

CS 760: Machine Learning Probability \& Graphical Models: Part II

Fred Sala

University of Wisconsin-Madison
Nov. 9, 2021

Announcements

-Logistics:

- HW 5 due tonight.
- Hoping to release midterm scores Thursday

-Class roadmap:

Tuesday, Nov. 9	Graphical Models II
Thursday, Nov. 11	Less-than-full Supervision
Tuesday, Nov. 16	Unsupervised Learning I
Thursday, Nov. 18	Unsupervised Learning II

Outline

-Probability Tutorial

- Basics, joint probability, conditional probabilities, etc
-Bayesian Networks
-Definition, examples, inference, learning
- Undirected Graphical Models
- Definitions, MRFs, exponential families, learning

Outline

-Probability Tutorial

- Basics, joint probability, conditional probabilities, etc

Basics: Axioms

-Rules for probability:

- For all events $\quad E \in \mathcal{F}, P(E) \geq 0$
-Always, $\quad P(\emptyset)=0, P(\Omega)=1$
- For disjoint events,

$$
P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)
$$

-Easy to derive other laws. Ex: non-disjoint events

$$
P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)-P\left(E_{1} \cap E_{2}\right)
$$

Basics: Random Variables

-Really, functions

- Map outcomes to real values

$$
X: \Omega \rightarrow \mathbb{R}
$$

-Why?
-So far, everything is a set.

- Hard to work with!
- Real values are easy to work with
- One requirement, "F measurable". For any c,

$$
\{\omega: X(\omega) \leq c\} \in \mathcal{F}
$$

Basics: CDF \& PDF

-Can still work with probabilities:

$$
P(X=3):=P(\{\omega: X(\omega)=3\})
$$

-Cumulative Distribution Func. (CDF)

$$
F_{X}(x):=P(X \leq x)
$$

-Density / mass function -Doesn't always exist!

$$
p_{X}(x)
$$

Basics: Expectation \& Variance

-Another advantage of RVs are "summaries"
-Expectation:
-The "average" $E[X]=\sum_{a} a \times P(x=a)$
-Variance:

$$
\operatorname{Var}[X]=E\left[(X-E[X])^{2}\right]
$$

-A measure of spread
-Raw moments: $E[X], E\left[X^{2}\right], E\left[X^{3}\right], \ldots$

- Note: also don't always exist...
-Ex: Cauchy distribution

Basics: Expectation Properties

- Expectation has very useful properties...
-Linearity:

- Independence not required!
- Hat check problem:
-There is a dinner party where n people check their hats. The hats are mixed up during dinner, so that afterward each man receives a random hat. In particular, each person gets their own hat with probability $1 / n$. What is the expected number of people who get their own hat?

Basics: Joint Distributions

- Move from one variable to several - Joint distribution

$$
P(X=a, Y=b)
$$

-Or more variables.

$$
P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{k}=x_{k}\right)
$$

Basics: Marginal Probability

- Given a joint distribution

$$
P(X=a, Y=b)
$$

- Get the distribution in just one variable:

$$
P(X=a)=\sum_{b} P(X=a, Y=b)
$$

-This is the "marginal" distribution.

Basics: Marginal Probability

$$
P(X=a)=\sum_{b} P(X=a, Y=b)
$$

	Sunny	Cloudy	Rainy
hot	$150 / 365$	$40 / 365$	$5 / 365$
cold	$50 / 365$	$60 / 365$	$60 / 365$

$$
[P(\text { hot }), P(\text { cold })]=\left[\frac{195}{365}, \frac{170}{365}\right]
$$

Independence

-Independence for a set of events A_{1}, \ldots, A_{k}

$$
P\left(A_{i_{1}} A_{i_{2}} \cdots A_{i_{j}}\right)=P\left(A_{i_{1}}\right) P\left(A_{i_{2}}\right) \cdots P\left(A_{i_{j}}\right)
$$

for all the $\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{j}}$ combinations
-Why useful? Dramatically reduces the complexity
-Collapses joint into product of marginals

- Note sometimes we have only pair-wise, etc independence

Uncorrelatedness

-For random variables, uncorrelated means

$$
E[X Y]=E[X] E[Y]
$$

Note: weaker than independence.

