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Announcements

*Logistics:
*HW 5 has been released; due Tuesday

*Class roadmap:

Tuesday, Nov. 9 Graphical Models Il

Thursday, Nov. 11 Less-than-full Supervision

Tuesday, Nov. 16 Unsupervised Learning |



Outline

*Review, SVMs, Kernels
*Duality, feature maps, kernel trick

*Probability Tutorial
*Basics, joint probability, conditional probabilities, etc

*Bayesian Networks
*Definition, examples, inference



Outline

*Review, SVMs, Kernels
*Duality, feature maps, kernel trick



Review: Constrained Optimization & Duality

m&}n f (W) ) Objective
gW)<0,vi<i<k
hy(w) =0,V1 <j <1

Constraints

*Lagrangian: L(w, a, B) = f(w) + X; a;g;(w) + X; Bjh;(w)

*Primal problem p* := mlnf(w) min rﬁnaXOL(W a,f)
woapf:a;
*Dual problem d*:= max minL(w,a, )

aﬁ a;i=0 w

*Always true: d* <p”



Review: Apply to Training Linear Classifier

*Want: a large margin

large margin




Review: Support Vector Machines Goal

Define the margin to be

+—We proved this

*If f,v p iNCorrect on some x;, the margin is negative

. . . 1
*Fix scale: y;«(w'x;« + b) = 1. Then, margin overall is i
Primal problem:
_ 1 : Objective:
min = ||w] i
wh 2 Large margin

Constraints: Correct
on training data

y:(wlx; +b) > 1,Vi -




SVM: Dual Version

*Reduces to dual problem:

1
— T
max L(w,b,a) = maaxz a; =7 ) AGYiYiXi X
l lj \
z a;v; =0,a; =0 Note: only variables

i are primal

Sincew = Y. a;y;x;, wehavewx + b =Y. a;y;x/ x + b

*Note: only deals with data via inner products x;ij



SVM: Support Vectors

 Solution is a sparse linear combination of training instances

W = Z adiYiXi
i

1.0

* Those instances with a, > 0 are
called support vectors

* Lie on the margin boundary

* Solution does not change if we
delete instances with a; = 0

| support
vectors




SVM: Soft Margin

What if our data isn’t linearly separable?

*Can adjust our approach by using slack variables (denoted by
;) to tolerate errors

1 2
min - ||wl| +cZzi
l

yiwlx; +b) =1-0,¢ = 0,Vi

*C determines the relative importance of maximizing margin
vs. minimizing slack



SVM: Soft Margin

R I
min Il +€
l

yi(WTxi +b)=>1-¢;,{; = 0,Vi

C=100

1.0
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Ben-Hur & Weston, Methods in Molecular Biology 2010




Feature Maps

e Can take a set of features and map them into another

e Can also construct non-linear features

e Use these inside a linear classifier?

X ¢ (x)
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Feature Maps and SVMs

Want to use feature space {¢(x;)} in linear classifier...
* Downside: dimension might be high (even infinite!)
*So we don’t want to write down ¢(x;) = [0.2,0.3, ...]

Recall our SVM dual form:
*Only relies on inner products xl-ij

1

L(w,b,a) = 2 a; =3 aiajyiij;-rxj

l L]

Z(Xiyi = 0,(11' >0

l



Kernel Trick

*Using SVM on the feature space {¢(x;)}: only need
¢ (x)" P (x;)

*Conclusion: no need to design ¢ (:), only need to design

k(xux]) ¢ (x; )T¢(x]

NI

Kernel Matrix Feature Maps



Kernel Types: Polynomial

*Fix degree d and constant c:

k(x,x) = (xTx' + ¢)“
*What are ¢p(x)?
*Expand the expression to get ¢ (x)

vx,x' € R?,  K(x,x') = (v12] + 2225 +¢)° =

polynomial degree 5

linear kernel polynomial degree 2

1.0
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Ben-Hur & Weston, Methods in Molecular Biology 2010




Kernel Types: Gaussian/RBF

*Fix bandwidth o
k(x,x") = exp(—||x — x’HZ/ZaZ)

* Also called radial basis function (RBF) kernels

k(x, x") = exp(—y|lx — x'[*)

Andrew Ng



Theory of Kernels

* Part of a deep mathematical theory

* With some conditions, any kernel yields a feature map:

*Theorem: k(x, x") has expansion
+ 00

k(x,x") = Z a;d;(x)p;(x") .

