

CS 760: Machine Learning Probability \& Graphical Models

Fred Sala

University of Wisconsin-Madison
Nov. 4, 2021

Announcements

-Logistics:
-HW 5 has been released; due Tuesday

-Class roadmap:

Thursday, Nov. 4	Graphical Models I
Tuesday, Nov. 9	Graphical Models II
Thursday, Nov. 11	Less-than-full Supervision
Tuesday, Nov. 16	Unsupervised Learning I

Outline

-Review, SVMs, Kernels

- Duality, feature maps, kernel trick
-Probability Tutorial
-Basics, joint probability, conditional probabilities, etc
-Bayesian Networks
-Definition, examples, inference

Outline

-Review, SVMs, Kernels

- Duality, feature maps, kernel trick

Review: Constrained Optimization \& Duality

$$
\begin{gathered}
\min _{w} f(w) \\
g_{i}(w) \leq 0, \forall 1 \leq i \leq k \\
h_{j}(w)=0, \forall 1 \leq j \leq l
\end{gathered} \quad \text { Objective }
$$

- Lagrangian: $\mathcal{L}(w, \boldsymbol{\alpha}, \boldsymbol{\beta})=f(w)+\sum_{i} \alpha_{i} g_{i}(w)+\sum_{j} \beta_{j} h_{j}(w)$
- Primal problem $p^{*}:=\min _{w} f(w)=\min _{w} \max _{\boldsymbol{\alpha}, \boldsymbol{\beta}: \alpha_{i} \geq 0} \mathcal{L}(w, \boldsymbol{\alpha}, \boldsymbol{\beta})$
- Dual problem $d^{*}:=\max _{\alpha, \boldsymbol{\beta}: \alpha_{i} \geq 0} \min _{w} \mathcal{L}(w, \boldsymbol{\alpha}, \boldsymbol{\beta})$
-Always true: $\quad d^{*} \leq p^{*}$

Review: Apply to Training Linear Classifier

- Want: a large margin

Review: Support Vector Machines Goal

Define the margin to be

$$
\gamma=\min _{i} \frac{y_{i} f_{w, b}\left(x_{i}\right)}{\|w\|} \longleftarrow \text { We proved this }
$$

- If $f_{w, b}$ incorrect on some x_{i}, the margin is negative
- Fix scale: $y_{i^{*}}\left(w^{T} x_{i^{*}}+b\right)=1$. Then, margin overall is $\frac{1}{\|w\|}$

Primal problem:

$$
\begin{array}{cc}
\left.\min _{w, b} \frac{1}{2}| | w\right|^{2} & \begin{array}{c}
\text { Objective: } \\
\text { Large margin }
\end{array} \\
y_{i}\left(w^{T} x_{i}+b\right) \geq 1, \forall i \rightleftarrows \begin{array}{l}
\text { Constraints: Correct } \\
\text { on training data }
\end{array}
\end{array}
$$

SVM: Dual Version

- Reduces to dual problem:

$$
\begin{aligned}
\max _{\alpha} \mathcal{L}(w, b, \alpha) & =\max _{\alpha} \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j} \\
& \sum_{i} \alpha_{i} y_{i}=0, \alpha_{i} \geq 0 \quad \begin{array}{c}
\text { Note: only variables } \\
\text { are primal }
\end{array}
\end{aligned}
$$

- Since $w=\sum_{i} \alpha_{i} y_{i} x_{i}$, we have $w^{T} x+b=\sum_{i} \alpha_{i} y_{i} x_{i}^{T} x+b$
- Note: only deals with data via inner products $x_{i}^{T} x_{j}$

SVM: Support Vectors

- Solution is a sparse linear combination of training instances

$$
w=\sum_{i} \alpha_{i} y_{i} x_{i}
$$

- Those instances with $\alpha_{i}>0$ are called support vectors
- Lie on the margin boundary
- Solution does not change if we delete instances with $\alpha_{i}=0$

SVM: Soft Margin

What if our data isn't linearly separable?