- Independence implies uncorrelated (easy to see)
- Other way around: usually false (but not always).
- If X, Y independent, functions are not correlated:

$$
E[f(X) f(Y)]=E[f(X)] E[f(Y)]
$$

Conditional Probability

-For when we know something,

$$
P(X=a \mid Y=b)=\frac{P(X=a, Y=b)}{P(Y=b)}
$$

-Leads to conditional independence

$$
P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z)
$$

Credit: Devin Soni

Chain Rule

- Apply repeatedly,

$$
\begin{aligned}
& P\left(A_{1}, A_{2}, \ldots, A_{n}\right) \\
& =P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{2}, A_{1}\right) \ldots P\left(A_{n} \mid A_{n-1}, \ldots, A_{1}\right)
\end{aligned}
$$

- Note: still big!
- If some conditional independence, can factor!
- Leads to probabilistic graphical models (this lecture)

Law of Total Probability

-Partition the sample space into disjoint B_{1}, \ldots, B_{k}
-Then,

$$
P(A)=\sum_{i} P\left(A \mid B_{i}\right) P\left(B_{i}\right)
$$

- Useful way to control A via conditional probabilities. -Example: there are 5 red and 2 green balls in an urn. A random ball is selected and replaced by a ball of the other color; then a second ball is drawn. What is the probability the second ball is red?

Bayesian Inference

-Conditional Prob. \& Bayes:

$$
P\left(H \mid E_{1}, E_{2}, \ldots, E_{n}\right)=\frac{P\left(E_{1}, \ldots, E_{n} \mid H\right) P(H)}{P\left(E_{1}, E_{2}, \ldots, E_{n}\right)}
$$

- Has more evidence.
- Likelihood is hard---but conditional independence assumption

$$
P\left(H \mid E_{1}, E_{2}, \ldots, E_{n}\right)=\frac{P\left(E_{1} \mid H\right) P\left(E_{2} \mid H\right) \cdots, P\left(E_{n} \mid H\right) P(H)}{P\left(E_{1}, E_{2}, \ldots, E_{n}\right)}
$$

Random Vectors \& Covariance

-Recall variance:

$$
\mathbb{E}\left[(X-E[X])^{2}\right]
$$

- Now, for a random vector (same as joint of d RVs)
- Note: size $d x d$. All variables are centered

Estimation Theory

-How do we know that the sample mean is a good estimate of the true mean?
-Concentration inequalities

Wolfram Demo

Break \& Quiz

Outline

- Probability Tutorial
- Basics, joint probability, conditional probabilities, etc
-Bayesian Networks
-Definition, examples, inference, learning
-Undirected Graphical Modes
- Definitions, MRFs, exponential families, learning

Bayesian Networks Example

- Consider the following 5 binary random variables:
$B=$ a burglary occurs at the house
$E=$ an earthquake occurs at the house
$A=$ the alarm goes off
$J=$ John calls to report the alarm
$M=$ Mary calls to report the alarm
- Suppose Burglary or Earthquake can trigger Alarm, and Alarm can trigger John's call or Mary's call
- Now we want to answer queries like what is $P(B \mid M, J)$?

Bayesian Networks Example

- Set up a network that shows how random variables influence others:

Bayesian Networks Example

- Set up a network that shows how random variables influence others:

Bayesian Networks Example

- Set up a network that shows how random variables influence others:

Bayesian Networks Example

- Set up a network that shows how random variables influence others:

$P(B)$	
t	f
0.001	0.999

Bayesian Networks Example

- Set up a network that shows how random variables influence others:

A	$P(J / A)$	
t	0.9	0.1
f	0.05	0.95

Bayesian Networks Example

- Set up a network that shows how random variables influence others:

Bayesian Networks: Definition

- A BN consists of a Directed Acyclic Graph (DAG) and a set of conditional probability distributions
- The DAG:
- each node denotes a random variable
- each edge from X to Y represents that X directly influences Y
- (formally: each variable X is independent of its non-descendants given its parents)
- Each CPD: represents $P(X \mid \operatorname{Parents}(X))$

$$
p\left(x_{1}, \ldots, x_{d}\right)=\prod_{T} p\left(x_{v} \mid x_{\mathrm{pa}(v)}\right)
$$

Bayesian Networks: Parameter Counting

- Parameter reduction: a standard representation of the joint distribution for the Alarm example has $2^{5}=32$ parameters
- the BN representation of this distribution has 20 parameters