: Feature Maps

for nonnegative a;’s, if and only if for any function c(x),

|| c(x)c(xk(x, x)dxdx' =0

* Given certain requirements/conditions, can construct a
bunch of new kernels from existing ones



Kernel Methods VS Neural Networks

* Can think of our kernel SVM approach as fixing a layer of a
neural network

y = sign(w' ¢ (x) + b)




SVM Review

e Can find globally optimal solutions: convex optimization

* No local minima (unlike training general NNs)

* Can train primal or dual

* Dual: relies on support vectors; enables use of kernels
* Variety of pre-existing optimization techniques
* Kernels: allow non-linear decision boundaries

* And to represent all sorts of new data (strings, trees)

* High-dimensional representations, but can use kernel trick to avoid
explicitly computing feature maps

* Good performance! Sometimes close to DNNs



Break & Quiz



Outline

*Probability Tutorial
*Basics, joint probability, conditional probabilities, etc



Probability Tutorial: Outcomes & Events

*Outcomes: possible results of an experiment
*Events: subsets of outcomes we’re interested in

Ex:

0 =1{1,2,3,4,5,6)
%,—/

outcomes

events




Probability Tutorial: Outcomes & Events

*Event space can be smaller:

F=A{0,{1,3,5},{2,4,6},Q}
—— (——

events

*Two components always in it!

0,




Probability Tutorial: Sigma Fields

* Fis a “sigma algebra”.
* Follows certain rules:

* Everything in it (saw this already)
e IfAisinF, sois A€
* Closed under countable unions




Probability Tutorial: Probability Spaces

* Now we need a way to produce probabilities of events, so
introduce a function

P:F —10,1]

* Has certain properties, which we’ll see in a second.

* Overall, we get a probability space

(€2, F, P)



Probability Tutorial: Probability Sapces

*\We have outcomes and events and probabilities
°|.e.,
For E € F, P(E) € [0,1]

Back to our example:

F={0.{1,3,5},{2,4,6},9}
—_—

events

P({1,3,5}) = 0.2, P({2,4,6}) = 0.8




Basics: AXxioms

*Rules for probability:

*For all events

*Always,

EeF,P(E)>0

P0)=0,P(Q) =1

*For disjoint events,

P(E,UEy) = P(Ey) + P(E,)

*Easy to derive other laws. Ex: non-disjoint events

r=

P(E, U

) = P(L1) + P(

) — P(Eq N Ey)

-

>

)




Basics: Random Variables

*Really, functions
*Map outcomes to real values

*Why?
*So far, everything is a set.
*Hard to work with!
*Real values are easy to work with

*One requirement, “F measurable”. For any c,

{w: X(w) <clteF




Basics: CDF & PDF

*Can still work with probabilities:
1 O

O

P(X=3)=P{w: X(w)=3})

*Cumulative Distribution Func. (CDF)

*Density / mass function 7 (CE)
*Doesn’t always exist!

Fy(z) == P(X < z) e
—-O/

Wiki CDF



Basics: Expectation & Variance

4

*Another advantage of RVs are summaries’

*Expectation:

*The “average” E[X]=>_ax P(z=a)
*Variance: Var[X] = E[(X — E[X])?

* A measure of spread
*‘Raw moments: E[X], E[X?], E[X?],...
*Note: also don’t always exist...

*Ex: Cauchy distribution



Basics: Expectation Properties

*Expectation has very useful properties...

e Linearity: E[Z a; X;] = Z a; B[ X;]
*Independence ndit required! i

*Hat check problem:
*There is a dinner party where n people check their hats. The hats
are mixed up during dinner, so that afterward each man receives
a random hat. In particular, each person gets their own hat with
probability 1/n. What is the expected number of people who get
their own hat?



