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Announcements

•Logistics: 
•HW 5 has been released; due Tuesday

•Class roadmap:
Thursday, Nov. 4 Graphical Models I

Tuesday, Nov. 9 Graphical Models II

Thursday, Nov. 11 Less-than-full Supervision

Tuesday, Nov. 16 Unsupervised Learning I



Outline

•Review, SVMs, Kernels
•Duality, feature maps, kernel trick

•Probability Tutorial
•Basics, joint probability, conditional probabilities, etc

•Bayesian Networks
•Definition, examples, inference



Outline

•Review, SVMs, Kernels
•Duality, feature maps, kernel trick

•Probability Tutorial
•Basics, joint probability, conditional probabilities, etc

•Bayesian Networks
•Definition, examples, inference



Review: Constrained Optimization & Duality

min
𝑤

𝑓(𝑤)

𝑔𝑖 𝑤 ≤ 0, ∀1 ≤ 𝑖 ≤ 𝑘

ℎ𝑗 𝑤 = 0, ∀1 ≤ 𝑗 ≤ 𝑙

•Lagrangian: ℒ 𝑤, 𝜶, 𝜷 = 𝑓 𝑤 + σ𝑖 𝛼𝑖𝑔𝑖(𝑤) + σ𝑗 𝛽𝑗ℎ𝑗(𝑤)

•Primal problem 𝑝∗ ≔ min
𝑤

𝑓 𝑤 = min
𝑤

max
𝜶,𝜷:𝛼𝑖≥0

ℒ 𝑤,𝜶, 𝜷

•Dual problem 𝑑∗ ≔ max
𝜶,𝜷:𝛼𝑖≥0

min
𝑤

ℒ 𝑤, 𝜶, 𝜷

•Always true: 𝑑∗ ≤ 𝑝∗

Objective

Constraints



Review: Apply to Training Linear Classifier

•Want: a large margin

Class +1

Class -1

𝑤2

large margin



Review: Support Vector Machines Goal

Define the margin to be

𝛾 = min
𝑖

𝑦𝑖𝑓𝑤,𝑏 𝑥𝑖
| 𝑤 |

•If 𝑓𝑤,𝑏 incorrect on some 𝑥𝑖, the margin is negative

•Fix scale: 𝑦𝑖∗ 𝑤𝑇𝑥𝑖∗ + 𝑏 = 1. Then, margin overall is 
1

| 𝑤 |

Primal problem:

min
𝑤,𝑏

1

2
𝑤

2

𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1, ∀𝑖

We proved this

Objective: 
Large margin

Constraints: Correct 
on training data



SVM: Dual Version

•Reduces to dual problem:

max
𝜶

ℒ 𝑤, 𝑏, 𝜶 = max
𝜶

෍

𝑖

𝛼𝑖 −
1

2
෍

𝑖𝑗

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖
𝑇𝑥𝑗

෍

𝑖

𝛼𝑖𝑦𝑖 = 0, 𝛼𝑖 ≥ 0

•Since 𝑤 = σ𝑖 𝛼𝑖𝑦𝑖𝑥𝑖, we have 𝑤𝑇𝑥 + 𝑏 = σ𝑖 𝛼𝑖𝑦𝑖𝑥𝑖
𝑇𝑥 + 𝑏

•Note: only deals with data via inner products 𝑥𝑖
𝑇𝑥𝑗

Note: only variables 
are primal  



support 

vectors

SVM: Support Vectors

• Solution is a sparse linear combination of training instances

𝑤 =෍

𝑖

𝛼𝑖𝑦𝑖𝑥𝑖

• Those instances with αi > 0 are 
called support vectors

• Lie on the margin boundary

• Solution does not change if we 
delete instances with αi = 0



SVM: Soft Margin

What if our data isn’t linearly separable?