- Can adjust our approach by using slack variables (denoted by $\left.\zeta_{i}\right)$ to tolerate errors

$$
\begin{gathered}
\min _{w, b, \zeta_{i}} \frac{1}{2}| | w| |^{2}+C \sum_{i} \zeta_{i} \\
y_{i}\left(w^{T} x_{i}+b\right) \geq 1-\zeta_{i}, \zeta_{i} \geq 0, \forall i
\end{gathered}
$$

- C determines the relative importance of maximizing margin vs. minimizing slack

SVM: Soft Margin

Feature Maps

- Can take a set of features and map them into another
- Can also construct non-linear features
- Use these inside a linear classifier?

$$
\phi:\left(x_{1}, x_{2}\right) \longrightarrow\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)
$$

$$
\left(\frac{x_{1}}{a}\right)^{2}+\left(\frac{x_{2}}{b}\right)^{2}=1 一 \frac{z_{1}}{a^{2}}+\frac{z_{3}}{b^{2}}=1
$$

Feature Maps and SVMs

Want to use feature space $\left\{\phi\left(x_{i}\right)\right\}$ in linear classifier...

- Downside: dimension might be high (even infinite!)
- So we don't want to write down $\phi\left(x_{i}\right)=[0.2,0.3, \ldots]$

Recall our SVM dual form:

- Only relies on inner products $x_{i}^{T} x_{j}$

$$
\begin{gathered}
\mathcal{L}(w, b, \boldsymbol{\alpha})=\sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j} \\
\sum_{i} \alpha_{i} y_{i}=0, \alpha_{i} \geq 0
\end{gathered}
$$

Kernel Trick

- Using SVM on the feature space $\left\{\phi\left(x_{i}\right)\right\}$: only need $\phi\left(x_{i}\right)^{T} \phi\left(x_{j}\right)$
- Conclusion: no need to design $\phi(\cdot)$, only need to design

$$
k\left(x_{i}, x_{j}\right)=\phi\left(x_{i}\right)^{T} \phi\left(x_{j}\right)
$$

Kernel Matrix

Feature Maps

Kernel Types: Polynomial

- Fix degree d and constant c :

$$
k\left(x, x^{\prime}\right)=\left(x^{T} x^{\prime}+c\right)^{d}
$$

-What are $\phi(x)$?

- Expand the expression to get $\phi(x)$

$$
\forall \mathbf{x}, \mathbf{x}^{\prime} \in \mathbb{R}^{2}, \quad K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left(x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}+c\right)^{2}=
$$

[^0]
Kernel Types: Gaussian/RBF

- Fix bandwidth σ :

$$
k\left(x, x^{\prime}\right)=\exp \left(-\left|\left|x-x^{\prime}\right|\right|^{2} / 2 \sigma^{2}\right)
$$

- Also called radial basis function (RBF) kernels

$$
\gamma=10
$$

$$
\gamma=100
$$

$$
\gamma=1000
$$

$$
k\left(x, x^{\prime}\right)=\exp \left(-\gamma| | x-\left.x^{\prime}\right|^{2}\right)
$$

Theory of Kernels

- Part of a deep mathematical theory
- With some conditions, any kernel yields a feature map:
-Theorem: $k\left(x, x^{\prime}\right)$ has expansion

$$
k\left(x, x^{\prime}\right)=\sum_{i}^{+\infty} a_{i} \phi_{i}(x) \phi_{i}\left(x^{\prime}\right)
$$

for nonnegative a_{i} 's, if and only if for any function $c(x)$,

$$
\iint c(x) c\left(x^{\prime}\right) k\left(x, x^{\prime}\right) d x d x^{\prime} \geq 0
$$

- Given certain requirements/conditions, can construct a bunch of new kernels from existing ones

Kernel Methods VS Neural Networks

- Can think of our kernel SVM approach as fixing a layer of a neural network

SVM Review

- Can find globally optimal solutions: convex optimization
- No local minima (unlike training general NNs)
- Can train primal or dual
- Dual: relies on support vectors; enables use of kernels
- Variety of pre-existing optimization techniques
- Kernels: allow non-linear decision boundaries
- And to represent all sorts of new data (strings, trees)
- High-dimensional representations, but can use kernel trick to avoid explicitly computing feature maps
- Good performance! Sometimes close to DNNs

