 𝑓𝑤,𝑏, (recall 𝑦𝑖 ∈ {+1,−1}). Define the 
margin to be

𝛾 = min
𝑖

𝑦𝑖𝑓𝑤,𝑏 𝑥𝑖
| 𝑤 |

•If 𝑓𝑤,𝑏 incorrect on some 𝑥𝑖, the margin is negative

Using our result



Support Vector Machines: Candidate Goal

•One way: maximize margin over all training data points:

max
𝑤,𝑏

𝛾 = max
𝑤,𝑏

min
𝑖

𝑦𝑖𝑓𝑤,𝑏 𝑥𝑖
| 𝑤 |

= max
𝑤,𝑏

min
𝑖

𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏)

| 𝑤 |

•A bit complicated …
•How do we use our optimization approaches?



SVM: Simplified Goal

•Observation: when (𝑤, 𝑏) scaled by a factor 𝑐 > 0, the 
margin unchanged

𝑦𝑖(𝑐𝑤
𝑇𝑥𝑖 + 𝑐𝑏)

| 𝑐𝑤 |
=
𝑦𝑖(𝑤

𝑇𝑥𝑖 + 𝑏)

| 𝑤 |

•Let’s consider a fixed scale such that

𝑦𝑖∗ 𝑤
𝑇𝑥𝑖∗ + 𝑏 = 1

where 𝑥𝑖∗ is the point closest to the hyperplane



SVM: Simplified Goal

•Let’s consider a fixed scale such that

𝑦𝑖∗ 𝑤
𝑇𝑥𝑖∗ + 𝑏 = 1

where 𝑥𝑖∗ is the point closet to the hyperplane

•Now we have for all data
𝑦𝑖 𝑤

𝑇𝑥𝑖 + 𝑏 ≥ 1

and at least for one 𝑖 the equality holds

•Then the margin over all training points is 
1

| 𝑤 |



SVM: Loss Function

•Optimization simplified to

min
𝑤,𝑏

1

2
𝑤

2

𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1, ∀𝑖

•How to find the optimum ෝ𝑤∗?

•Let’s use our Lagrange multiplier method

ℒ 𝑤, 𝑏, 𝜶 =
1

2
𝑤

2

−෍

𝑖

𝛼𝑖[𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 − 1]



SVM: Optimization

•To meet the KKT conditions:
𝜕ℒ

𝜕𝑤
= 0,→ 𝑤 = σ𝑖 𝛼𝑖𝑦𝑖𝑥𝑖 (1)

𝜕ℒ

𝜕𝑏
= 0,→ 0 = σ𝑖 𝛼𝑖𝑦𝑖 (2)

•Two rules. Plug into ℒ:

ℒ 𝑤, 𝑏, 𝜶 = σ𝑖 𝛼𝑖 −
1

2
σ𝑖𝑗 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖

𝑇𝑥𝑗 (3)

combined with 0 = σ𝑖 𝛼𝑖𝑦𝑖 , 𝛼𝑖 ≥ 0

ℒ 𝑤, 𝑏, 𝜶 =
1

2
𝑤

2

−෍

𝑖

𝛼𝑖[𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 − 1]



SVM: Dual Version

•Reduces to dual problem:

max
𝜶

ℒ 𝑤, 𝑏, 𝜶 = max
𝜶

෍

𝑖

𝛼𝑖 −
1

2
෍

𝑖𝑗

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖
𝑇𝑥𝑗

෍

𝑖

𝛼𝑖𝑦𝑖 = 0, 𝛼𝑖 ≥ 0

•Since 𝑤 = σ𝑖 𝛼𝑖𝑦𝑖𝑥𝑖, we have 𝑤𝑇𝑥 + 𝑏 = σ𝑖 𝛼𝑖𝑦𝑖𝑥𝑖
𝑇𝑥 + 𝑏

•Note: only deals with data via inner products 𝑥𝑖
𝑇𝑥𝑗



SVM: Support Vectors

• Solution is a sparse linear combination of training instances

• Those instances with αi > 0 are called support vectors

• Lie on the margin boundary

• Solution does not change if we delete instances with αi = 0

support 

vectors



SVM: Soft Margin

What if our data isn’t linearly separable?