•Can adjust our approach by using slack variables (denoted by 
𝜁𝑖) to tolerate errors

min
𝑤,𝑏,𝜁𝑖

1

2
𝑤

2

+ 𝐶෍

𝑖

𝜁𝑖

𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1 − 𝜁𝑖 , 𝜁𝑖 ≥ 0, ∀𝑖

•𝐶 determines the relative importance of maximizing margin 
vs. minimizing slack



SVM: Soft Margin

min
𝑤,𝑏,𝜁𝑖

1

2
𝑤

2

+ 𝐶෍

𝑖

𝜁𝑖

𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1 − 𝜁𝑖 , 𝜁𝑖 ≥ 0, ∀𝑖

Ben-Hur & Weston,  Methods in Molecular Biology 2010



Feature Maps

• Can take a set of features and map them into another

• Can also construct non-linear features

• Use these inside a linear classifier?

Extract 
features

𝑥

Color Histogram

Red Green Blue

𝜙 𝑥



Feature Maps and SVMs

Want to use feature space 𝜙 𝑥𝑖 in linear classifier…
•Downside: dimension might be high (even infinite!)
•So we don’t want to write down 𝜙 𝑥𝑖 = [0.2,0.3, … ]

Recall our SVM dual form:
•Only relies on inner products 𝑥𝑖

𝑇𝑥𝑗

ℒ 𝑤, 𝑏, 𝜶 =෍

𝑖

𝛼𝑖 −
1

2
෍

𝑖𝑗

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖
𝑇𝑥𝑗

෍

𝑖

𝛼𝑖𝑦𝑖 = 0, 𝛼𝑖 ≥ 0



Kernel Trick

•Using SVM on the feature space {𝜙 𝑥𝑖 }: only need 
𝜙 𝑥𝑖

𝑇𝜙(𝑥𝑗)

•Conclusion: no need to design 𝜙 ⋅ , only need to design 

𝑘 𝑥𝑖 , 𝑥𝑗 = 𝜙 𝑥𝑖
𝑇𝜙(𝑥𝑗)

Kernel Matrix Feature Maps



Kernel Types: Polynomial

•Fix degree 𝑑 and constant 𝑐:
𝑘 𝑥, 𝑥′ = 𝑥𝑇𝑥′ + 𝑐 𝑑

•What are 𝜙(𝑥)?

•Expand the expression to get 𝜙(𝑥)

Ben-Hur & Weston,  Methods in Molecular Biology 2010



Kernel Types: Gaussian/RBF 

•Fix bandwidth 𝜎:

𝑘 𝑥, 𝑥′ = exp(− 𝑥 − 𝑥′
2
/2𝜎2)

•Also called radial basis function (RBF) kernels

𝛾 = 10 𝛾 = 100 𝛾 = 1000

Andrew Ng

𝑘 𝑥, 𝑥′ = exp(−𝛾 𝑥 − 𝑥′
2
)



Theory of Kernels 

• Part of a deep mathematical theory

• With some conditions, any kernel yields a feature map:
•Theorem: 𝑘 𝑥, 𝑥′ has expansion 

𝑘 𝑥, 𝑥′ =෍

𝑖

+∞

𝑎𝑖𝜙𝑖 𝑥 𝜙𝑖(𝑥
′)

for nonnegative 𝑎𝑖’s, if and only if for any function 𝑐(𝑥),

∫ ∫ 𝑐 𝑥 𝑐 𝑥′ 𝑘 𝑥, 𝑥′ 𝑑𝑥𝑑𝑥′ ≥ 0

• Given certain requirements/conditions, can construct a 
bunch of new kernels from existing ones

Feature Maps



Kernel Methods VS Neural Networks

• Can think of our kernel SVM approach as fixing a layer of a 
neural network

𝑥1

𝑥2

𝑥1
2

𝑥2
2

2𝑥1𝑥2

2𝑐𝑥1

2𝑐𝑥2

𝑐

𝑦 = sign(𝑤𝑇𝜙(𝑥) + 𝑏)



SVM Review

• Can find globally optimal solutions: convex optimization

• No local minima (unlike training general NNs)

• Can train primal or dual

• Dual: relies on support vectors; enables use of kernels

• Variety of pre-existing optimization techniques

• Kernels: allow non-linear decision boundaries

• And to represent all sorts of new data (strings, trees)

• High-dimensional representations, but can use kernel trick to avoid 
explicitly computing feature maps

• Good performance! Sometimes close to DNNs



Break & Quiz
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Probability Tutorial: Outcomes & Events

•Outcomes: possible results of an experiment

•Events: subsets of outcomes we’re interested in

Ex:



•Event space can be smaller:

•Two components always in it!

