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Announcements

*Logistics:
*HW 5 coming out shortly
*Probability tutorial?

Class roadmap: |G ERESER

Thursday, Nov. 4 Graphical Models |

Tuesday, Nov. 9 Graphical Models Il

Thursday, Nov. 11 Less-than-full Supervision



Outline

*Review & Generative Adversarial Networks
* Applications, histograms, autoregressive models

*Support Vector Machines (SVMs)
*Lagrangian duality, margins, training objectives

*Kernels
*Feature maps, kernel trick, conditions



Outline

*Review & Generative Adversarial Networks
* Applications, histograms, autoregressive models



GANs: Generative Adversarial Networks

*So far, we've been modeling the density...
* What if we just want to get high-quality samples?

*GANs do this. Based on a clever idea:
* Art forgery: very common through history
e Left: original

* Right: forged version

* Two-player game. Forger wants to pass off the
forgery as an original; investigator wants to
distinguish forgery from original




GANSs: Basic Setup

*Let’s set up networks that implement this idea:
* Discriminator network: like the investigator
* Generator network: like the forger

Fake Images
(from generator)

Real or Fake

Duscnmlnator Network

Real Images
(from training set)

Generator Network

Random noise

*

s

Stanford CS231n / Emily Denton



GAN Training: Discriminator

*How to train these networks? Two sets of parameters to
learn: B, (discriminator) and 6, (generator)

*Let’s fix the generator. What should the discriminator do?
* Distinguish fake and real data: binary classification.
* Use the cross entropy loss, we get

I%&X Eznpaaa 108 Do, () + Eoop(z) log(l — Do, (G, (2)))
I I

Real data, want Fake data, want
to classify 1 to classify 0



GAN Training: Generator & Discriminator

*How to train these networks? Two sets of parameters to
learn: B, (discriminator) and 6, (generator)

*This makes the discriminator better, but also want to make
the generator more capable of fooling it:
* Minimax game! Train jointly.

min max
0, 0Od

@ ~paacs 108 Do, () +

I

Real data, want
to classify 1

ﬂz,vp(z) log(l — DQd (GQQ (Z)))

T

Fake data, want
to classify 0



GAN Training: Alternating Training

*So we have an optimization goal:

min max

<|::wr\’pda,‘ca log ng (I) _|_

0, 04

* Alternate training:
* Gradient ascent: fix generator, make the discriminator better:

max Eﬂ?NPdata, log DQd ('CC) + EZNP(Z) log(l - ng (GQQ (Z)))

0a

{‘zmp(z) log(l — DQd (Gé’g (Z)))

* Gradient descent: fix discriminator, make the generator better

minE, ;) log(l — Dy, (Gg, (2)))

Og



GAN Training: Issues

*Training often not stable

*Many tricks to help with this:
* Replace the generator training with

Hgglx {'zwp(z) log(DQd (GQQ (Z)))

* Better gradient shape
* Choose number of alt. steps carefully

_ . High gradient signal :
*Can still be challenging. .

Cow gradient signal

Stanford CS231n



GAN Architectures

*So far we haven’t commented on what the networks are
*Discriminator: image classification, use a CNN

*What should generator look like

* Input: noise vector z. Output: an image (ie, volume 3 x width x
neight)
* Can just reverse our CNN pattern...

512
A

CONV 3 64




GANSs: Example

*From Radford’s paper, with 5 epochs of training:

M : rﬁ % ; =
» "!4 i B l 4 t‘ e BN
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Break & Quiz



Outline

*Support Vector Machines (SVMs)
*Lagrangian duality, margins, training objectives



Mini-Tutorial: Constrained Optimization

*Take optimization problem:
mv}}n f (W) « Objective

Constraints

*Generalized Lagrangian:

Low,a,B) = fW)+ ) aigiw)+ ) Bihy(w)
J

l
where «;, §;’s are called Lagrange multipliers
irPj



Mini-Tutorial: Lagrangian

*Form the quantity:
Op(w) := max L(w,a,f)

af:a;=0

= a’g}géof(w) + z a;gi(w) + Zﬁjhj (w)

L
gw)<0,vVli<i<k

*Note:

8, (W) = f(w), if w satisfies all the constraints
P +00, if w does not satisfy the constraints



Mini-Tutorial: Lagrangian

*Form the quantity:
Op(w) := max L(w,a,f)

af:a;=0
*Note:
f(w), if w satisfies all the constraints
+00, if w does not satisfy the constraints

