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Announcements

*Logistics:
*HW6 Due Thursday. HW7 out today
*Class roadmap:

Thursday, Nov. 18 Unsupervised Learning Il
Tuesday, Nov. 23 Learning Theory
Tuesday, Nov. 30 RL I

Thursday, Dec. 2 RL I



Outline

*Review & Self-Supervised Learning
* Contrastive learning, pretext tasks, SimCLR

*Clustering
*k-means, hierarchical, spectral clustering

*Gaussian Mixture Models
* Mixtures, Expectation-Maximization algorithm



Outline

*Review & Self-Supervised Learning
* Contrastive learning, pretext tasks, SimCLR



Self Supervision: Basic Idea

*Suppose we have no labeled data, nor weak sources

*What can we do with unlabeled data?
* Generative modeling, etc.

* Could also obtain representations (ie new features) for
downstream use.

*Need to create tasks from unlabeled data: “Pretext tasks”
* Ex: predict stuff you already know ‘

image completion rotation prediction “‘ligsaw puzzle” colorization
Stanford CS 231n



Self Supervision: Using the Representations

*Don’t care specifically about our performance on pretext task
*Use the learned network as a feature extractor

*Once we have labels for a particular task, train
* A small amount of data
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Self Supervision: Pretext Tasks

*Lots of options for pretext tasks
* Predict rotations
*Coloring
* Fill in missing portions of the image
* Solve puzzles:

Noroozi and Favaro



Contrastive Learning: Basics

*Want to learn representations so that:
* Transformed versions of single sample are similar
* Different samples are different
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Contrastive Learning: Motivation

*Contrastive learning goal:
* Keep together related representations, push unrelated apart.
* The InfoNCE loss function:

L =—-Fx

Van den Oord et al., 2018
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Contrastive Learning: Frameworks

*Many approaches (very active area of research)
* A popular approach: SimCLR. Score function is cosine similarity,

Maximize agreement

* Generate positive samples: Zi < >~ Zj
Choose random augmentations g(.)T Tg(.)
h; <— Representation — h;
f() f()
Z;
P X 1

Chen et al., 2020



Contrastive Learning: Frameworks

*Many approaches (very active area of research)
* A popular approach: SimCLR. Score function is cosine similarity,

* Generate positive samples:
Choose random augmentations

(f) Rotate {90°, 1809, 270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering



Break & Quiz



Outline

*Clustering
*k-means, hierarchical, spectral clustering



Unsupervised Learning

*No labels; generally won’t be making predictions
*Sometimes model a distribution, but not always

*Goal: find patterns & structures that help better understand
data.
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Clustering

Several types:
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K-Means Clustering

k-means is a type of partitional centroid-based clustering
Algorithm:
1. Randomly pick k cluster centers
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K-Means Clustering: Algorithm

K-Means clustering
2. Find closest center for each point
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K-Means Clustering: Algorithm

K-Means clustering
3. Update cluster centers by computing centroids
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K-Means Clustering: Algorithm

K-Means clustering
Repeat Steps 2 & 3 until convergence
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Hierarchical Clustering

Basic idea: build a “hierarchy”
*Want: arrangements from specific to general
*One advantage: no need for k, number of clusters.

*Input: points. Output: a hierarchy
* A binary tree

Credit: Wikipedia



HC: Agglomerative vs Divisive

Two ways to go:

* Agglomerative: bottom up.
e Start: each point a cluster.
* Progressively merge clusters
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*Divisive: top down
e Start: all points in one cluster.
* Progressively split clusters



HC: Agglomerative Clustering Example

Agglomerative: Start: every point is its own cluster



HC: Agglomerative Clustering Example

Basic idea: build a “hierarchy”
*Get pair of clusters that are closest and merge



HC: Agglomerative Clustering Example

Basic idea: build a “hierarchy”
*Repeat: Get pair of clusters that are closest and merge

e % 7



HC: Agglomerative Clustering Example

Basic idea: build a “hierarchy”
*Repeat: Get pair of clusters that are closest and merge



HC: Merging Criteria

Merge: use closest clusters. Define closest?

*Single-linkage d(A, B) = 1:r41in Bd<x17 z2)
T1E€EA,To€C
oCompIete-llnkage d(A’B) — IE&X Bd<aj]_)x2)
T1E€A,To€C
.Average—linkage 1
d(A,B) = T D d@na)

T1 EA,CCQ cB



HC: Single-linkage Example
We'll merge using single-linkage

*]1-dimensional vectors.
*|nitial: all points are clusters

1 2 4 S 7.25



HC: Single-linkage Example

Basic idea: build a “hierarchy”
*Want: arrangements from specific to general

1 2 4 S 7.25



HC: Single-linkage Example

Basic idea: build a “hierarchy”
*Continue...

