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Announcements

*Logistics:
*HW 5 due tonight.
*Hoping to release midterm scores Thursday

Class roadmap: [ EEEGEIIIIN SRSIEERI

Thursday, Nov. 11 Less-than-full Supervision

Tuesday, Nov. 16 Unsupervised Learning |

Thursday, Nov. 18 Unsupervised Learning Il



Outline

*Probability Tutorial
*Basics, joint probability, conditional probabilities, etc

*Bayesian Networks
e Definition, examples, inference, learning

*Undirected Graphical Models

* Definitions, MRFs, exponential families, learning



Outline

*Probability Tutorial
*Basics, joint probability, conditional probabilities, etc



Basics: AXxioms

*Rules for probability:

*For all events

*Always,

EeF,P(E)>0

P0)=0,P(Q) =1

*For disjoint events,

P(E,UEy) = P(Ey) + P(E,)

*Easy to derive other laws. Ex: non-disjoint events

r=

P(E, U

) = P(L1) + P(

) — P(Eq N Ey)

-

>

)




Basics: Random Variables

*Really, functions
*Map outcomes to real values

*Why?
*So far, everything is a set.
*Hard to work with!
*Real values are easy to work with

*One requirement, “F measurable”. For any c,

{w: X(w) <clteF




Basics: CDF & PDF

*Can still work with probabilities:
1 O

O

P(X=3)=P{w: X(w)=3})

*Cumulative Distribution Func. (CDF)

*Density / mass function 7 (CE)
*Doesn’t always exist!

Fy(z) == P(X < z) e
—-O/

Wiki CDF



Basics: Expectation & Variance

4

*Another advantage of RVs are summaries’

*Expectation:

*The “average” E[X]=>_ax P(z=a)
*Variance: Var[X] = E[(X — E[X])?

* A measure of spread
*‘Raw moments: E[X], E[X?], E[X?],...
*Note: also don’t always exist...

*Ex: Cauchy distribution



Basics: Expectation Properties

*Expectation has very useful properties...

e Linearity: E[Z a; X;] = Z a; B[ X;]
*Independence ndit required! i

*Hat check problem:
*There is a dinner party where n people check their hats. The hats
are mixed up during dinner, so that afterward each man receives
a random hat. In particular, each person gets their own hat with
probability 1/n. What is the expected number of people who get
their own hat?



Basics: Joint Distributions

*Move from one variable to several
eJoint distribution

P(X =a,Y =)

*Or more variables.

P(Xl :33'1,X2 :.CUQ,...,Xk :.’L'k)



Basics: Marginal Probability

*Given a joint distribution
P(X =a,Y =)

*Get the distribution in just one variable:
P(X = a) = ZbP(X =aq,Y = b)

*This is the “marginal” distribution.



Basics: Marginal Probability

P(X=a)=Y,P(X =a,Y =b)

Sunny | Cloudy | Ralin

hot |150/365 | 40/365 | 5/36

cold | 50/365 | 60/365 | 60/365

[P(hot), P(cold)] = [522, 5]




Independence

*Independence for asetofevents A, .. . A,

P(Aj Aiy --- Aiy) = P(Ai )P(Ay,) - P(Ay))
for all the 1300l combinations

*Why useful? Dramatically reduces the complexity

*Collapses joint into product of marginals

*Note sometimes we have only pair-wise, etc
independence



Uncorrelatedness

*For random variables, uncorrelated means
E[XY]| = E[X|E[Y]

Note: weaker than independence.
*Independence implies uncorrelated (easy to see)
*Other way around: usually false (but not always).
If X,Y independent, functions are not correlated:

ELf(X)f(Y)] = B (X)|ELf(Y)]



Conditional Probability

*For when we know something,

P(X =a,Y =)

P(X =alY =0) = PY =)

*Leads to conditional independence

P(X,Y|Z) = P(X|Z)P(Y|Z)

Credit: Devin Soni



Chain Rule

*Apply repeatedly,

P(A, Ay, ..., A,)

= P(A)P(A3|A1)P(A3|Ag, Ay) ... P(A|An_q, ..., A1)
*Note: still big!

*|f some conditional independence, can factor!
*Leads to probabilistic graphical models (this lecture)



Law of Total Probability

*Partition the sample space into disjoint B,, ..., B,
*Then,
P(A) = » P(A|B;)P(B;)
g

*Useful way to control A via conditional probabilities.

Example: there are 5 red and 2 green balls in an urn.
A random ball is selected and replaced by a ball of
the other color; then a second ball is drawn. What is

the probability the second ball is red?



Bayesian Inference

*Conditional Prob. & Bayes:

P(Ey,..., B, |H)P(H
P(H|E1,E2,...,En): ( 1 ) ‘ ) ( )

P(El, Eo, ... ,En)
*Has more evidence.