Break \& Quiz

Outline

-Probability Tutorial

- Basics, joint probability, conditional probabilities, etc -Bayesian Networks
-Definition, examples, inference

Probability Tutorial: Outcomes \& Events

- Outcomes: possible results of an experiment
-Events: subsets of outcomes we're interested in

Ex:

$$
\begin{aligned}
\Omega & =\underbrace{\{1,2,3,4,5,6\}}_{\text {outcomes }} \\
\mathcal{F} & =\underbrace{\{\emptyset,\{1\},\{2\}, \ldots,\{1,2\}, \ldots, \Omega\}}_{\text {events }}
\end{aligned}
$$

Probability Tutorial: Outcomes \& Events

-Event space can be smaller:

$$
\mathcal{F}=\underbrace{\{\emptyset,\{1,3,5\},\{2,4,6\}, \Omega\}}_{\text {events }}
$$

-Two components always in it!

$$
\emptyset, \Omega
$$

Probability Tutorial: Sigma Fields

- F is a "sigma algebra".
- Follows certain rules:
- Everything in it (saw this already)
- If A is in F, so is A^{c}
- Closed under countable unions

Probability Tutorial: Probability Spaces

- Now we need a way to produce probabilities of events, so introduce a function

$$
P: \mathcal{F} \rightarrow[0,1]
$$

- Has certain properties, which we'll see in a second.
- Overall, we get a probability space

$$
(\Omega, \mathcal{F}, P)
$$

Probability Tutorial: Probability Sapces

-We have outcomes and events and probabilities
\bullet •l.e.,

$$
\text { For } E \in \mathcal{F}, P(E) \in[0,1]
$$

Back to our example:

$$
\mathcal{F}=\underbrace{\{\emptyset,\{1,3,5\},\{2,4,6\}, \Omega\}}_{\text {events }}
$$

$$
P(\{1,3,5\})=0.2, P(\{2,4,6\})=0.8
$$

Basics: Axioms

-Rules for probability:

- For all events $\quad E \in \mathcal{F}, P(E) \geq 0$
-Always, $\quad P(\emptyset)=0, P(\Omega)=1$
- For disjoint events,

$$
P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)
$$

-Easy to derive other laws. Ex: non-disjoint events

$$
P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)-P\left(E_{1} \cap E_{2}\right)
$$

Basics: Random Variables

-Really, functions

- Map outcomes to real values

$$
X: \Omega \rightarrow \mathbb{R}
$$

-Why?
-So far, everything is a set.

- Hard to work with!
- Real values are easy to work with
- One requirement, "F measurable". For any c,

$$
\{\omega: X(\omega) \leq c\} \in \mathcal{F}
$$

Basics: CDF \& PDF

-Can still work with probabilities:

$$
P(X=3):=P(\{\omega: X(\omega)=3\})
$$

-Cumulative Distribution Func. (CDF)

$$
F_{X}(x):=P(X \leq x)
$$

-Density / mass function -Doesn’t always exist!

$$
p_{X}(x)
$$

Basics: Expectation \& Variance

-Another advantage of RVs are "summaries"
-Expectation:
-The "average" $E[X]=\sum_{a} a \times P(x=a)$
-Variance:

$$
\operatorname{Var}[X]=E\left[(X-E[X])^{2}\right]
$$

-A measure of spread
-Raw moments: $E[X], E\left[X^{2}\right], E\left[X^{3}\right], \ldots$

- Note: also don't always exist...
-Ex: Cauchy distribution

Basics: Expectation Properties

- Expectation has very useful properties...
-Linearity:

- Independence not required!
- Hat check problem:
-There is a dinner party where n people check their hats. The hats are mixed up during dinner, so that afterward each man receives a random hat. In particular, each person gets their own hat with probability $1 / n$. What is the expected number of people who get their own hat?