NN

1 2 4 S 7.25



HC: Single-linkage Example

Basic idea: build a “hierarchy”
*Continue...




HC: Single-linkage Example

Continue... C,

1 2 4 S 7.25



Other Types of Clustering

Graph-based/proximity-based

*Recall: Graph G = (V,E) has vertex set V, edge set E.
* Edges can be weighted or unweighted
* Encode similarity

*Don’t need vectors here "

e Just edges (and maybe weights)



Graph-Based Clustering

Want: partition V into V, and V,
*Implies a graph “cut”

*One idea: minimize the weight of the cut
* Downside: might just cut of one node
* Need: “balanced” cut




Partition-Based Clustering

Want: partition V into V, and V,
*Just minimizing weight isn’t good... want balance!
* Approaches:

Cut(Vl, VQ) n Cut(Vl, Vg)
V1| 123

Cut(Vl, VQ) =

Cut(Vl, VQ) n Cut(Vl, Vg)

NCut(Vl,Vg): Z 1. Z .
1€V 1 1€V 71




Partition-Based Clustering

How do we compute these?

*Hard problem - heuristics
* Greedy algorithm
* “Spectral” approaches

*Spectral clustering approach:
* Adjacency matrix
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Partition-Based Clustering

*Spectral clustering approach:
*Adjacency matrix
*Degree matrix

2 0 0 0 0 000 1 1
020 0 0 001 10
D=0 0100 A={0 1 0 0 0
000 3 0 1 10 0 1
000 0 2 1 00 1 0




Spectral Clustering

*Spectral clustering approach:
*1. Compute LaplacianL=D-A
(Important tool in graph theory)
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Spectral Clustering

Spectral clustering approach:

*]. Compute LaplacianL=D - A
*2. Compute k smallest eigenvectors

*3. Set U to be the n x k matrix with u;,
u, as columns. Take the n rows formed as
points

*4. Run k-means on the representations




Spectral Clustering

Q: Why do this?
* 1. No need for points or distances as input
2. Can handle intuitive separation (k-means can’t!)

K-Means Circles Spectral Circles
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Outline

*Gaussian Mixture Models
* Mixtures, Expectation-Maximization algorithm



Mixture Models

*Let’s get back to modeling densities in unsupervised learning.
*Have dataset:

T ORPOREON

*One type of model: mixtures
* A function of the latent variable z
* We did something similar with flows

* Model:
p(xV]2)p(zV)



Mixture Models: Gaussians

| ots of different kinds of mixtures, but let’s focus on
Gaussians.

*What does this mean? k
*Latent variable z has some multinomial distribution, > ¢ =1

2(1) ~ Multinomial(¢)
*Then, let’s make x be conditional Gaussian

e D[(2% = j) ~ N (y, %)

Mean Covariance Matrix



Gaussian Mixture Models: Likelihood

*How should we learn the parameters? ¢, u;, 2,

*Could try our usual way: maximum likelihood
* Log likelihood:

ENT> Zlog Z p(@D 27 1, )p(2; )

1=1 z()—

* Turns out to be hard to solve... inner sum leads to problems!



GMMs: Supervised Setting

*What if we knew the z’s?
e “Supervised” setting... very similar to Gaussian Naive Bayes

*First, empirically estimate the z parameters:
1 —
¢j = EZl{z() =J}
1=1

*Next the Gaussian components: Average of x’s

Z?:l 1{Z(i) — j}aj(i) /wherez=j
Hi =

2?21 1{75(7:) — .7}
S 1Y = 1 a® — ) (@@ — )T
Sr e =)
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GMMs: Back to Latent Setting

*But, we don’t get to see the z’s
* Similar to the weak supervision setting from last time.

\WWhat could we do instead?

*Recall our k-means approach: we don’t know the centers,
but we pretend we do, perform a clustering, re-center, iterate
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GMMs: Expectation Maximization

*EM :an algorithm for dealing with latent variable problems

*lterative, alternating between two steps:
* E-step (expectation): guess the latent variables
* M-step (maximization): update the parameters of the model
* Note similarity to k-means clustering.
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Jake VanderPlas



GMM EM: E-Step

*Let’s write down the formulas.
*E-step: fix parameters, compute posterior:

w'® = p(z0 = jl2®; ¢, 1, %)

*These w’s are “soft” assignments of the z terms...
probabilities over the values z could take. Concretely:

W = p(z® = jlzD: 6, 1. %) = p(z® ]2 = j; p, D)p(2') = j; ¢)
7 S (2@ ]20) = £ 5, D)p(20) = ¢; ¢)



GMM EM: M-Step

eLet’s write down the formulas.

. . .
M-step: fix w, update parameters: Soft version of our counting

1 0 / estimator for the supervised case.
(
bj == > w,

Soft version of our

2?21 wj(-i)ﬂf(i) empirical mean and
Mg = no ) / covariances.




Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov



