

CS 760: Machine Learning SVMs and Kernels

Fred Sala

University of Wisconsin-Madison
Nov. 2, 2021

Announcements

-Logistics:
-HW 5 coming out shortly
-Probability tutorial?

-Class roadmap:

Tuesday, Nov. 2	Kernels + SVMs
Thursday, Nov. 4	Graphical Models I
Tuesday, Nov. 9	Graphical Models II
Thursday, Nov. 11	Less-than-full Supervision

Outline

-Review \& Generative Adversarial Networks

- Applications, histograms, autoregressive models -Support Vector Machines (SVMs)
- Lagrangian duality, margins, training objectives
-Kernels
- Feature maps, kernel trick, conditions

Outline

-Review \& Generative Adversarial Networks

- Applications, histograms, autoregressive models -Support Vector Machines (SVMs) - Kernels
- Feature maps, kernel trick, conditions

GANs: Generative Adversarial Networks

- So far, we've been modeling the density...
- What if we just want to get high-quality samples?
- GANs do this. Based on a clever idea:
- Art forgery: very common through history
- Left: original
- Right: forged version
- Two-player game. Forger wants to pass off the forgery as an original; investigator wants to distinguish forgery from original

GANs: Basic Setup

- Let's set up networks that implement this idea:
- Discriminator network: like the investigator
- Generator network: like the forger

Stanford CS231n / Emily Denton

GAN Training: Discriminator

- How to train these networks? Two sets of parameters to learn: θ_{d} (discriminator) and θ_{g} (generator)
- Let's fix the generator. What should the discriminator do?
- Distinguish fake and real data: binary classification.
- Use the cross entropy loss, we get

GAN Training: Generator \& Discriminator

- How to train these networks? Two sets of parameters to learn: θ_{d} (discriminator) and θ_{g} (generator)
- This makes the discriminator better, but also want to make the generator more capable of fooling it:
- Minimax game! Train jointly.

$$
\begin{aligned}
& \min _{\theta_{g}} \max _{\theta_{d}} \mathbb{E}_{x \sim p_{\text {data }}} \log D_{\theta_{d}}(x)+\mathbb{E}_{z \sim p(z)} \log \left(1-D_{\theta_{d}}\left(G_{\theta_{g}}(z)\right)\right) \\
& \text { Real data, want } \\
& \text { to classify } 1 \\
& \text { Fake data, want } \\
& \text { to classify } 0
\end{aligned}
$$

GAN Training: Alternating Training

- So we have an optimization goal:

$$
\min _{\theta_{g}} \max _{\theta_{d}} \mathbb{E}_{x \sim p_{\text {data }}} \log D_{\theta_{d}}(x)+\mathbb{E}_{z \sim p(z)} \log \left(1-D_{\theta_{d}}\left(G_{\theta_{g}}(z)\right)\right)
$$

- Alternate training:
- Gradient ascent: fix generator, make the discriminator better:

$$
\max _{\theta_{d}} \mathbb{E}_{x \sim p_{\text {data }}} \log D_{\theta_{d}}(x)+\mathbb{E}_{z \sim p(z)} \log \left(1-D_{\theta_{d}}\left(G_{\theta_{g}}(z)\right)\right)
$$

- Gradient descent: fix discriminator, make the generator better

$$
\min _{\theta_{g}} \mathbb{E}_{z \sim p(z)} \log \left(1-D_{\theta_{d}}\left(G_{\theta_{g}}(z)\right)\right)
$$

GAN Training: Issues

- Training often not stable
- Many tricks to help with this:
- Replace the generator training with

$$
\max _{\theta_{g}} \mathbb{E}_{z \sim p(z)} \log \left(D_{\theta_{d}}\left(G_{\theta_{g}}(z)\right)\right)
$$

- Better gradient shape
- Choose number of alt. steps carefully
- Can still be challenging.

Stanford CS231n

GAN Architectures

- So far we haven't commented on what the networks are
- Discriminator: image classification, use a CNN
-What should generator look like
- Input: noise vector z. Output: an image (ie, volume $3 \times$ width x height)
-Can just reverse our CNN pattern...