Basics: Joint Distributions

*Move from one variable to several
eJoint distribution

P(X =a,Y =)

*Or more variables.

P(Xl :33'1,X2 :.CUQ,...,Xk :.’L'k)



Basics: Marginal Probability

*Given a joint distribution
P(X =a,Y =)

*Get the distribution in just one variable:
P(X = a) = ZbP(X =aq,Y = b)

*This is the “marginal” distribution.



Basics: Marginal Probability

P(X=a)=Y,P(X =a,Y =b)

Sunny | Cloudy | Ralin

hot |150/365 | 40/365 | 5/36

cold | 50/365 | 60/365 | 60/365

[P(hot), P(cold)] = [522, 5]




Independence

*Independence for asetof events A, .. . A,

P(Aj Aiy --- Aiy) = P(Ai )P(Ay,) - P(Ay))
for all the 1300l combinations

*Why useful? Dramatically reduces the complexity

*Collapses joint into product of marginals

*Note sometimes we have only pair-wise, etc
independence



Uncorrelatedness

*For random variables, uncorrelated means
E[XY]| = E[X|E[Y]

Note: weaker than independence.
*Independence implies uncorrelated (easy to see)
*Other way around: usually false (but not always).
If X,Y independent, functions are not correlated:

ELf(X)f(Y)] = B (X)|ELf(Y)]



Conditional Probability

*For when we know something,

P(X =a,Y =)

P(X =alY =0) = PY =)

*Leads to conditional independence

P(X,Y|Z) = P(X|Z)P(Y|Z)

Credit: Devin Soni



Chain Rule

*Apply repeatedly,

P(A, Ay, ..., A,)

= P(A)P(A3|A1)P(A3|Ag, Ay) ... P(A|An_q, ..., A1)
*Note: still big!

*|f some conditional independence, can factor!
*Leads to probabilistic graphical models (this lecture)



Law of Total Probability

*Partition the sample space into disjoint B,, ..., B,
*Then,
P(A) = » P(A|B;)P(B;)
g

*Useful way to control A via conditional probabilities.

Example: there are 5 red and 2 green balls in an urn.
A random ball is selected and replaced by a ball of
the other color; then a second ball is drawn. What is

the probability the second ball is red?



Review: Bayesian Inference

*Conditional Prob. & Bayes:

P(Ey,..., B, |H)P(H
P(H|E1,E2,...,En): ( 1 ) ‘ ) ( )

P(El, Eo, ... ,En)
*Has more evidence.

*Likelihood is hard---but conditional independence
assumption

P(E\|H)P(Eo|H) -+, P(E,|H)P(H)
P(H|Ey, Es, ..., Ey) = P(E1,Es, ..., E,)




Random Vectors & Covariance

*Recall variance: i[(X — E[X])Z]
*Now, for a random vector (same as joint of d RVs)
*Note: size d x d. All variables are centered

E[(X: — E[X1])] - (X = EX)(Xn — E[Xa])]

L]

(X — E[X)) (X1 —E[X1))] ... E[(X, — E[X,])?]

e /

Cross-variance Diagonals: Scalar Variance




Estimation Theory

*How do we know that the sample mean is a good
estimate of the true mean?
*Concentration inequalities

P([E[X] — E[X]| > ) < exp(—2nt?)

*Law of large numbers P XA
*Central limit theorems, etc. Q

Wolfram Demo



Break & Quiz



Outline

*Bayesian Networks
*Definition, examples, inference



Bayesian Networks Example

*Consider the following 5 binary random variables:

B = a burglary occurs at the house

E = an earthquake occurs at the house
A = the alarm goes off

J =John calls to report the alarm

M = Mary calls to report the alarm

*Suppose Burglary or Earthquake can trigger Alarm, and Alarm
can trigger John’s call or Mary’s call

*Now we want to answer queries like whatis P(B | M, J) ?