Basics: Joint Distributions

- Move from one variable to several - Joint distribution

$$
P(X=a, Y=b)
$$

-Or more variables.

$$
P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{k}=x_{k}\right)
$$

Basics: Marginal Probability

- Given a joint distribution

$$
P(X=a, Y=b)
$$

- Get the distribution in just one variable:

$$
P(X=a)=\sum_{b} P(X=a, Y=b)
$$

-This is the "marginal" distribution.

Basics: Marginal Probability

$$
P(X=a)=\sum_{b} P(X=a, Y=b)
$$

	Sunny	Cloudy	Rainy
hot	$150 / 365$	$40 / 365$	$5 / 365$
cold	$50 / 365$	$60 / 365$	$60 / 365$

$$
[P(\text { hot }), P(\text { cold })]=\left[\frac{195}{365}, \frac{170}{365}\right]
$$

Independence

-Independence for a set of events A_{1}, \ldots, A_{k}

$$
P\left(A_{i_{1}} A_{i_{2}} \cdots A_{i_{j}}\right)=P\left(A_{i_{1}}\right) P\left(A_{i_{2}}\right) \cdots P\left(A_{i_{j}}\right)
$$

for all the $\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{j}}$ combinations
-Why useful? Dramatically reduces the complexity
-Collapses joint into product of marginals

- Note sometimes we have only pair-wise, etc independence

Uncorrelatedness

-For random variables, uncorrelated means

$$
E[X Y]=E[X] E[Y]
$$

Note: weaker than independence.

- Independence implies uncorrelated (easy to see)
- Other way around: usually false (but not always).
- If X, Y independent, functions are not correlated:

$$
E[f(X) f(Y)]=E[f(X)] E[f(Y)]
$$

Conditional Probability

-For when we know something,

$$
P(X=a \mid Y=b)=\frac{P(X=a, Y=b)}{P(Y=b)}
$$

-Leads to conditional independence

$$
P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z)
$$

Credit: Devin Soni

Chain Rule

- Apply repeatedly,

$$
\begin{aligned}
& P\left(A_{1}, A_{2}, \ldots, A_{n}\right) \\
& =P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{2}, A_{1}\right) \ldots P\left(A_{n} \mid A_{n-1}, \ldots, A_{1}\right)
\end{aligned}
$$

- Note: still big!
- If some conditional independence, can factor!
- Leads to probabilistic graphical models (this lecture)

Law of Total Probability

-Partition the sample space into disjoint B_{1}, \ldots, B_{k}
-Then,

$$
P(A)=\sum_{i} P\left(A \mid B_{i}\right) P\left(B_{i}\right)
$$

- Useful way to control A via conditional probabilities. -Example: there are 5 red and 2 green balls in an urn. A random ball is selected and replaced by a ball of the other color; then a second ball is drawn. What is the probability the second ball is red?

Review: Bayesian Inference

-Conditional Prob. \& Bayes:

$$
P\left(H \mid E_{1}, E_{2}, \ldots, E_{n}\right)=\frac{P\left(E_{1}, \ldots, E_{n} \mid H\right) P(H)}{P\left(E_{1}, E_{2}, \ldots, E_{n}\right)}
$$

- Has more evidence.
- Likelihood is hard---but conditional independence assumption

$$
P\left(H \mid E_{1}, E_{2}, \ldots, E_{n}\right)=\frac{P\left(E_{1} \mid H\right) P\left(E_{2} \mid H\right) \cdots, P\left(E_{n} \mid H\right) P(H)}{P\left(E_{1}, E_{2}, \ldots, E_{n}\right)}
$$

Random Vectors \& Covariance

-Recall variance:

$$
\mathbb{E}\left[(X-E[X])^{2}\right]
$$

- Now, for a random vector (same as joint of d RVs)
- Note: size $d x d$. All variables are centered

Estimation Theory

-How do we know that the sample mean is a good estimate of the true mean?
-Concentration inequalities