*Minimizing f (w) with constraints is the same as minimizing
Op (W)

mln flw) = mm Op(w)=min max L(w,a,f)
w af:a;j=0



Mini-Tutorial: Duality

*The primal problem

p* == min f(w) = min max L(w,a,f)
w w aqpf:a;=0
*The dual problem
d* = arﬁnoalll); ,min Lw,a,p)
* Always true:
d* < p”



Mini-Tutorial: Duality

* Always true:

Let’s see why:
d*:= max minL(w,a, ) / Definition

af:a;=0 w

max min f(w) + 2; a;9;(w) + 2; Bjhj(w)

af:a;=0 w
< max f(w*) +X;a;9:(w”) + X;Bihi(w")
a,f:a;=0 \ |
:p* Y

Non-positive




Mini-Tutorial: Duality Gap

* Always true:

If actual equality, could solve dual instead of primal... when?
* Under conditions (ex: Slater’s), there exists (W*, a*, ) such that

d* = L(w",a",B) =p"

o (W*, a*, B*) satisfy Karush-Kuhn-Tucker (KKT) conditions:

aWi — O’ aigi(w) =0

gi(w) <0, hj (w) =0, a; =0



Review: Linear Classification

* Assuming linear separability,
w)Tx =0

(w9HTx >0

- . (wHTx <0
Class +1
] [
®
- ® Class -1



Review: Training & Margins

*Want: a large margin

large margin




Mini-Tutorial: Linear Algebra & Margin

*What’s the expression for the margin?
* We write y = sign(f;,(x)) = sign(w!x)

[lwl|
* Let’s show it. w is orthogonal to the hyperplane

*x has distance to the hyperplane w’z = 0

e The unit direction is ——
[lwl]

* For any unit vector v, the length of the projection of
xonvis |[vx]

T 'THT .
* The projection of x is <l> X =

1wl




Mini-Tutorial: Linear Algebra & Margin

. X
*x has distance lf‘ﬁ'j}(” ) to the hyperplanew’z + b =0
w is orthogonaltow’z + b =0
Proof:
cletx =x, + rﬁ, then |r| is the distance

 Multiply both sides by w! and add b
* Left hand side: wix + b = f,, , (x)
T
+b=0+r||lw||

w " w

* Right hand side: wix, +r

|lwl|



Support Vector Machines: Candidate Goal

*The absolute margin over all training data points:

Y = min ’ . ‘ Using our result
c lwll

*We want correct f,, , (recall y; € {+1, —1}). Define the
margin to be

*If f,y p iNcorrect on some x;, the margin is negative



Support Vector Machines: Candidate Goal

*One way: maximize margin over all training data points:

C Yifwp (x;) ~ yiw'x; + b)

maxy = max min — max min
w,b w,b L ||W|| w,b L ||W||

* A bit complicated ...
* How do we use our optimization approaches?



SVM: Simplified Goal

*Observation: when (w, b) scaled by a factor ¢ > 0, the
margin unchanged

yi(ew"x; +¢cb)  yi(w"x; + b)
[lewl] [lw]]

eLet’s consider a fixed scale such that

yir(w'x +b) =1
where x;+ is the point closest to the hyperplane



SVM: Simplified Goal

eLet’s consider a fixed scale such that

yirwWhx;» + b) =1
where x;« is the point closet to the hyperplane

*Now we have for all data
y:(wlx; + b) > 1

and at least for one i the equality holds

. . |
*Then the margin over all training points is T



SVM: Loss Function

-Optimization SilllpliﬁEd to
rgvl’n | w |

y;(wlx; +b) = 1,Vi

*How to find the optimum w™?

*Let’s use our Lagrange mgltiplier method

1
Low,b,@) == |Wl| =) alyswTx; +b) — 1]

l



SVM: Optimization

*To meet the KKT conditions:

0L
— = 0, > w= Zi a;ViXi (1)

ow
0L
£=0,90=Zi“i}’i (2)

2

1
_ Low,b,@) == |wl| =) aglyw"x; +b) = 1]
*Two rules. Plug into L: i

1
Lw,b,a) = Y;a; —>2y; ;Y yix] X (3)
combined with0 = ), a;y;,a; = 0



SVM: Dual Version

*Reduces to dual problem:

1

max L(w, b, a) = maxz A —= ) aYViXi X;
a a 2

l L]

zaiyi = O,C(i > (

l

Sincew = Y. a;y;x;, wehavewx + b =Y. a;y;x/ x + b

*Note: only deals with data via inner products x;ij



SVM: Support Vectors

 Solution is a sparse linear combination of training instances

* Those instances with a, > 0 are called support vectors
* Lie on the margin boundary
* Solution does not change if we delete instances with a, =0

1.0

___ support
vectors

1.0



SVM: Soft Margin

What if our data isn’t linearly separable?