GANs: Example

- From Radford's paper, with 5 epochs of training:

Break \& Quiz

Outline

-Review \& Generative Adversarial Networks - Applications, histograms, autoregressive models
-Support Vector Machines (SVMs)

- Lagrangian duality, margins, training objectives

Mini-Tutorial: Constrained Optimization

-Take optimization problem:

$$
\begin{gathered}
\min _{w} f(w) \\
g_{i}(w) \leq 0, \forall 1 \leq i \leq k \\
h_{j}(w)=0, \forall 1 \leq j \leq l
\end{gathered} \quad \begin{aligned}
& \text { objective } \\
& \text { constraints }
\end{aligned}
$$

- Generalized Lagrangian:

$$
\mathcal{L}(w, \boldsymbol{\alpha}, \boldsymbol{\beta})=f(w)+\sum_{i} \alpha_{i} g_{i}(w)+\sum_{j} \beta_{j} h_{j}(w)
$$

where α_{i}, β_{j} 's are called Lagrange multipliers

Mini-Tutorial: Lagrangian

- Form the quantity:

$$
\begin{array}{r}
\theta_{P}(w):=\max _{\boldsymbol{\alpha}, \boldsymbol{\beta}: \alpha_{i} \geq 0} \mathcal{L}(w, \boldsymbol{\alpha}, \boldsymbol{\beta}) \\
:=\max _{\boldsymbol{\alpha}, \boldsymbol{\beta}: \alpha_{i} \geq 0} f(w)+\sum_{i} \alpha_{i} g_{i}(w)+\sum_{j} \beta_{j} h_{j}(w) \\
g_{i}(w) \leq 0, \forall 1 \leq i \leq k \\
h_{j}(w)=0, \forall 1 \leq j \leq l
\end{array}
$$

- Note:

$$
\theta_{P}(w)=\left\{\begin{array}{c}
f(w), \quad \text { if } w \text { satisfies all the constraints } \\
+\infty,
\end{array}\right.
$$

Mini-Tutorial: Lagrangian

- Form the quantity:

$$
\theta_{P}(w):=\max _{\boldsymbol{\alpha}, \boldsymbol{\beta}: \alpha_{i} \geq 0} \mathcal{L}(w, \boldsymbol{\alpha}, \boldsymbol{\beta})
$$

- Note:

$$
\theta_{P}(w)=\left\{\begin{array}{l}
f(w), \quad \text { if } w \text { satisfies all the constraints } \\
+\infty, \text { if } w \text { does not satisfy the constraints }
\end{array}\right.
$$

- Minimizing $f(w)$ with constraints is the same as minimizing $\theta_{P}(w)$

$$
\min _{w} f(w)=\min _{w} \theta_{P}(w)=\min _{w} \max _{\boldsymbol{\alpha}, \boldsymbol{\beta}: \alpha_{i} \geq 0} \mathcal{L}(w, \boldsymbol{\alpha}, \boldsymbol{\beta})
$$

Mini-Tutorial: Duality

-The primal problem

$$
p^{*}:=\min _{w} f(w)=\min _{w} \max _{\boldsymbol{\alpha}, \boldsymbol{\beta}: \alpha_{i} \geq 0} \mathcal{L}(w, \boldsymbol{\alpha}, \boldsymbol{\beta})
$$

-The dual problem

$$
d^{*}:=\max _{\boldsymbol{\alpha}, \boldsymbol{\beta}: \alpha_{i} \geq 0} \min _{w} \mathcal{L}(w, \boldsymbol{\alpha}, \boldsymbol{\beta})
$$