Probability Tutorial: Outcomes & Events



Probability Tutorial: Sigma Fields

• F is a “sigma algebra”.

• Follows certain rules:

• Everything in it (saw this already)

• If A is in F, so is Ac

• Closed under countable unions 



Probability Tutorial: Probability Spaces

• Now we need a way to produce probabilities of events, so 
introduce a function 

• Has certain properties, which we’ll see in a second.

• Overall, we get a probability space



Probability Tutorial: Probability Sapces

•We have outcomes and events and probabilities

•I.e.,

Back to our example:



Basics: Axioms

•Rules for probability:
•For all events
•Always, 
•For disjoint events,

•Easy to derive other laws. Ex: non-disjoint events 



Basics: Random Variables

•Really, functions

•Map outcomes to real values

•Why?
•So far, everything is a set.
•Hard to work with!
•Real values are easy to work with

•One requirement, “F measurable”. For any c, 



Basics: CDF & PDF

•Can still work with probabilities:

•Cumulative Distribution Func. (CDF)

•Density / mass function
•Doesn’t always exist! 

Wiki CDF



•Another advantage of RVs are ``summaries’’

•Expectation:
•The “average”

•Variance:  
•A measure of spread

•Raw moments:

•Note: also don’t always exist…
•Ex: Cauchy distribution

Basics: Expectation & Variance



•Expectation has very useful properties…
•Linearity: 

• Independence not required!

•Hat check problem: 
•There is a dinner party where n people check their hats. The hats 

are mixed up during dinner, so that afterward each man receives 
a random hat. In particular, each person gets their own hat with 
probability 1/n. What is the expected number of people who get 
their own hat?

Basics: Expectation Properties



Basics: Joint Distributions

•Move from one variable to several

•Joint distribution

•Or more variables.



•Given a joint distribution

•Get the distribution in just one variable:

•This is the “marginal” distribution.

Basics: Marginal Probability



Basics: Marginal Probability

cold
hot 5/36540/365150/365

60/36560/36550/365

RainyCloudySunny



•Independence for a set of events

for all the i1,…,ij combinations

•Why useful? Dramatically reduces the complexity
•Collapses joint into product of marginals
•Note sometimes we have only pair-wise, etc
independence

Independence



•For random variables, uncorrelated means

Note: weaker than independence.
•Independence implies uncorrelated (easy to see)
•Other way around: usually false (but not always).
•If X,Y independent, functions are not correlated:

Uncorrelatedness



Conditional Probability

•For when we know something,

•Leads to conditional independence 

Credit: Devin Soni



Chain Rule

•Apply repeatedly, 

•Note: still big! 
•If some conditional independence, can factor!
•Leads to probabilistic graphical models (this lecture)



Law of Total Probability

•Partition the sample space into disjoint B1, …, Bk

•Then,

•Useful way to control A via conditional probabilities.
•Example: there are 5 red and 2 green balls in an urn. 
A random ball is selected and replaced by a ball of 
the other color; then a second ball is drawn. What is 
the probability the second ball is red?



Review: Bayesian Inference

•Conditional Prob. & Bayes: 

•Has more evidence. 
•Likelihood is hard---but conditional independence 
assumption



Random Vectors & Covariance

•Recall variance:

•Now, for a random vector (same as joint of d RVs)
•Note: size d x d. All variables are centered

Diagonals: Scalar Variance Cross-variance



Estimation Theory

•How do we know that the sample mean is a good 
estimate of the true mean?
•Concentration inequalities

•Law of large numbers
•Central limit theorems, etc.

Wolfram Demo



Break & Quiz
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Bayesian Networks Example

•Consider the following 5 binary random variables:
B = a burglary occurs at the house

E = an earthquake occurs at the house

A = the alarm goes off

J = John calls to report the alarm

M = Mary calls to report the alarm

•Suppose Burglary or Earthquake can trigger Alarm, and Alarm 
can trigger John’s call or Mary’s call

•Now we want to answer queries like what is  P(B | M, J) ?  