•Can adjust our approach by using slack variables (denoted by 
𝜁𝑖) to tolerate errors

min
𝑤,𝑏,𝜁𝑖

1

2
𝑤

2

+ 𝐶෍

𝑖

𝜁𝑖

𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1 − 𝜁𝑖 , 𝜁𝑖 ≥ 0, ∀𝑖

•𝐶 determines the relative importance of maximizing margin 
vs. minimizing slack



SVM: Soft Margin

min
𝑤,𝑏,𝜁𝑖

1

2
𝑤

2

+ 𝐶෍

𝑖

𝜁𝑖

𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1 − 𝜁𝑖 , 𝜁𝑖 ≥ 0, ∀𝑖

Ben-Hur & Weston, Methods in Molecular Biology 2010



Break & Quiz
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Feature Maps

• Can take a set of features and map them into another

• Can also construct non-linear features

• Use these inside a linear classifier?

Extract 
features

𝑥

Color Histogram

Red Green Blue

𝜙 𝑥



Feature Maps and SVMs

Want to use feature space 𝜙 𝑥𝑖 in linear classifier…
•Downside: dimension might be high (even infinite!)
•So we don’t want to write down 𝜙 𝑥𝑖 = [0.2,0.3, … ]

Recall our SVM dual form:
•Only relies on inner products 𝑥𝑖

𝑇𝑥𝑗

ℒ 𝑤, 𝑏, 𝜶 =෍

𝑖

𝛼𝑖 −
1

2
෍

𝑖𝑗

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖
𝑇𝑥𝑗

෍

𝑖

𝛼𝑖𝑦𝑖 = 0, 𝛼𝑖 ≥ 0



Kernel Trick

•Using SVM on the feature space {𝜙 𝑥𝑖 }: only need 
𝜙 𝑥𝑖

𝑇𝜙(𝑥𝑗)

•Conclusion: no need to design 𝜙 ⋅ , only need to design 

𝑘 𝑥𝑖 , 𝑥𝑗 = 𝜙 𝑥𝑖
𝑇𝜙(𝑥𝑗)

Kernel Matrix Feature Maps



Kernel Types: Polynomial

•Fix degree 𝑑 and constant 𝑐:
𝑘 𝑥, 𝑥′ = 𝑥𝑇𝑥′ + 𝑐 𝑑

•What are 𝜙(𝑥)?

•Expand the expression to get 𝜙(𝑥)

Ben-Hur & Weston, Methods in Molecular Biology 2010



Kernel Types: Gaussian/RBF 

•Fix bandwidth 𝜎:

𝑘 𝑥, 𝑥′ = exp(− 𝑥 − 𝑥′
2
/2𝜎2)

•Also called radial basis function (RBF) kernels

𝛾 = 10 𝛾 = 100 𝛾 = 1000

Andrew Ng

𝑘 𝑥, 𝑥′ = exp(−𝛾 𝑥 − 𝑥′
2
)



Theory of Kernels 

• Part of a deep mathematical theory

• With some conditions, any kernel yields a feature map:
•Theorem: 𝑘 𝑥, 𝑥′ has expansion 

𝑘 𝑥, 𝑥′ =෍

𝑖

+∞

𝑎𝑖𝜙𝑖 𝑥 𝜙𝑖(𝑥
′)

for nonnegative 𝑎𝑖’s, if and only if for any function 𝑐(𝑥),

∫ ∫ 𝑐 𝑥 𝑐 𝑥′ 𝑘 𝑥, 𝑥′ 𝑑𝑥𝑑𝑥′ ≥ 0

• Given certain requirements/conditions, can construct a 
bunch of new kernels from existing ones

Feature Maps



Kernel Methods VS Neural Networks

• Can think of our kernel SVM approach as fixing a layer of a 
neural network

𝑥1

𝑥2

𝑥1
2

𝑥2
2

2𝑥1𝑥2

2𝑐𝑥1

2𝑐𝑥2

𝑐

𝑦 = sign(𝑤𝑇𝜙(𝑥) + 𝑏)



SVM Review

• Can find globally optimal solutions: convex optimization

• No local minima (unlike training general NNs)

• Can train primal or dual

• Dual: relies on support vectors; enables use of kernels

• Variety of pre-existing optimization techniques

• Kernels: allow non-linear decision boundaries

• And to represent all sorts of new data (strings, trees)

• High-dimensional representations, but can use kernel trick to avoid 
explicitly computing feature maps

• Good performance! Sometimes close to DNNs



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, 
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, 
Yingyu Liang, Volodymyr Kuleshov, Fei-Fei Li, Justin Johnson, Serena Yeung, Pieter Abbeel, Peter Chen, Jonathan 
Ho, Aravind Srinivas