- Always true:

$$
d^{*} \leq p^{*}
$$

Mini-Tutorial: Duality

- Always true:

$$
d^{*} \leq p^{*}
$$

Let's see why:

$$
\begin{aligned}
d^{*} & :=\max _{\boldsymbol{\alpha}, \boldsymbol{\beta}: \alpha_{i} \geq 0} \min _{w} \mathcal{L}(w, \boldsymbol{\alpha}, \boldsymbol{\beta}) \\
& =\max _{\alpha, \boldsymbol{\beta}: \alpha_{i} \geq 0} \min _{w} f(w)+\sum_{i} \alpha_{i} g_{i}(w)+\sum_{j} \beta_{j} h_{j}(w) \\
& \leq \max _{\boldsymbol{\alpha}, \boldsymbol{\beta}: \alpha_{i} \geq 0} f\left(w^{*}\right)+\sum_{i} \alpha_{i} g_{i}\left(w^{*}\right)+\sum_{j} \beta_{j} h_{j}\left(w^{*}\right) \\
& =p^{*}
\end{aligned}
$$

Mini-Tutorial: Duality Gap

- Always true:

$$
d^{*} \leq p^{*}
$$

If actual equality, could solve dual instead of primal... when? - Under conditions (ex: Slater's), there exists $\left(w^{*}, \boldsymbol{\alpha}^{*}, \boldsymbol{\beta}^{*}\right)$ such that

$$
d^{*}=\mathcal{L}\left(w^{*}, \boldsymbol{\alpha}^{*}, \boldsymbol{\beta}^{*}\right)=p^{*}
$$

- $\left(w^{*}, \boldsymbol{\alpha}^{*}, \boldsymbol{\beta}^{*}\right)$ satisfy Karush-Kuhn-Tucker (KKT) conditions:

$$
\begin{gathered}
\frac{\partial \mathcal{L}}{\partial w_{i}}=0, \quad \alpha_{i} g_{i}(w)=0 \\
g_{i}(w) \leq 0, \quad h_{j}(w)=0, \quad \alpha_{i} \geq 0
\end{gathered}
$$

Review: Linear Classification

- Assuming linear separability,

Review: Training \& Margins

- Want: a large margin

Mini-Tutorial: Linear Algebra \& Margin

-What's the expression for the margin?

- We write $y=\operatorname{sign}\left(f_{w}(x)\right)=\operatorname{sign}\left(w^{T} x\right)$
- x has distance $\frac{\left|f_{w}(x)\right|}{\|w\|}$ to the hyperplane $w^{T} z=0$
- Let's show it. w is orthogonal to the hyperplane
- The unit direction is $\frac{w}{\|w\|}$
- For any unit vector v, the length of the projection of x on v is $\left|v^{T} x\right|$
- The projection of x is $\left(\frac{w}{\|w\|}\right)^{T} x=\frac{f_{w}(x)}{\|w\|}$

Mini-Tutorial: Linear Algebra \& Margin

- x has distance $\frac{\left|f_{w, b}(x)\right|}{\|w\|}$ to the hyperplane $w^{T} z+b=0$

Proof:

- Let $x=x_{\perp}+r \frac{w}{\|w\|}$ then $|r|$ is the distance
- Multiply both sides by w^{T} and add b
- Left hand side: $w^{T} x+b=f_{w, b}(x)$
- Right hand side: $w^{T} x_{\perp}+r \frac{w^{T} w}{\|w\|}+b=0+r\|w\|$

Support Vector Machines: Candidate Goal

-The absolute margin over all training data points:

$$
\gamma=\min _{i} \frac{\left|f_{w, b}\left(x_{i}\right)\right|}{\|w\|}
$$

-We want correct $f_{w, b}$, (recall $\left.y_{i} \in\{+1,-1\}\right)$. Define the margin to be

$$
\gamma=\min _{i} \frac{y_{i} f_{w, b}\left(x_{i}\right)}{\|w\|}
$$

-If $f_{w, b}$ incorrect on some x_{i}, the margin is negative

Support Vector Machines: Candidate Goal

- One way: maximize margin over all training data points:

$$
\max _{w, b} \gamma=\max _{w, b} \min _{i} \frac{y_{i} f_{w, b}\left(x_{i}\right)}{\|w\|}=\max _{w, b} \min _{i} \frac{y_{i}\left(w^{T} x_{i}+b\right)}{\|w\|}
$$

- A bit complicated ...
- How do we use our optimization approaches?