Bayesian Networks Example

•Set up a network that shows how random variables influence 
others:

Burglary Earthquake

Alarm

Burglary Earthquake

Alarm

JohnCalls MaryCalls
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t f

0.001 0.999

P ( B )



Bayesian Networks Example

•Set up a network that shows how random variables influence 
others:

Burglary Earthquake

Alarm

Burglary Earthquake
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JohnCalls MaryCalls

t f

0.001 0.999

P ( B )
t f

0.001 0.999
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Bayesian Networks Example

•Set up a network that shows how random variables influence 
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Bayesian Networks Example

•Set up a network that shows how random variables influence 
others:

Burglary Earthquake

Alarm

Burglary Earthquake

Alarm

JohnCalls MaryCalls

t f

0.001 0.999

P ( B )
t f

0.001 0.999

P ( E )

B E t f

t t 0.95 0.05

t f 0.94 0.06

f t 0.29 0.71

f f 0.001 0.999

P ( A | B, E )

A t f

t 0.9 0.1

f 0.05 0.95

P ( J | A)



Bayesian Networks Example

•Set up a network that shows how random variables influence 
others:

Burglary Earthquake

Alarm

Burglary Earthquake

Alarm

JohnCalls MaryCalls

t f

0.001 0.999

P ( B )
t f

0.001 0.999

P ( E )

B E t f

t t 0.95 0.05

t f 0.94 0.06

f t 0.29 0.71

f f 0.001 0.999

P ( A | B, E )

A t f

t 0.9 0.1

f 0.05 0.95

P ( J | A)

A t f

t 0.7 0.3

f 0.01 0.99

P ( M | A)



Bayesian Networks: Definition

•A BN consists of a Directed Acyclic Graph (DAG) and a set of 
conditional probability distributions

• The DAG:
• each node denotes a random variable

• each edge from X to Y represents that X directly influences Y
• (formally: each variable X is independent of its non-descendants given its 

parents)

•Each CPD: represents P(X | Parents(X) )



Bayesian Networks: Parameter Counting

• Parameter reduction: a standard representation of the joint 
distribution for the Alarm example has 25 = 32 parameters

• the BN representation of this distribution has 20 parameters

Burglary Earthquake

Alarm

JohnCalls MaryCalls

)|(

)|(

),|(

)(

)(

),,,,(

AMP

AJP

EBAP

EP

BP

MJAEBP









=



Inference in Bayesian Networks

Given: values for some variables in the network (evidence), 
and a set of query variables

Do: compute the posterior distribution over the query 
variables

•variables that are neither evidence variables nor query 
variables are hidden variables

•the BN representation is flexible enough that any set can be 
the evidence variables and any set can be the query variables



Inference by Enumeration

•Let a denote A=true, and ¬a denote A=false

•Suppose we’re given the query: P(b | j, m)

“probability the house is being burglarized given that John 
and Mary both called”

•From the graph structure we can first compute:

A

B E

MJ

sum over possible
values for E and A
variables (e, ¬e, a, ¬a)


 

=
ee aa

AmPAjPEbAPEPbPmjbP
, ,

)|()|(),|()()(),,(



Inference by Enumeration

B E P(A)

t t 0.95

t f 0.94

f t 0.29

f f
0.00

1

P(B)

0.001

P(E)

0.001

A P(J)

t 0.9

f 0.05

A P(M)

t 0.7

f 0.01

A

B E

MJ





 

 

=

=

ee aa

ee aa

AmPAjPEbAPEPbP

AmPAjPEbAPEPbPmjbP
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, ,

)|()|(),|()()(                

)|()|(),|()()(),,(

e, a

e, ¬a

¬e, a

¬ e, ¬ a

B E A J M

)01.005.006.0999.0                

7.09.094.0999.0                

01.005.005.0001.0                

7.09.095.0001.0(001.0


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Inference by Enumeration

•Next do equivalent calculation for P(¬b,  j, m)

and determine P(b | j, m)

So: exact method, but can be intractably hard.

•Some cases: efficient

•Approximate inference sometimes available

),,(),,(
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Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, 
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, 
Yingyu Liang, Volodymyr Kuleshov, Fei-Fei Li, Justin Johnson, Serena Yeung, Pieter Abbeel, Peter Chen, Jonathan 
Ho, Aravind Srinivas