Inference in Bayesian Networks

Given: values for some variables in the network (evidence), and a set of query variables
Do: compute the posterior distribution over the query variables

- Gariables that are neither evidence variables nor query variables are hidden variables
-The BN representation is flexible enough that any set can be the evidence variables and any set can be the query variables

Inference by Enumeration

- Let a denote $\boldsymbol{A}=$ true, and $\neg a$ denote $\boldsymbol{A}=$ false
- Suppose we're given the query: $P(b \mid j, m)$
"probability the house is being burglarized given that John and Mary both called"
- From the graph structure we can first compute:

$$
P(b, j, m)=\sum_{e, \neg e a, \neg a} \sum P(b) P(E) P(A \mid b, E) P(j \mid A) P(m \mid A)
$$

$$
\begin{aligned}
& \text { sum over possible } \\
& \text { values for } E \text { and } A \\
& \text { variables }(e, \neg e, a, \neg a)
\end{aligned}
$$

Inference by Enumeration

$$
\begin{aligned}
P(b, j, m) & =\sum_{e, \neg e a, \neg a} \sum P(b) P(E) P(A \mid b, E) P(j \mid A) P(m \mid A) \\
& =P(b) \sum_{e, \neg e a, \neg a} \sum P(E) P(A \mid b, E) P(j \mid A) P(m \mid A)
\end{aligned}
$$

Inference by Enumeration

- Next do equivalent calculation for $P(\neg b, j, m)$ and determine $P(b \mid j, m)$

$$
P(b \mid j, m)=\frac{P(b, j, m)}{P(j, m)}=\frac{P(b, j, m)}{P(b, j, m)+P(\neg b, j, m)}
$$

So: exact method, but can be intractably hard.

- Some cases: efficient
- Approximate inference sometimes available

Learning Bayes Nets

- Problem 1 (parameter learning): given a set of training instances, the graph structure of a BN

B	E	A	J	M
f	f	f	t	f
f	t	f	f	f
f	f	t	f	t
		\ldots		

- Goal: infer the parameters of the CPDs

Learning Bayes Nets

- Problem 2 (structure learning): given a set of training instances

B	E	A	J	M
f	f	f	t	f
f	t	f	f	f
f	f	t	f	t
		\ldots		

- Goal: infer the graph structure (and then possibly also the parameters of the CPDs)

Parameter Learning: MLE

- Goal: infer the parameters of the CPDs
- As usual, can use MLE

$$
\begin{aligned}
L(\theta: D, G)=P(D \mid G, \theta) & =\prod_{d \in D} P\left(x_{1}^{(d)}, x_{2}^{(d)}, \ldots, x_{n}^{(d)}\right) \\
& =\prod_{d \in D} \prod_{i} P\left(x_{i}^{(d)} \mid \operatorname{Parents}\left(x_{i}^{(d)}\right)\right) \\
& =\prod_{i}\left(\prod_{d \in D} P\left(x_{i}^{(d)} \mid \operatorname{Parents}\left(x_{i}^{(d)}\right)\right)\right)
\end{aligned}
$$

independent parameter learning problem for each CPD

Parameter Learning: MLE Example

- Goal: infer the parameters of the CPDs
- Consider estimating the CPD parameters for B and J in the alarm network given the following data set

B	E	A	J	M
f	f	f	t	f
f	t	f	f	f
f	f	f	t	t
t	f	f	f	t
f	f	t	t	f
f	f	t	f	t
f	f	t	t	t
f	f	t	t	t

$$
\begin{aligned}
& P(b)=\frac{1}{8}=0.125 \\
& P(\neg b)=\frac{7}{8}=0.875 \\
& P(j \mid a)=\frac{3}{4}=0.75 \\
& P(\neg j \mid a)=\frac{1}{4}=0.25 \\
& P(j \mid \neg a)=\frac{2}{4}=0.5 \\
& P(\neg j \mid \neg a)=\frac{2}{4}=0.5
\end{aligned}
$$

Parameter Learning: MLE Example

- Goal: infer the parameters of the CPDs
-Consider estimating the CPD parameters for B and J in the alarm network given the following data set

Parameter Learning: Laplace Smoothing

- Instead of estimating parameters strictly from the data, we could start with some prior belief for each
-For example, we could use Laplace estimates

$$
P(X=x)=\frac{n_{x}+1}{\sum_{v \in \operatorname{Values}(X)}\left(n_{v}+1\right)} \text { pseudocounts }
$$

where n_{v} represents the number of occurrences of value v
-Recall: we did this for Naïve Bayes

Structure Learning

-Generally a hard problem, many approaches.