SVM: Simplified Goal

- Observation: when (w, b) scaled by a factor $c>0$, the margin unchanged

$$
\frac{y_{i}\left(c w^{T} x_{i}+c b\right)}{\|c w\|}=\frac{y_{i}\left(w^{T} x_{i}+b\right)}{\|w\|}
$$

- Let's consider a fixed scale such that

$$
y_{i^{*}}\left(w^{T} x_{i^{*}}+b\right)=1
$$

where $x_{i^{*}}$ is the point closest to the hyperplane

SVM: Simplified Goal

- Let's consider a fixed scale such that

$$
y_{i^{*}}\left(w^{T} x_{i^{*}}+b\right)=1
$$

where $x_{i^{*}}$ is the point closet to the hyperplane

- Now we have for all data

$$
y_{i}\left(w^{T} x_{i}+b\right) \geq 1
$$

and at least for one i the equality holds

- Then the margin over all training points is $\frac{1}{\|w\|}$

SVM: Loss Function

- Optimization simplified to

$$
\begin{gathered}
\min _{w, b} \frac{1}{2}| | w \|^{2} \\
y_{i}\left(w^{T} x_{i}+b\right) \geq 1, \forall i
\end{gathered}
$$

- How to find the optimum \widehat{w}^{*} ?
- Let's use our Lagrange multiplier method

$$
\mathcal{L}(w, b, \boldsymbol{\alpha})=\frac{1}{2}\|\mid w\|^{2}-\sum_{i} \alpha_{i}\left[y_{i}\left(w^{T} x_{i}+b\right)-1\right]
$$

SVM: Optimization

- To meet the KKT conditions:

$$
\begin{align*}
& \frac{\partial \mathcal{L}}{\partial w}=0, \rightarrow w=\sum_{i} \alpha_{i} y_{i} x_{i} \\
& \frac{\partial \mathcal{L}}{\partial b}=0, \rightarrow 0=\sum_{i} \alpha_{i} y_{i} \tag{2}
\end{align*}
$$

$$
\mathcal{L}(w, b, \boldsymbol{\alpha})=\frac{1}{2}\|w\|^{2}-\sum_{i} \alpha_{i}\left[y_{i}\left(w^{T} x_{i}+b\right)-1\right]
$$

- Two rules. Plug into \mathcal{L} :

$$
\mathcal{L}(w, b, \boldsymbol{\alpha})=\sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}
$$

combined with $0=\sum_{i} \alpha_{i} y_{i}, \alpha_{i} \geq 0$

SVM: Dual Version

- Reduces to dual problem:

$$
\begin{gathered}
\max _{\boldsymbol{\alpha}} \mathcal{L}(w, b, \boldsymbol{\alpha})=\max _{\boldsymbol{\alpha}} \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j} \\
\sum_{i} \alpha_{i} y_{i}=0, \alpha_{i} \geq 0
\end{gathered}
$$

- Since $w=\sum_{i} \alpha_{i} y_{i} x_{i}$, we have $w^{T} x+b=\sum_{i} \alpha_{i} y_{i} x_{i}^{T} x+b$
- Note: only deals with data via inner products $x_{i}^{T} x_{j}$

SVM: Support Vectors

- Solution is a sparse linear combination of training instances
- Those instances with $\alpha_{i}>0$ are called support vectors
- Lie on the margin boundary
- Solution does not change if we delete instances with $\alpha_{i}=0$

SVM: Soft Margin

What if our data isn't linearly separable?

- Can adjust our approach by using slack variables (denoted by $\left.\zeta_{i}\right)$ to tolerate errors

$$
\begin{gathered}
\min _{w, b, \zeta_{i}} \frac{1}{2}| | w| |^{2}+C \sum_{i} \zeta_{i} \\
y_{i}\left(w^{T} x_{i}+b\right) \geq 1-\zeta_{i}, \zeta_{i} \geq 0, \forall i
\end{gathered}
$$

- C determines the relative importance of maximizing margin vs. minimizing slack

SVM: Soft Margin

Break \& Quiz

Outline

-Review \& Generative Adversarial Networks - Applications, histograms, autoregressive models - Support Vector Machines (SVMs) - Lagrangian duality, margins, training objectives
 - Kernels
 - Feature maps, kernel trick, conditions