*Can adjust our approach by using slack variables (denoted by
;) to tolerate errors

1 2
min - ||wl| +cZzi
l

yiwlx; +b) =1-0,¢ = 0,Vi

*C determines the relative importance of maximizing margin
vs. minimizing slack



SVM: Soft Margin

R I
min Il +€
l

yi(WTxi +b)=>1-¢;,{; = 0,Vi

C=100

1.0

190 05 00 05 1.0 -1.0 05 00 05

Ben-Hur & Weston, Methods in Molecular Biology 2010




Break & Quiz



Outline

*Kernels
*Feature maps, kernel trick, conditions



Feature Maps

e Can take a set of features and map them into another

 Can also construct non-linear features

e Use these inside a linear classifier?

X ¢ (x)

Color Histogram

——
Extract - .

features

B Red HGreen HBlue

Z2

‘;5 : (m11$2) — ('.m%: ﬁ$1m2,$%)

a1y 2 (13)2 1, #3
— ] =] s e =1
(a) + b a2+b2

X X x
:]O xX X

O 0

o 00

1

~1



Feature Maps and SVMs

Want to use feature space {¢(x;)} in linear classifier...
* Downside: dimension might be high (even infinite!)
*So we don’t want to write down ¢(x;) = [0.2,0.3, ...]

Recall our SVM dual form:
*Only relies on inner products xiij

1

L(w,b,a) = 2 a; =3 aiajyiij;-rxj

l L]

Z(Xiyi = 0,(11' >0

l



Kernel Trick

*Using SVM on the feature space {¢(x;)}: only need
¢ (x)" P (x;)

*Conclusion: no need to design ¢ (:), only need to design

k(xux]) ¢ (x; )T¢(x]

NI

Kernel Matrix Feature Maps



Kernel Types: Polynomial

*Fix degree d and constant c:

k(x,x) = (xTx' + ¢)“
*What are ¢p(x)?
*Expand the expression to get ¢ (x)

vx,x' € R?,  K(x,x') = (v12] + 2225 +¢)° =

polynomial degree 5

linear kernel polynomial degree 2

1.0

0.5

0.0

-0.5

1'-01.0 -0.5 00 05 10-1.0 -0.5 00 O5 1.0-1.0 -0.5 0.0 05 1.0

Ben-Hur & Weston, Methods in Molecular Biology 2010




Kernel Types: Gaussian/RBF

*Fix bandwidth o
k(x,x") = exp(—||x — x’HZ/ZaZ)

* Also called radial basis function (RBF) kernels

k(x, x") = exp(—y|lx — x'[*)

Andrew Ng



Theory of Kernels

* Part of a deep mathematical theory

* With some conditions, any kernel yields a feature map:

*Theorem: k(x, x") has expansion
+ 00

k(x,x") = Z a;d;(x)p;(x") .

: Feature Maps

for nonnegative a;’s, if and only if for any function c(x),

|| c(x)c(xk(x, x)dxdx' =0

* Given certain requirements/conditions, can construct a
bunch of new kernels from existing ones



Kernel Methods VS Neural Networks

* Can think of our kernel SVM approach as fixing a layer of a
neural network

y = sign(w' ¢ (x) + b)




SVM Review

e Can find globally optimal solutions: convex optimization

* No local minima (unlike training general NNs)

* Can train primal or dual

* Dual: relies on support vectors; enables use of kernels
* Variety of pre-existing optimization techniques
* Kernels: allow non-linear decision boundaries

* And to represent all sorts of new data (strings, trees)

* High-dimensional representations, but can use kernel trick to avoid
explicitly computing feature maps

* Good performance! Sometimes close to DNNs



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,

Yingyu Liang, Volodymyr Kuleshov, Fei-Fei Li, Justin Johnson, Serena Yeung, Pieter Abbeel, Peter Chen, Jonathan
Ho, Aravind Srinivas