Wolfram Demo

Break \& Quiz

Outline

-Review, SVMs, Kernels

- Duality, feature maps, kerne trick
- Probability Tutorial
- Basics, joint probability, conditional probabilities, etc
-Bayesian Networks
-Definition, examples, inference

Bayesian Networks Example

- Consider the following 5 binary random variables:
$B=$ a burglary occurs at the house
$E=$ an earthquake occurs at the house
$A=$ the alarm goes off
$J=$ John calls to report the alarm
$M=$ Mary calls to report the alarm
- Suppose Burglary or Earthquake can trigger Alarm, and Alarm can trigger John's call or Mary's call
- Now we want to answer queries like what is $P(B \mid M, J)$?

Bayesian Networks Example

- Set up a network that shows how random variables influence others:

Bayesian Networks Example

- Set up a network that shows how random variables influence others:

Bayesian Networks Example

- Set up a network that shows how random variables influence others:

Bayesian Networks Example

- Set up a network that shows how random variables influence others:

$P(B)$	
t	f
0.001	0.999

Bayesian Networks Example

- Set up a network that shows how random variables influence others:

A	$P(J / A)$	
t	0.9	0.1
f	0.05	0.95

Bayesian Networks Example

- Set up a network that shows how random variables influence others:

Bayesian Networks: Definition

- A BN consists of a Directed Acyclic Graph (DAG) and a set of conditional probability distributions
- The DAG:
- each node denotes a random variable
- each edge from X to Y represents that X directly influences Y
- (formally: each variable X is independent of its non-descendants given its parents)
- Each CPD: represents $P(X \mid \operatorname{Parents}(X))$

$$
p\left(x_{1}, \ldots, x_{d}\right)=\prod_{T} p\left(x_{v} \mid x_{\mathrm{pa}(v)}\right)
$$

Bayesian Networks: Parameter Counting

- Parameter reduction: a standard representation of the joint distribution for the Alarm example has $2^{5}=32$ parameters
- the BN representation of this distribution has 20 parameters

Inference in Bayesian Networks

Given: values for some variables in the network (evidence), and a set of query variables
Do: compute the posterior distribution over the query variables

- variables that are neither evidence variables nor query variables are hidden variables
-the BN representation is flexible enough that any set can be the evidence variables and any set can be the query variables

Inference by Enumeration

- Let a denote $\boldsymbol{A}=$ true, and $\neg a$ denote $\boldsymbol{A}=$ false
- Suppose we're given the query: $P(b \mid j, m)$
"probability the house is being burglarized given that John and Mary both called"
- From the graph structure we can first compute:

$$
P(b, j, m)=\sum_{e, \neg e a, \neg a} \sum P(b) P(E) P(A \mid b, E) P(j \mid A) P(m \mid A)
$$

$$
\begin{aligned}
& \text { sum over possible } \\
& \text { values for } E \text { and } A \\
& \text { variables }(e, \neg e, a, \neg a)
\end{aligned}
$$

Inference by Enumeration

$$
\begin{aligned}
P(b, j, m) & =\sum_{e, \neg e a, \neg a} \sum P(b) P(E) P(A \mid b, E) P(j \mid A) P(m \mid A) \\
& =P(b) \sum_{e, \neg e a, \neg a} \sum P(E) P(A \mid b, E) P(j \mid A) P(m \mid A)
\end{aligned}
$$

Inference by Enumeration

- Next do equivalent calculation for $P(\neg b, j, m)$ and determine $P(b \mid j, m)$

$$
P(b \mid j, m)=\frac{P(b, j, m)}{P(j, m)}=\frac{P(b, j, m)}{P(b, j, m)+P(\neg b, j, m)}
$$

So: exact method, but can be intractably hard.

- Some cases: efficient
- Approximate inference sometimes available

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, Yingyu Liang, Volodymyr Kuleshov, Fei-Fei Li, Justin Johnson, Serena Yeung, Pieter Abbeel, Peter Chen, Jonathan Ho, Aravind Srinivas

[^0]: Ben-Hur \& Weston, Methods in Molecular Biology 2010