Feature Maps

- Can take a set of features and map them into another
- Can also construct non-linear features
- Use these inside a linear classifier?

$$
\phi:\left(x_{1}, x_{2}\right) \longrightarrow\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)
$$

$$
\left(\frac{x_{1}}{a}\right)^{2}+\left(\frac{x y}{b}\right)^{2}=1-\frac{z_{1}}{a^{2}}+\frac{z_{2}}{b^{2}}=1
$$

Feature Maps and SVMs

Want to use feature space $\left\{\phi\left(x_{i}\right)\right\}$ in linear classifier...

- Downside: dimension might be high (even infinite!)
- So we don't want to write down $\phi\left(x_{i}\right)=[0.2,0.3, \ldots]$

Recall our SVM dual form:

- Only relies on inner products $x_{i}^{T} x_{j}$

$$
\begin{gathered}
\mathcal{L}(w, b, \boldsymbol{\alpha})=\sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j} \\
\sum_{i} \alpha_{i} y_{i}=0, \alpha_{i} \geq 0
\end{gathered}
$$

Kernel Trick

- Using SVM on the feature space $\left\{\phi\left(x_{i}\right)\right\}$: only need $\phi\left(x_{i}\right)^{T} \phi\left(x_{j}\right)$
- Conclusion: no need to design $\phi(\cdot)$, only need to design

$$
k\left(x_{i}, x_{j}\right)=\phi\left(x_{i}\right)^{T} \phi\left(x_{j}\right)
$$

Kernel Matrix

Feature Maps

Kernel Types: Polynomial

- Fix degree d and constant c :

$$
k\left(x, x^{\prime}\right)=\left(x^{T} x^{\prime}+c\right)^{d}
$$

-What are $\phi(x)$?

- Expand the expression to get $\phi(x)$

$$
\forall \mathbf{x}, \mathbf{x}^{\prime} \in \mathbb{R}^{2}, \quad K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left(x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}+c\right)^{2}=
$$

[^0]
Kernel Types: Gaussian/RBF

- Fix bandwidth σ :

$$
k\left(x, x^{\prime}\right)=\exp \left(-\left|\left|x-x^{\prime}\right|\right|^{2} / 2 \sigma^{2}\right)
$$

- Also called radial basis function (RBF) kernels

$$
\gamma=10
$$

$$
\gamma=100
$$

$$
\gamma=1000
$$

$$
k\left(x, x^{\prime}\right)=\exp \left(-\gamma| | x-\left.x^{\prime}\right|^{2}\right)
$$

Theory of Kernels

- Part of a deep mathematical theory
- With some conditions, any kernel yields a feature map:
-Theorem: $k\left(x, x^{\prime}\right)$ has expansion

$$
k\left(x, x^{\prime}\right)=\sum_{i}^{+\infty} a_{i} \phi_{i}(x) \phi_{i}\left(x^{\prime}\right)
$$

for nonnegative a_{i} 's, if and only if for any function $c(x)$,

$$
\iint c(x) c\left(x^{\prime}\right) k\left(x, x^{\prime}\right) d x d x^{\prime} \geq 0
$$

- Given certain requirements/conditions, can construct a bunch of new kernels from existing ones

Kernel Methods VS Neural Networks

- Can think of our kernel SVM approach as fixing a layer of a neural network

SVM Review

- Can find globally optimal solutions: convex optimization
- No local minima (unlike training general NNs)
- Can train primal or dual
- Dual: relies on support vectors; enables use of kernels
- Variety of pre-existing optimization techniques
- Kernels: allow non-linear decision boundaries
- And to represent all sorts of new data (strings, trees)
- High-dimensional representations, but can use kernel trick to avoid explicitly computing feature maps
- Good performance! Sometimes close to DNNs

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, Yingyu Liang, Volodymyr Kuleshov, Fei-Fei Li, Justin Johnson, Serena Yeung, Pieter Abbeel, Peter Chen, Jonathan Ho, Aravind Srinivas

[^0]: Ben-Hur \& Weston, Methods in Molecular Biology 2010