- Exponentially (or worse) many structures in \# variables
- Can either use heuristics or restrict to some tractable subset of networks. Ex: trees
- Chow-Liu Algorithm
- Learns a BN with a tree structure that maximizes the likelihood of the training data

1. Compute weight $I\left(X_{i}, X_{j}\right)$ of each possible edge $\left(X_{i}, X_{j}\right)$
2. Find maximum weight spanning tree (MST)
3. Assign edge directions in MST

Structure Learning: Chow-Liu Algorithm

Chow-Liu Algorithm

1. Compute weight $I\left(X_{i}, X_{j}\right.$) of each possible edge (X_{i}, X_{j})
2. Find maximum weight spanning tree (MST)
3. Assign edge directions in MST
-1. Empirical mutual information: $\mathrm{O}\left(n^{2}\right)$ computations
-2. Compute MST. (Ex: Kruskal's algorithm)
-3. Assign directions by picking a root and making everything directed from root

Break \& Quiz

Outline

- Probability Tutorial
- Basics, joint probability, conditional probabilities, etc
-Bayesian Networks
- Definition, examples, inference, learning
-Undirected Graphical Models
- Definitions, MRFs, exponential families, learning

Undirected Graphical Models

- Still want to encode conditional independence, but not in an "ordered" way (ie, no parents, direction)
- Why? Allows for modeling other distributions that Bayes nets can't, allows for other algorithms
- Idea: graph directly encodes a type of conditional independence. If nodes i,j are not neighbors,

$$
X_{i} \perp X_{j} \mid X_{V \backslash\{i, j\}}
$$

Markov Random Fields

- A particularly popular kind of undirected model. As above, can describe in terms of:
-1. Conditional independence:

$$
X_{i} \perp X_{j} \mid X_{V \backslash\{i, j\}}
$$

-2. Factorization. (Clique: maximal fully-connected subgraphs)

- Bayes nets: factorize over CPTs with parents; MRFs: factorize over cliques

$$
P(X)=\prod_{C \in \operatorname{cliques}(G)} \phi_{C}\left(x_{C}\right)
$$

"Potential" functions

Exponential Families

- MRFs (under some conditions) can be written as exponential families. General form:

$$
P\left(x_{1}, \ldots, x_{d}\right)=\frac{1}{Z} \exp \left(\sum_{i} \theta_{i}^{T} f_{i}\left(x_{\{i\}}\right)\right)
$$

(ensures that probabilities integrate to 1)

- Lots (but not all) distributions have this form.

Exponential Families: Multivariate Gaussian

- MRFs (under some conditions) can be written as exponential families. General form:

$$
P\left(x_{1}, \ldots, x_{d}\right)=\frac{1}{Z} \exp \left(\sum_{i} \theta_{i}^{T} f_{i}\left(x_{\{i\}}\right)\right)
$$

- Multivariate Gaussian:

$$
\begin{aligned}
& \frac{1}{(2 \pi)^{d / 2} \operatorname{det}(\Sigma)^{1 / 2}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right) \\
& \frac{1}{(2 \pi)^{d / 2} \operatorname{det}(\Sigma)^{1 / 2}} \exp \left(-\frac{1}{2} \sum_{i, j} K_{i, j}\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right)\right)
\end{aligned}
$$

Using Models

- Ising models: a particular kind of MRF usually written in exponential form
- Popular in statistical physics
- Idea: pairwise interactions (biggest cliques of size 2)
$P\left(x_{1}, \ldots, x_{d}\right)=\frac{1}{Z} \exp \left(\sum_{(i, j) \in E} \theta_{i j} x_{i} x_{j}\right)$
-Challenges:
Khudier and Fawaz

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, Yingyu Liang, Volodymyr Kuleshov, Fei-Fei Li, Justin Johnson, Serena Yeung, Pieter Abbeel, Peter Chen, Jonathan Ho, Aravind Srinivas