*Likelihood is hard---but conditional independence
assumption

P(E\|H)P(Eo|H) -+, P(E,|H)P(H)
P(H|Ey, Es, ..., Ey) = P(E1,Es, ..., E,)




Random Vectors & Covariance

*Recall variance: i[(X — E[X])Z]
*Now, for a random vector (same as joint of d RVs)
*Note: size d x d. All variables are centered

E[(X: — E[X1])] - (X = EX)(Xn — E[Xa])]

L]

(X — E[X)) (X1 —E[X1))] ... E[(X, — E[X,])?]

e /

Cross-variance Diagonals: Scalar Variance




Estimation Theory

*How do we know that the sample mean is a good
estimate of the true mean?
*Concentration inequalities

P([E[X] — E[X]| > ) < exp(—2nt?)

*Law of large numbers P XA
*Central limit theorems, etc. Q

Wolfram Demo



Break & Quiz



Outline

*Bayesian Networks
e Definition, examples, inference, learning



Bayesian Networks Example

*Consider the following 5 binary random variables:

B = a burglary occurs at the house

E = an earthquake occurs at the house
A = the alarm goes off

J =John calls to report the alarm

M = Mary calls to report the alarm

*Suppose Burglary or Earthquake can trigger Alarm, and Alarm
can trigger John’s call or Mary’s call

*Now we want to answer queries like whatis P(B | M, J) ?



Bayesian Networks Example

*Set up a network that shows how random variables influence

others:




Bayesian Networks Example

*Set up a network that shows how random variables influence

others:

P(B)
t f
0.001  0.999




Bayesian Networks Example

*Set up a network that shows how random variables influence

others:
t f t f
0.001 0.999 0.001 0.999




Bayesian Networks Example

*Set up a network that shows how random variables influence

others:
t f t f
0.001 0.999 0.001 0.999
P(A|BE)

t f

0.94 0.06
0.29 0.71
0.001 0.999

-~ =~ e~ e~ |0

E
t 0.95 0.05
f
t
f




Bayesian Networks Example

*Set up a network that shows how random variables influence

others:
P(E
P(B) Burglary Earthquake L£)
t f t f
0.001  0.999 0.001  0.999
P(A[BE)
B E t f
t t 0.95  0.05
t f 0.94  0.06
f t 029 071
f f 0.001  0.999
P(J[A)
t f
0.9 0.1




Bayesian Networks Example

*Set up a network that shows how random variables influence

others:
P(E
P(B) Burglary Earthquake L£)
t f t f
o0l 0995 0.001  0.999
P(A|BE)
B E t f
t t 095  0.05
t f 094  0.06
1 t 029 0.71
1 f 0.001  0.999
PUITA) P(M][A)
t f A t f
0.9 0.1 t 0.7 0.3
005 0.9 f 001  0.99




Bayesian Networks: Definition

*A BN consists of a Directed Acyclic Graph (DAG) and a set of
conditional probability distributions

* The DAG:
* each node denotes a random variable
* each edge from X'to Y represents that X directly influences Y

* (formally: each variable X is independent of its non-descendants given its
parents)

* Each CPD: represents P(X | Parents(X) )

P, xa) = [ @] zpan)

veV



Bayesian Networks: Parameter Counting

e Parameter reduction: a standard representation of the joint
distribution for the Alarm example has 2° = 32 parameters

* the BN representation of this distribution has 20 parameters

P(5.6A.3,1)
= P(B)
x P(E)
x P(A|B,E)
x P(J | A)

x P(M | A)



Inference in Bayesian Networks

Given: values for some variables in the network (evidence),
and a set of query variables

Do: compute the posterior distribution over the query
variables

*Gariables that are neither evidence variables nor query
variables are hidden variables

*The BN representation is flexible enough that any set can be
the evidence variables and any set can be the query variables



Inference by Enumeration

*Let ¢ denote A=true, and —a denote A=false
*Suppose we’re given the query: P(b | j, m)
“probability the house is being burglarized given that John
and Mary both called”

*From the graph structure we can first compute:
() (&) P, j,m)=> > P(b)P(E)P(A|b,E)P(j| AP(m]|A)
(4) |
sum over possible
values for £ and 4

o @ variables (e, —e, a, —a)



Inference by Enumeration

P(b, jm) =, > P(b)P(E)P(Alb,E)P(j|A)P(m|A)

€,—ea,—a

=P(b)2 2 P(E)P(AIb,E)P(j[A)P(m]A)

€,—€a,—a

0.05

P(B) P(E)
0.001 0.001
() ()  =0.001x(0.001x0.95x0.9x0.7 +
B E | PA)
t t | 095 0.001x0.05x0.05%0.01+
t f 0.94 0 0.999x0.94x0.9x0.7 +
A B 0.999 x 0.06 x 0.05 % 0.01)
f f '
1
(D)
A P@J) P(M)
t 0.9 0.7

- ~+ | >

0.01




Inference by Enumeration

*Next do equivalent calculation for P(—b, j, m)
and determine P(b | j, m)

P(o, j,m) _ P(b, j,m)

PO =55 ) T P, um) + P(=b, jum)

So: exact method, but can be intractably hard.