Bayesian Networks Example

*Set up a network that shows how random variables influence

others:




Bayesian Networks Example

*Set up a network that shows how random variables influence

others:

P(B)
t f
0.001  0.999




Bayesian Networks Example

*Set up a network that shows how random variables influence

others:
t f t f
0.001 0.999 0.001 0.999




Bayesian Networks Example

*Set up a network that shows how random variables influence

others:
t f t f
0.001 0.999 0.001 0.999
P(A|BE)

t f

0.94 0.06
0.29 0.71
0.001 0.999

-~ =~ e~ e~ |0

E
t 0.95 0.05
f
t
f




Bayesian Networks Example

*Set up a network that shows how random variables influence

others:
P(E
P(B) Burglary Earthquake L£)
t f t f
0.001  0.999 0.001  0.999
P(A[BE)
B E t f
t t 0.95  0.05
t f 0.94  0.06
f t 029 071
f f 0.001  0.999
P(J[A)
t f
0.9 0.1




Bayesian Networks Example

*Set up a network that shows how random variables influence

others:
P(E
P(B) Burglary Earthquake L£)
t f t f
o0l 0995 0.001  0.999
P(A|BE)
B E t f
t t 095  0.05
t f 094  0.06
1 t 029 0.71
1 f 0.001  0.999
PUITA) P(M][A)
t f A t f
0.9 0.1 t 0.7 0.3
005 0.9 f 001  0.99




Bayesian Networks: Definition

*A BN consists of a Directed Acyclic Graph (DAG) and a set of
conditional probability distributions

* The DAG:
* each node denotes a random variable
* each edge from X'to Y represents that X directly influences Y

* (formally: each variable X is independent of its non-descendants given its
parents)

* Each CPD: represents P(X | Parents(X) )

P, xa) = [ @] zpan)

veV



Bayesian Networks: Parameter Counting

e Parameter reduction: a standard representation of the joint
distribution for the Alarm example has 2° = 32 parameters

* the BN representation of this distribution has 20 parameters

P(5.6A.3,1)
= P(B)
x P(E)
x P(A|B,E)
x P(J | A)

x P(M | A)



Inference in Bayesian Networks

Given: values for some variables in the network (evidence),
and a set of query variables

Do: compute the posterior distribution over the query
variables

evariables that are neither evidence variables nor query
variables are hidden variables

*the BN representation is flexible enough that any set can be
the evidence variables and any set can be the query variables



Inference by Enumeration

*Let ¢ denote A=true, and —a denote A=false
*Suppose we’re given the query: P(b | j, m)
“probability the house is being burglarized given that John
and Mary both called”

*From the graph structure we can first compute:
() (&) P, j,m)=> > P(b)P(E)P(A|b,E)P(j| AP(m]|A)
(4) |
sum over possible
values for £ and 4

o @ variables (e, —e, a, —a)



Inference by Enumeration

P(b, jm) =, > P(b)P(E)P(Alb,E)P(j|A)P(m|A)

€,—ea,—a

=P(b)2 2 P(E)P(AIb,E)P(j[A)P(m]A)

€,—€a,—a

0.05

P(B) P(E)
0.001 0.001
() ()  =0.001x(0.001x0.95x0.9x0.7 +
B E | PA)
t t | 095 0.001x0.05x0.05%0.01+
t f 0.94 0 0.999x0.94x0.9x0.7 +
A B 0.999 x 0.06 x 0.05 % 0.01)
f f '
1
(D)
A P@J) P(M)
t 0.9 0.7

- ~+ | >

0.01




Inference by Enumeration

*Next do equivalent calculation for P(—b, j, m)
and determine P(b | j, m)

P(o, j,m) _ P(b, j,m)

PO =55 ) T P, um) + P(=b, jum)

So: exact method, but can be intractably hard.

*Some cases: efficient
* Approximate inference sometimes available



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,

Yingyu Liang, Volodymyr Kuleshov, Fei-Fei Li, Justin Johnson, Serena Yeung, Pieter Abbeel, Peter Chen, Jonathan
Ho, Aravind Srinivas