*Some cases: efficient
* Approximate inference sometimes available



Learning Bayes Nets

*Problem 1 (parameter learning): given a set of training
instances, the graph structure of a BN

Burglary Earthquake

—h =h =h | O
—-n ~ =k | [T]
l—l'_h_h>
- =h o~ [
f—l-—h—hz

*Goal: infer the parameters of the CPDs



Learning Bayes Nets

*Problem 2 (structure learning): given a set of training
Instances

- =h =h | O
-h e~ =h | [TI1
—~ =h =h | D>
- = o~ |
— = =<

*Goal: infer the graph structure (and then possibly also the
parameters of the CPDs)



Parameter Learning: MLE

*Goal: infer the parameters of the CPDs
* As usual, can use MLE

L(6:D,G)=P(D|G,0) =] [ P(x", xV,... x\"")

=] 1] P | Parents(x*))
=11 (H P (x| Parents(xi(d)))j

\ )
|

independent parameter learning
problem for each CPD



Parameter Learning: MLE Example

*Goal: infer the parameters of the CPDs

*Consider estimating the CPD parameters for B and J in the
alarm network given the following data set

P(b) = é ~0.125

P(—b) = g = 0.875

P(jla)="=0.75
4
. 1

. 2
P(il—a)=<=05
(J]—a) 1

—h =h =h =h =h =h ~ =h | [T]
~ o~ o~ o+ =R =k =k =k | >
—~ e e ot R o~ =R~ O
f—l-f—l-l—l-—hl—l-c—l-—h—hz

=h =h =h =h ~ =h =h =h | O

: 2
P_I —d :—:0.5
(- [—a) 1




Parameter Learning: MLE Example

*Goal: infer the parameters of the CPDs

*Consider estimating the CPD parameters for B and J in the
alarm network given the following data set

(B &) B E A J M P(b) = g _

ff f ot f q
(1) fF ot f  f f P(=b)=¢5=

f f f t t

o @ t f f f t do we really want to
f f t t f set this to 0?
f f t f t
f f t t t
f f t t t




Parameter Learning: Laplace Smoothing

*Instead of estimating parameters strictly from the data, we
could start with some prior belief for each

*For example, we could use Laplace estimates

n +1
P(X - X) - X \ pseudocounts

where n, represents the number of occurrences of value v
*Recall: we did this for Naive Bayes



Structure Learning

*Generally a hard problem, many approaches.
* Exponentially (or worse) many structures in # variables

e Can either use heuristics or restrict to some tractable subset of
networks. Ex: trees

*Chow-Liu Algorithm

e Learns a BN with a tree structure that maximizes the likelihood of
the training data

1. Compute weight /(X X;) of each possible edge (X, X))
2. Find maximum weight spanning tree (MST)
3. Assign edge directions in MST



Structure Learning: Chow-Liu Algorithm

Chow-Liu Algorithm
1. Compute weight /(X X;) of each possible edge (X, X))
2. Find maximum weight spanning tree (MST)
3. Assign edge directions in MST

1. Empirical mutual information: O(n?) computations
2. Compute MST. (Ex: Kruskal’s algorithm)

3. Assign directions by picking a root and making everything
directed from root ] L @D

o



Break & Quiz



Outline

*Undirected Graphical Models

* Definitions, MRFs, exponential families, learning



Undirected Graphical Models

*Still want to encode conditional independence, but not in an
“ordered” way (ie, no parents, direction)

* Why? Allows for modeling other distributions that Bayes nets can’t,
allows for other algorithms

*|dea: graph directly encodes a type of conditional
independence. If nodes i,j are not neighbors,

Xi L X5 X {4,y




Markov Random Fields

*A particularly popular kind of undirected model. As above,
can describe in terms of:

* 1. Conditional independence: Xz 1 Xg ‘XV\{Z,J}

* 2. Factorization. (Clique: maximal fully-connected subgraphs)
* Bayes nets: factorize over CPTs with parents; MRFs: factorize over cliques

PX)= || ¢c(ze)
C’Ecliques(G)/

“Potential” functions



Exponential Families

* MRFs (under some conditions) can be written as exponential
families. General form:

P(xy,...,xq) = %exp(z O?fz(x{z}))

/ \

Partition function Sufficient statistics

(ensures that probabilities integrate to 1)

*Lots (but not all) distributions have this form.



Exponential Families: Multivariate Gaussian

* MRFs (under some conditions) can be written as exponential
families. General form:

P(xq,...,zq) = %exp(z foz(x{z}))

 Multivariate Gaussian:

1 1 Txy—1
(QW)d/Qdet(Z)l/Q exXp (_5(39 o Iu) 2 (LE o M))

1 1

/ "N

Partition function Inverse Covariance Matrix




Ising Models

*Ising models: a particular kind of MRF usually written in
exponential form
* Popular in statistical physics
*ldea: pairwise interactions (biggest cliques of size 2)

1
P(x1,...,zq) = = exp( Oijcixy)
4 (”z); e @ ..... @@@6

* Cha”engES: Khudier and Fawaz @ ..... @@@6

* Compute partition function

* Perform inference/marginalization @ """ @@@6



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,

Yingyu Liang, Volodymyr Kuleshov, Fei-Fei Li, Justin Johnson, Serena Yeung, Pieter Abbeel, Peter Chen, Jonathan
Ho, Aravind Srinivas



